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1 Before Using COSY INFINITY

1.1 User’s Agreement

COSY INFINITY can be obtained from MSU under the following conditions.

Permitted Uses: Michigan State University (“MSU”) grants you, as “End User,” the right to use
COSY INFINITY for non-commercial purposes only. Registered users will automatically be given access
to updates of the code as they become available. Conversely, we encourage end users to make available
tools of sufficient generality they develop for the purpose of inclusion in the master version. Any errors
detected in COSY INFINITY should be reported; comments to improve its performance are appreciated.
If the code proves useful for work that is being published, a reference is expected.

Prohibited Uses: End User may not make copies of COSY INFINITY available to others, but rather refer
them to register for their own license. End User may not distribute, rent, lease, sub-license, decompile,
disassemble, or reverse-engineer the COSY INFINITY materials provided by MSU without the prior
express written consent of MSU; or remove or obscure the Board of Trustees of MSU copyright notices or
those of its licensors. The source files are provided for purposes of compilation only and should not be
modified. We advise against modification of the provided COSYScript libraries so as to maintain a clear
upgrade path, but rather to maintain derivative code in separate files.

Intellectual Property: COSY INFINITY is a proprietary product of MSU and is protected by copyright
laws and international treaty. This Agreement is a legal contract between you, as End User, and the Board
of Trustees of MSU governing your use of COSY INFINITY. MSU retains title to COSY INFINITY. You
agree to use reasonable efforts to protect the code from unauthorized use, reproduction, distribution, or
publication. All rights not specifically granted in this License Agreement are reserved by MSU.

Warranty: MSU MAKES NO WARRANTY, EXPRESS OR IMPLIED, TO END USER OR TO ANY
OTHER PERSON OR ENTITY. SPECIFICALLY, MSU MAKES NO WARRANTY OF FITNESS FOR
A PARTICULAR PURPOSE OF COSY INFINITY. MSU WILL NOT BE LIABLE FOR SPECIAL,
INCIDENTAL, CONSEQUENTIAL, INDIRECT OR OTHER SIMILAR DAMAGES, EVEN IF MSU
OR ITS EMPLOYEES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO
EVENT WILL MSU LIABILITY FOR ANY DAMAGES TO END USER OR ANY PERSON EVER
EXCEED THE FEE PAID FOR THE LICENSE TO USE THE SOFTWARE, REGARDLESS OF THE
FORM OF THE CLAIM.

1.2 How to Obtain Help and to Give Feedback

While this manual and the Programmer’s Manual [27] are intended to describe the use of the code as
completely as possible, there will probably arise questions that this manual cannot answer. Furthermore,
we encourage users to contact us with any suggestions, criticism, praise, or other feedback they may have.
We also appreciate receiving COSY source code for utilities users have written and find helpful. We can
be contacted at support@cosyinfinity.org.

1.3 How to Install and Run the Code

For Windows, Mac, and some Linux environments, one may simply download the self-installing packages,
which are almost completely self-explanatory, from the COSY INFINITY web site,

https://cosyinfinity.org
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For full details about the installation and the execution, for questions about installation on different
platforms, or for questions about performance, implementation and verification of COSY INFINITY,
please refer to the COSY INFINITY Programmer’s Manual [27].
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2 What is COSY INFINITY

The design and analysis of particle optical systems is quite intimately connected with the computer world.
There are numerous more or less widespread codes for the simulation of particle optical systems. Generally,
these codes fall into two categories. One category includes ray tracing codes which use numerical integra-
tors to determine the trajectories of individual rays through external and possibly internal electromagnetic
fields. The core of such a code is quite robust and easy to set up; for many applications, however, certain
important information can not be directly extracted from the mere values of ray coordinates. Furthermore,
this type of code is often quite slow and does not allow extensive optimization.

The other category of codes are the map codes, which compute Taylor expansions to describe the action
of the system on phase space. These codes are usually faster than integration codes, and the expansion
coefficients often provide more insight into the system. On the other hand, in the past the orders of the
map, which are a measure of the accuracy of the approach, have been limited to third order [33] [80] and
fifth order [18] [32]. Furthermore, traditional mapping codes have only very limited libraries for quite
standardized external fields and lack the flexibility of the numerical integration techniques. In particular,
fringe fields can only be treated approximately.

