FFAGs in 2005

M.K.Craddock

University of British Columbia & TRIUMF

with grateful acknowledgements to the many authors who have lent me their slides

Fermilab, April 7, 2005

accelerators	
ent	
Gradi	
ernating	
±	
A	
Field	
Fixed	
- SOA:	

Fixed Magnetic Field - members of the CVCLOTRON family

Magnetic field	Fixed Frequency	Frequency-modulated
variation B(0)	(CW beam)	(Pulsed beam)
Uniform	Classical	Synchro-
Alternating	Sector-focused	FFAG

BASIC CHARACTERISTICS OF FFAGs

are determined by their FIXED MAGNETIC FIELD

- Spiral orbits
- needing wider magnets, rf cavities and vacuum chambers (compared to AG synchrotrons)
- Faster rep rates (up to kHz?) limited only by rf capabilities
 - Large acceptances
- High beam current

The last 3 factors have fuelled interest in FFAGs over 50 years!

SCALING DESIGNS	<mark>desonances</mark> were a big worry in early days, because of <mark>low ∆E/turn</mark> .	50 "Scaling" designs were used, with:	 the same orbit shape at all energies 	 the same optics " " " " " 	• the <u>same tunes</u> " " " " "	requiring complex wide-aperture sector magnets with	 constant field index 	 constant and high flutter, with opposing F and D fields (if radial) 	 constant spiral angle (if spiral) 	
-----------------	---	---------------------------------------	--	---	-----------------------------------	---	--	---	---	--

Large and complex magnet structures!

K.R. Symon, D.W. Kerst, L.W. Jones, L.J. Laslett and K.M. Terwilliger, Phys. Rev. 103, 1837 (1956)

NG FFAGs - HORIZONTAL TUNE V _x	field index $k(r) \equiv \frac{r}{B_{av}} \frac{dB_{av}}{dr}$ and $B_{av} = \langle B(\Theta) \rangle$	ih r, then $k > 0 \Rightarrow extra horizontal focusing.sochronism, \omega = eB_{av}/mequiring B_{av} = \gamma B_c$	So $k = \gamma - 1$ and $v_x = \gamma$ v_x requires $k = constant$ (incompatible with isochronism) $\Rightarrow B_{av} = B_0 (r/r_0)^k$ $\Rightarrow p = p_0 (r/r_0)^{(k+1)}$
SCALING FFAG	To 1 st order where the average field index	If B _{av} increases with r, then In particular, for isochronism, requiring	However, constant v× requires ↓

SCALING FFAGs - VERTICAL TUNE V2

 $v_z^2 \approx -k + F(1 + 2tan^2\varepsilon)$ To 1st order

..constant, real v_z requires large, constant F(1 + 2tan²e) Note k > 0 \Rightarrow vertical defocusing

e = constant (sector axis follows R = R₀e^{ao}) (2) magnet flutter $F \equiv \langle (B(\Theta)/B_{av} - 1)^2 \rangle = constant$ MURA kept (1) spiral angle

(most simply achieved by using constant profile B(O)/B_{av}) å

For high F, MURA specified B_b = -B_F

Note - reverse fields increase average radius:

MURA Electron FFAGs

400keV radial sector –

50 MeV radial sector

120 keV spiral sector ₁

K.R. Symon, Proc PAC03, 452 (2003)

Courtesy of MURA

(A)	Ĭ	Ż		RF CANTY	•		Þ	\leq			EXTRACTION 1/2	/ NOKER	0 8 11	2			T T T			Ţ.					V L
	20	3,6"	14	-19	4.25	3,3	250 Hz	4 114	1014	1250 REV	9	2.11-3.09	1.55-1.57		200 NEV	2,15.1-н	0.413 T	25.88 н	650 · NHAR	500 × MHHR		1500 NEV	7.5067 T-H	1.327 1	28.139 fM
GENERAL .	NUMBER OF MAGNETS	SECTOR MIDTH	FJELD INDEX, K	SPIRAL ANGLE	××	A.	MAX2MUM REPETITION RATE	AVERAGE CURRENT	SPACE CHARGE LIMIT	STACK ENERGY	BUNCHES/STACK	RF FREQUENCY		ANJECTION	EINJ.	\mathbf{B}_{μ}	B	CR3 (NJ		E V.	EXTRACTION	EEXTR	Bp	В	CR3 EXT

