

WINTER : The University of Maryland Electron Storage Ring

Rami A. Kishek on behalf of UMER collaboration

Institute for Research in Electronics & Applied Physics University of Maryland, College Park, MD

Research sponsored by US Department of Energy

University of Maryland Electron Ring (UMER) Team:				
Patrick O'Shea	Junior Scientists:	Graduate:	Former:	
Martin Reiser	Santiago Bernal	John Harris	Yun Zou	
Irving Haber	Mark Walter	Gang Bai	Yupeng Cui	
Rami Kishek	Bryan Quinn	Kai Tian	Hui Li	
Terry F. Godlove		Mike Holloway	Yijie Huo	
Don Feldman		C Papadopoulos	Charles Tobin	
Renee Feldman		Diktys Stratakis		
Virtual National	Alex Friedman	Peter Seidel	PPPL	
Lab for Heavy Ion	Dave Grote	Christine Celata	Ron Davidson	
Fusion (also	Jean-Luc Vay	Steve Lund	Hong Qin	
provided WARP)	John Barnard	Simon Yu	Fric Gilson	
NIU	Court Bohn	Ioannis Sideris		
Others	Ingo Hoffman			

Outline

- The University of Maryland Electron Ring: Why and What?
- 2. UMER Design
- 3. Transverse Physics and Control
- 4. Longitudinal Physics
- 5. Summary

Why electrons? Scaling Laws

Transverse:

- Errors & Control
- Halo Formation & Beam Losses
- Emittance Growth
- Instabilities
- Resonances
- Longitudinal:
 - Energy Spread
 - Transverse-Longitudinal Coupling
 - Compression
 - Instabilities

UMER Schematic

UMER is a Complex Machine

UMER as of Aug. 2004

Review of UMER Design

UMER Beams

Energy	10 keV	
Energy Spread	20 eV	
Current Range	0.6-100 mA	
rms Emittance _n Range	0.2-3 μm	

Non-Relativistic:

- Negligible radiation, below transition, etc.
- Earth field important!
- Low Energy Spread
- Current and Emittance Adjustable:
 - using apertures in the gun (large jumps)
 - by varying the gun grid voltage (fine-tuning)

Dimensionless Space Charge Intensity

Intensity Parameter:

0 £ c £ 1

Present UMER Operating Points

UMER Lattice Parameters

Ring Circumference	11.52 m	
Ring Radius	1.83 m	
Lattice Period	32 cm	
Number Lattice Periods	36/turn	
Zero-Current Tune	7.6	
Zero-Current Tune Range	7.2-8.5	
Average Beam Radius	1.4-10 mm	

Tune adjustable, currently 3 operating points Interested also in anisotropic focusing (different tunes in x and y)

UMER Magnets & Lattice

15.4 G

2.8 cm 20 G-cm/A

3 A

 3Ω

PC Dipoles (34 X)

Dipole field Current Physical length Effective length 4.4 cm 3.8 cm Radius Field integral Resistance

PC Quadrupoles (68x)

~ 8 G/cm Field gradient Current 2 Å Physical length Effective length 4.4 cm 3.6 cm 2.8 cm 15 G/A Radius Field integral Resistance 3Ω

UMER Goals

- 1. Maintain emittance growth $\Delta \varepsilon / \varepsilon < 4$, while:
 - At full current, without acceleration, 10 turns
 - At lower current or with acceleration, 100 turns
- Conduct a wide range of beam dynamics experiments on UMER!

Diagnostics Presently Installed

Invasive (can only be used over first turn):

- Phosphor screen imagers:
 - Beam-intensity image, size, position, and skew angle
 - Beam emittance and transverse phase space (in combination with a quad scan and Tomographic techniques)
 - Beam emittance (in combination with quincunx mask at gun)

Non-Invasive (multi-turn diagnostics):

- Beam Position Monitors:
 - Beam position
 - Beam current

IREAP

- Bergoz Coils (Beam Current)
- Perturbation Techniques (Line Charge)

Diagnostics to be Added

- 1. Energy Analyzers (invasive, can be placed in any chamber)
- 2. End Diagnostic Chamber (non-invasive):
 - Time resolved high-resolution Energy Analyzer
 - Slit-slit time-resolved transverse phase space mapper
 - Pepper-pot transverse-phase-space mapper
 - Current measurement devices
 - Phosphor Screen Imager

3-D field calculations: Z-integrals used for field quality. Constant k adjusted for best uniformity (dipole) or linearity (quad); e.g., k = 0.976 for ring dipole; deviations <0.1%

Rotating coil and pulsed wire systems

Normal Multipole	Expected	Allowed	Measured
Harmonics	(w/ errors)	Max	
Quadrupole	10 ⁴	10^{4}	10 ⁴
Sextupole	20	150	32
Octupole	68	90	53
Decapole	13	45	4.8
Duodecapole	130	22	3.2
IREAP			

Zhang, et al., PRST-AB, 3, 122401 (2000).

New Injection Y in place

Beam Control

Beam Control System Software

Beam Steering

Angle (degrees)

Two pilot beams (7mA, 0.6mA) have given similar results.

Beam Rotation Correction

Electronic Skew Corrector

Beam Rotation Correction

24mA Beam (RC1-12) Before Skew Correction

24mA Beam (RC1-12) After Skew Correction

Beam Rotation Correction

24mA Beam (RC1-12) Rotation Angle Before Correction v.s After Correction

Skew corrector at here

Beam Matching

24mA Beam (RC1-12) after Skew Correction

24mA beam pictures (RC 1-12) after beam-based matching

Beam Matching

Before empirical matching: $\sigma_x=0.20$ mm $\sigma_y=0.18$ mm

After empirical matching: $\sigma_x=0.08$ mm $\sigma_y=0.04$ mm

Longitudinal Dynamics: Inducing Perturbations

Drive Laser Setup

IREAP

UV (355nm) Laser Photon energy: 3.5 eV Work function: 2.7 eV

Experiment Data Positions

- UMER Mechanically Closed
- Beam Control algorithms and systems developed.
- Poised for Multi-Turn Operation
- Can use laser to produce localized density perturbations – good agreement with WARP simulations.
- Rich physics content promises exciting results

- 10 keV \Rightarrow use ironless printed-circuit magnets
- Quadrupole, Dipoles, and additional Short Dipoles for small steering corrections
- Can handle up to 3 Amps DC/conductor.
- Double-sided: minimizes effect of external leads & doubles the field.

Courtesy of T.F. Godlove

• Algorithm:

 $sin(mF_n) = 1 - (2z_n/kL)^2$, n = 20 loops for ring dipoles (m=1) and quad's (m=2)

FFT of Rotating Coil Signal

Sources of Quad Multipole Spectrum

Multipole	Source
Normal dipole	Residual Earth's field and R
Skew dipole	Residual Earth's field and R
Normal quadrupole	Design
Skew quadrupole	H and R
Normal sextupole, decapole	R
Skew sextupole, decapole	Conductor finite width
Normal octupole	V
Skew octupole	Н
Normal duodecapole	Design and V
Skew duodecapole	Н