2.1 COSY’s Algorithms and their Implementation

It is indeed possible to have the best of both worlds: using differential algebraic techniques, any given
numerical integration code can be modified such that it allows the computation of Taylor maps for arbi-
trarily complicated fields and to arbitrary order [14] [6] [9] [3] [2]. An offspring of this approach is the
computation of maps for large accelerators where often the system can be described by inexpensive, low
order kick integrators.

The speed of this approach is initially determined by the numerical integration process. Using DA
techniques, this problem can be overcome too: DA can be used to automatically generate numerical
integrators of arbitrary high orders in the time step, yet at the computational expense of only little more
than a first order integrator [3] [2]. This technique is very versatile, works for a very large class of fields,
and the speeds obtained are similar to those of classical mapping codes.

In order to make efficient use of DA operations in a computer environment, it has to be possible to
invoke the DA operations from within the language itself. In traditional languages used for numerical ap-
plications like C and Fortran, it is often difficult to introduce new data types and overload the operations
on them. Modern object oriented languages like C++ and Fortran 90 on the other hand have the capa-
bilities of conveniently introducing new data types. Consequently, we are providing C++ and Fortran 90
interfaces to COSY INFINITY. Thus the highly optimized COSY tools are widely accessible from nearly
every language environment; more details can be found in the Programmer’s Manual. Interestingly, the
performance of the interfaces is within a factor of two to the regular COSY INFINITY system on most
platforms, and significantly outperforms most code natively written in object oriented languages.

However, these languages are not particularly suitable for the formulation of the user’s input problem.
Indeed, there is the additional difficulty of slow turnaround from completion of input to commencement of
execution because of the necessary compiling and liking steps. Thus the user input for COSY INFINITY
is written in a simple, high performance scripting environment called COSYScript.
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2.2 The COSYScript User Interface

Traditional accelerator codes utilize various kinds of specialized command languages for the description of
lattices and beamlines. Various approaches have been used in the past, starting from coding numbers as
in the old versions of TRANSPORT [33] over more easily readable command structures like in TRIO [80],
GIOS, COSY 5.0 [18] and MARYLIE [39] to the standardized commands of MAD, for which there is a
conversion utility to COSY INFINITY (see Section 3.4.1) [58] [59].

COSY INFINITY approaches this problem in a clean way by phrasing the various tasks in terms of a
standardized scripting language environment; in fact, the language is so powerful and convenient that all
the beam physics modules of COSY INFINITY were written in it.

For ease of use, this language has a deliberately simple syntax. For the user demanding special-purpose
features on the other hand, it is rather powerful, much more so than typical lattice description languages.
It allows direct and complex interfacing to Fortran routines if needed, and it allows the use of DA and
others as built-in types. Finally, it is widely portable, and minimizes turnaround between input completion
and commencement of execution, which conventional languages usually do not offer.

For reasons of speed it is helpful to allow the splitting of the program into pieces, one containing
the optics program and one the user commands. For this purpose, a complete momentary image of the
compilation status is written to a file. When compilation continues with the second portion, this image is
read from the file, and compilation continues in exactly the same way as without the splitting.

In Section 7 we provide a one page summary of the scripting language, including an example. The
full syntax of COSYScript is described in detail in the Programmer’s Manual. However, most of the
syntax will become apparent from the detailed examples supplied in the following sections, and experience
shows that it is possible to write most COSY INFINITY inputs without explicitly consulting the language
reference. In addition, the Programmer’s Manual has a handy document, Appendix B “Quick Start Guide
for COSY INFINITY”, which can be utilized as a quick-start guide.
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3 Computing Systems with COSY INFINITY

This section describes some core features of COSY INFINITY’s particle optics and accelerator physics
environment. This provides the backbone for practical use in particle optics. We assume that the reader
has a fundamental knowledge about particle optics, and refer to the literature, for example [92] [54] [36]
[60] [88] [49].

3.1 General Properties of the COSYScript Environment

The physics part of COSY INFINITY is written in its own input language. In this context, most commands
are just calls to previously defined procedures. If desired, the user can create new commands simply by
defining procedures of his own. All commands within COSY INFINITY consist of two or three letters
which are abbreviations for two or three words describing the action of the procedure. This idea originated
in the GIOS language, and many commands of COSY INFINITY are similar to respective commands in
GIOS. All units used in the physics part of COSY INFINITY are SI, except for voltages, which are in kV,
and angles, which are in degrees.