KEK Proof-of-Principle 1 MeV proton FFAG

KEK 150-MeV 12-Sector Proton FFAG

"Return-yoke-less" DFD Triplet for 150-MeV FFAG

INNOVATIONS AT KEK	Mori's 1 MeV (2000) and 150 MeV proton FFAGs introduced two important innovations:	 FINEMET metallic alloy tuners allowing: rf modulation at 250 Hz or more → high beam-pulse rep rates 	(remember the unreliable rotary capacitors on synchrocyclotrons, which operate in the same mode as FFAGs)	 high permeability	• low Q (\equiv 1) \rightarrow broadband operation - no active tuning needed	2. DFD triplet sector magnets:	 powered as a single unit 	 D acts as the return yoke, automatically providing reverse field 	 modern techniques enable accurate computation of the pole shape for 	constant field index k
--------------------	--	--	--	--------------------------------------	---	--------------------------------	--	--	---	------------------------

RF system

Large Magnetic All	oy (FINEMET) Cavity
Number of core	t pieces
Outer (Inner) size	1700x950mm(980x230mm)
Core thickness	25mm
RF frequency	1.5-4.6 MHz
RF voltage	9kV
RF output	55kW
Power density	1W/cm3
Cooling water	70 L/min

2-150MeV mode

operation

tune_

criterion 1)∆v<0.1 2)avoid structure & linear resonaces

∧_ənut

SC - IN OPERA	ALING	i v	LAGS UNDE	N CO N CO N CO N	APAN NSTRUC	- NOIL
	Energy (MeV/u)	Ion	Cells	Spiral angle	Radius (m)	Comments/ 1 st beam
KEK - POP	-1	٩	8	°	0.8-1.1	2000
KEK	150	പ	12	°O	4.5-5.2	2003
Kyoto Univ ADSR (Accelerator-Driven Subcritical Reactor)	150 20 2.5	م م م	₩ ₩ ₩ ₩	စ္ စ္ စိ	4.5-5.1) 1.3-1.9 } 0.6-1.0 J	120 Hz, 1 μA in 2005 (1 kHz, 100 μA, 200 MeV Inter)
PRISM	20	Д.	10	°	6.5	Phase rotator

Injector Ø. 田 S 2534' 68 1230-33 12500.00 $\widehat{}$ \bigcirc Layout 2155.¹98 2800.2 348, 84 12500. DB 3563" 11 <u> 75200' DO</u> 12500.00 nng

Booster

Main 1

*Solenoid Pion Capture *Pion-decay and Transport *Phase Rotation

FFAG advantages: synchrotron oscillation necessary to do phase rotation

large momentum acceptance

necessary to accept large momentum distribution at the beginning to do phase rotation large transverse acceptance muon beam is broad in space

PRISM-FFAG ring construction has started in JFY2003.

SCALING	FFA(S	Z	JAP	- NA	DESI	GN STUDIES
	Energy (MeV/u)	Ion	Cells	Spiral angle	Radius (m)	Rep rate (Hz)	Comments
Ibaraki Med.Acc.	230	٩	œ	50°	2.2 - 4.1	20	0.1 µА
eFFAG	10	0	ω	47°	0.26 - 1.(0 5,000	20-100 mA
MEICo - Laptop	1	0	വ	35°.	02302	8 1,000	Hybrid - <u>Magnet built</u>
MElCo - Ion Ther (Mitsubishi Electr	apy[400 ^ic) 7	Ċ [‡] ΰ	16 8	64° 0°	7.0 - 7.5 1.35 - 1.8	0.5	Hybrid (FF <i>AG/s</i> ynch ⁿ)
MEICo - p Therapy	y 230	٩	m	0°- 60°	0 - 0.7	2,000	<u>SC</u> , Quasi-isochronous
NIRS Chiba - Hadron Therapy	[400 { 100 7	في = في	12 12 10	ဝိဝိဝိ	10.1 - 10. 5.9 - 6. 2.1 - 2.	8 200 7 " 9	<u>Compact</u> radial sectors
J-PARC Neutrino	[20,000] 10,000	I:	100	ဝိ ဝိ	120 55		<u> </u>
Factory Accelerators) 3,000 l 1,000	= =		ဝိ ဝိ	30 10		Q≈1 rf cavities allow broadband operation

	_			
	<u> </u>			
	101			
r				

proton therapy accelerator

S	/nchrotron	Cyclotron	FFAG
• Intensity	Low	Enough	Enough
• Maintenance	Normal	Hard	Normal
• Operation	Not easy	Easy	Easy
 Multi-extraction 	Difficult	No	Yes

Spiral Magnet

Changes for the Better

The present study is partially supported by the REIMEI Research Resources of Japan Atomic Energy Research Institute.