Particle optical systems and beamlines are described by a sequence of calls to procedures representing
individual elements. The supported particle optical elements can be found in Section 3.3 beginning on
page 17; Section 5.7 beginning on page 54 shows how to generate new particle optical elements.

In a similar way, elements can be grouped, which is described in Section 5.3 beginning on page 49.
Besides the commands describing particle optical elements, there are commands to instruct the code what
to do.

3.2 Control Commands

All user commands for COSY INFINITY are contained in a file which is compiled by FOXY. The first
command of the file must be

INCLUDE ’COSY’ ;

which makes all the compiled code contained in cosy.fox known to the user input. The user input itself
is contained in the procedure RUN. Following the syntax of COSYScript described in the Programmer’s
Manual [COSYScript, Quick Start Guide for COSY INFINITY], all commands thus have to be included
between the statements

PROCEDURE RUN ;

and

ENDPROCEDURE ;

In order to execute the commands, the ENDPROCEDURE statement has to be followed by the call to
the procedure,

RUN ;

and the command to complete the COSY INFINITY input file,

END ;
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Like any language, the COSYScript environment supports the use of variables and expressions which
often simplifies the description of the system. For the declaration of variables, see the Programmer’s
Manual.

The first command sets up the DA tools and has to be called before any DA operations, including the
computation of maps, can be executed. The command has the form

OV <order> <phase space dimension> <number of parameters> ;

and the parameters are the maximum order that is to occur as well as the dimensionality of phase space
(1,2 or 3) and the number of system parameters that are requested. If the phase space dimensionality is
1, only the x-a motion is computed; if it is 2, the y-b motion is computed as well, obviously at a slightly
higher computation time. If it is 3, the time of flight and chromatic effects are computed also.

The number of parameters is the number of additional quantities besides the phase space variables
that the final map shall depend on. This is used in connection with the “maps with knobs” discussed in
Section 5.2 on page 48 and to obtain mass and charge dependences if desired, and it is also possible to
compute energy dependence without time-of-flight terms at a reduced computational expense.

The order is arbitrary and denotes the maximum order that computations can be performed in. It is
possible to change the computation order at run time using the command

CO <order> ;

however, the new order can never exceed the one set in OV. Note that the computation time naturally
increases drastically for higher orders. Under normal circumstances, orders should not exceed ten very
much.

3.2.1 The Coordinates

COSY INFINITY performs all its calculations in the following scaled coordinates:

r1 = x, r2 = a = px/p0,
r3 = y, r4 = b = py/p0,
r5 = l = −(t− t0)v0γ/(1 + γ), r6 = δK = (K −K0)/K0,
r7 = δm = (m−m0)/m0, r8 = δz = (z − z0)/z0.

(1)

The first six variables form three canonically conjugate pairs in which the map is symplectic. The units
of the positions x and y are meters. p0, K0, v0, t0 and γ are the momentum, kinetic energy, velocity, time
of flight, and total energy over m0c

2, respectively. m and z denote mass and charge, and m0 and z0 are
those of the reference particle.

3.2.2 Defining the Beam

All particle optical coordinates are relative to a reference particle which can be defined with the command

RP <kinetic energy in MeV> <mass in amu> <charge in units> ;

For convenience, there are two procedures that set the reference particle to be protons or electrons:

RPP <kinetic energy in MeV> ;

RPE <kinetic energy in MeV> ;



10 3 COMPUTING SYSTEMS WITH COSY INFINITY

For the masses of the proton and electron and all other quantities in COSY INFINITY, the values provided
by the Berkeley Particle Data Group have been used (CAUTION: The data was updated in September
2001 in cosy.fox). Finally, there is a command that allows to set the reference particle from the magnetic
rigidity in Tesla meters and the momentum in MeV/c:

RPR <magnetic rigidity in Tm> <mass in amu> <charge in units> ;

RPM <momentum in MeV/c> <mass in amu> <charge in units> ;

Finally it is possible to set the magnetic moments of the particle and activate the computation of spin.
This is achieved with the command

RPS < LS > < G > ;

where LS is the spin mode, 1 indicating spin computation and 0 indicating no spin computation. G =
(g − 2)/2 is the anomalous spin factor of the particle under consideration. In case the reference particle
has been set to be a proton using RPP or an electron using RPE, the proper value will be used if G is
set to zero.

The command

SB <PX><PA><r12><PY><PB><r34>< PT><PD><r56><PG><PZ> ;

sets half widths of the beam in the x, a, y, b, t, d, g and z directions of phase space as well as the off
diagonal terms of the ellipse in TRANSPORT notation r12, r34, and r56. The units are meters for PX
and PY, radians for PA and PB, v0γ/(1 + γ) times time for PT, and ∆E/E for PD, ∆m/m for PG, and
∆z/z for PZ. The command

SP <P1> <P2> <P3> <P4> <P5> <P6> ;

sets the maxima of up to six parameters that can be used as knobs in maps (see Section 5.2 beginning on
page 48).

SBE <EX> <EY> <ET> ;

sets the ellipse of the beam to an invariant ellipse of the current map. The emittances in x-a, y-b, and τ -δ
space being EX, EY, ET respectively.

3.2.3 The Computation of Maps

COSY INFINITY has a global variable called MAP that contains the accumulated transfer map of the
system. Each particle optical element being invoked updates the momentary contents of this global
variable.

The following command is used to prepare the computation of maps. It sets the transfer map to the
identity. It can also be used again later to re-initialize the map.

UM ;

The command

SM <name> ;

saves the momentary transfer map to the array name, which has to be specified by the user. The ar-
ray can be specified using the VARIABLE command of COSYScript (see the Programmer’s Manual
[COSYScript]). It could have the form
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VARIABLE <name> 1000 8 ;

which declares a one dimensional array with eight entries. Each entry can hold a maximum of 1000 16
byte blocks, which should be enough to store the DA numbers occurring in calculations of at least seventh
order. Note that there is a set of convenience functions that allow to easily calculate the required maximal
length of objects based on their characteristics; for example, the function LDA determines the length of
a DA vector as a function of its order and number of variables.

To copy a map stored in an array name1 to another array name2, use the procedure

SNM <name1> <name2> ;

The command

AM <name> ;

applies the previously saved map <name> to the momentary map. SM and AM are particularly helpful
for the handling of maps of subsystems that are expensive to calculate. In particular in the context of
optimization, often substantial amounts of time can be saved by computing certain maps only once and
then re-using them during the optimization.

It is also sometimes necessary to compose two individual maps into one map without acting on the
current transfer map. This can be achieved with the command

ANM <N> <M> <O> ;

which composes the maps N and M to O=N ◦ M.

The command

PM <unit> ;

prints the momentary transfer map to the output unit. This number can be associated with a file name
with the OPENF procedure (see index); if OPENF is not used, the name associated with the output
unit follows the local Fortran conventions. Output unit 6 corresponds to the screen. The different columns
of the output belong to the final values of x, a, y, b and t of the map, and different lines describe different
coefficients of the expansion in terms of initial values. The coefficients are identified by the last columns
which describe the order as well as the exponents of the initial values of the variables. An example of the
output of a transfer map can be found in Section 5 on page 47.

The command

PSM <unit> ;

writes the 3× 3 spin matrix to the output unit.

Besides the easily legible form of output of a transfer map produced by PM, it is also possible to write
the map more accurately but less readable with the command

WM <unit> ;

In this case, the transformation of the local coordinate system is also stored and can be reused when read.
Maps written by PM or WM can be read with the command RM.

RM <unit> ;

reads a map generated by PM or WM from the specified unit and applies it to the momentary transfer
map. Often a significant amount of computer time can be saved by computing certain submaps ahead of
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time and storing them either in a variable or a file. In particular this holds for maps which are expensive
to compute, for example the ones of electrostatic cylindrical lenses.

Besides storing maps of an element or system with one specific setting of parameters, using the tech-
nique of symplectic scaling it is possible to save maps with a certain setting of field strengths and lengths
and later re–use them for different settings of lengths or strengths. This is particularly useful for elements
that require a lot of calculation time, including fringe fields and solenoids. A representation of the map
of an element with typical dimensions and field strength for a typical beam is saved using

WSM < unit> <L> <B> <D> ;

This map has to be calculated either in three dimensions (OV order 3 0 ;) or with the energy as a parameter
(OV order 2 1 ;). The parameters are the output unit, length, pole–tip field, and aperture of the element
that created the momentary map. The map of the motion of a different type of beam through any similar
element that differs in scale or field strength can be approximated quickly by

RSM <unit> <L> <B> <D> ;

It is also possible to extract individual elements of transfer maps. This is achieved with the COSY
function

ME(<phase space variable>,<element identifier>)

The element identifier follows TRANSPORT notation; for example, ME(1,122) returns the momentary
value of the element (x, xaa).