C6+400MeV/n Hybrid Accelerator 5 for the Better

									lom
C6+	4~400 [MeV/n]	7.00~7.48[m]	16	12	65 degree	0.45	1.9T	0.5Hz	
Particle	Energy	Radii	Cell	K value	Spiral angle	Packing F	Maximum Magnetic Strength	Repetition	

NON-SCALING FFAGS
 FFAGs look attractive for accelerating muons in μ Colliders or v Factories Large acceptance (in r & p) eliminates cooling & phase rotation stages Rapid acceleration (<20 turns) makes resonance crossing ignorable (Mills '97) Less expensive than recirculating linacs.
 NON-SCALING approach first tried by Carol Johnstone (arc 1997, ring 1999) Proposed using strong positive-bending Ds + negative Fs,
 with constant-gradient magnets Orbit circumference C(E) varies quadratically instead of rising monotonically So the variation in C and orbit period can be reduced
 The muons oscillate in phase across the rf voltage peak (3 crossings) just as in a real, imperfectly isochronous, cyclotron!
Lattice designs by - Johnstone (Fermilab) & Koscielniak (TRIUMF) - Berg, Courant, Trbojevic, Palmer (BNL) - Keil (CERN) & Sessler (LBNL)
Latest cost-optimised [2.5-5GeV C = 246±0.067m 64 cells 6 turns 6% decay
lattices by Berg:- { 5-10 GeV 322 ± 0.081 m 77 " 10 " 7% "
[10-20 GeV 426 ± 0.095 m 91 " 17 " 8% "

Fig. 5. Measured phases of accelerating and decelerat-ing beams in the TRIUMF cyclotron.

Lattice Functions at 14.75 GeV

Rees (2005) has successfully incorporated long-drift insertions in an FFAG

0.18 GeV H ⁻ Linac

0.18 GeV H [–] Achromat

3 GeV, 50 Hz, h = 5, RCS (1 at 50 Hz, or 2 at 25 Hz)

10 GeV, 50 Hz, N = 5, FFAG with 10^{13} protons per bunch

NON-LINEAR NON-SCALING LATTICES FOR HADRONS

Sandro Ruggiero (BNL) has studied low-energy proton FFAGs using non-scaling lattices with FDF cells:

- 1.5 GeV replacement for AGS Booster (R = 128 m, N = 136, 2.5 Hz, 40 μ A)
- 1 GeV 10 MW proton driver (R = 32 m, N = 40, 1000 Hz, 10 mA)
 - 250 MeV proton therapy FFAG.

For only modest rf voltage – no resonance crossing is allowed

- so he keeps ν_{r} , $\nu_{z} \approx constant$

by making the field gradient *dB/dr* vary with *r* (a lot)

and with θ (a little).

I- Strinning Foil		Injection Energy 11	
	Target	Extraction Energy, <mark>U</mark> f Beam Ave. Power, P = I U _f	1.0 GeV 10.0 MWatt
	1.0-Gev FFAG	Repetition Rate, <mark>F</mark> Repet. Period, τ _. Ĩ	<mark>1.0</mark> kHz 1.0 ms
Acceleration		Beam Ave. Current, I = Ne F	10.0 mA
		Total No. Protons, N	6.25 x 10 ¹³
ent I _L Re	evol. Freq.	$f = c \beta_{inj} / C$	
α	evol. Period	T = 1 / f	
erence C No	o. Protons / Turn	$N_{P} = \alpha I_{L} T / e$	
B _{inj} No	o. Injected Turns	$n = N/N_{P} = Ne/\alpha I_{L}T$	
eriod T _{acc} Re	ep. Period	$\tau = T_{inj} + T_{acc}$	
d T _{inj} = nT = Ne	/α ⁻ >	not dependent on C and β_{inj}	
$\alpha = 0.5$ I _L	= 60 mA>	$T_{inj} = 0.333 \text{ ms}$ & $T_{acc} = 0.66$	3 7 ms
-16, 2004	Alessandro G. R FFAG'04 Worl	luggiero sshop	2 of 25

۵

щ

8 of 25

FFAG'04 Workshop

KEK -- Oct. 13-16, 2004

ELEC inciple machir it their two r de through me ge through me ge through me ge through me ge through me ge through me focused on ar focused on ar istic paramete istic paramete istic paramete istic paramete de UK) has of ant applicatio

CONCLUSIONS

- Last 10 years have seen rebirth of interest in FFAGs world-wide
- 2 built, 4 under way, >20 designs proposed
- Interest stems from applications needing the FFAG's unique
 - characteristics:
- high rep rate
- high acceptance
- A whole new class of "non-scaling" FFAGs has been discovered
- several varieties are being studied
- perhaps scope for more?