The beam’s current sigma matrix is computed from the ellipse data previously set with SB by the
function

SIGMA(<I>,<J>)

Sometimes it is necessary to determine the map of the reversed system, i.e. the system transversed
backwards. In case M is the map of the system, the map MR of the corresponding reversed system can
be computed with the command

MR <M> <MR> ;

Note again that the current transfer map is stored in the global variable MAP. Similarly, it is sometimes
necessary to determine the map of the system in which the coordinates are twisted by a certain angle.
For example, if the direction of bending of all magnets is exchanged, this corresponds to a rotation by
180 degrees. In case M is the map of the system, the map MT of the system twisted by angle can be
computed with the command

MT <M> <MT> <angle> ;

3.2.4 The Computation of Trajectories

Besides the computation of maps, COSY INFINITY can also trace rays through the system. The trajecto-
ries of these rays can be plotted or their coordinates printed. If rays are selected, they are pushed through
every new particle element that is invoked. Note that COSY INFINITY can also push rays through maps
repetitively and display phase space plots. This uses different methods and is discussed in Section 4.4
beginning on page 41.

The following command sets a ray that is to be traced through the system. The parameters are the
values of the eight particle optical coordinates that are defined in eqs. (1) on page 9.
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SR < x > < a > < y > < b > <T> <D> <G> <Z> <color> ;

Here x and y are the positions of the ray in meters, a and b are the angles in radians, T is l, the time of
flight multiplied by v0γ/(1 + γ), in meters. D, G and Z are δK , δm, δz, i.e., the energy, mass and charge
deviations. For graphics purposes, it is also possible to assign a color. Different colors are represented by
numbers as follows. 1: black, 2: blue, 3: red, 4: yellow, 5: green, 6: yellowish green, 7: cyan, 8: magenta,
9: navy, 10: white/background. The command

SSR <X> <Y> <Z> ;

sets the spin coordinates of the particle. Note that command has to be used immediately following the
setting of the coordinates of the particle with SR. Regardless the input values for X, Y, and Z, the
normalized vector of (X,Y,Z) is stored in the system as a spin vector. (0,0,0) is not accepted.

It is also possible to automatically set an ensemble of rays. This can be achieved with the command

ER <NX> <NA> <NY> <NB> <NT> <ND> <NG> <NZ> ;

Here NX, NA ... denote the number of rays in the respective phase space dimension and have to be greater
than or equal to 1. The ray coordinates are equally spaced according to the values set with the command
SB, which has to be called before ER. In case any of the N’s is 1, only rays with the respective variable
equal to 0 will be shown. Note that the total number of rays is given by NX · NA · · · · · NZ, which should
not exceed 200. Note that this command is incompatible with the setting of spin coordinates with SSR
as described above. The command

SCDE ;

sets sine like and cosine like rays as well as the dispersive ray and the beam envelope in accordance with
the data provided by SB or SBE. After the envelope has been set by SCDE it can be displayed alone as it
varies along the system with PGE, or together with the other trajectories with PG. If only the envelope
should be evaluated,

ENVEL ;

should be used. The closed orbit for an off energy particle, often called the η function, is produced by

ENCL <D> ;

The periodic orbit for an off energy particle with the dispersion D is computed from the one turn map.
Therefore a current map has to be produced before calling ENCL. This is equivalent to the requirement
of computing a current map before calling SBE.

The command

CR ;

clears all the rays previously set.

There are a variety of utility commands to handle the coordinates of the rays as well as the spin
coordinates associated to them, and they are analogous to those utility commands for handling maps such
as PM, WM, RM and so on (see page 11).

The command

PRAY <unit> ;

prints the momentary coordinates of the rays to the specified output unit. Each ray is output in one line,
and the first ray in the output is the reference ray. The command
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WRAY <unit> ;

prints the momentary coordinates of the rays to the specified output unit. WRAY prints all the coordinate
values in the full digit length of double precision number expression. First, the x coordinate values of all
the rays are output, where the first component corresponds to the reference ray. Next, the a coordinate
values are output, followed by y, b,..., δz.

Further, the particle survival information through aperture cuts is output by PRAY and WRAY;
see page 42. The “REMAIN” column denotes if the particle has survived (1) or removed (0), and the
“REMOVE” column denotes the iteration number when the particle disappeared if removed, otherwise 0.

The command

PR <unit> ;

prints the momentary coordinates of the rays to the specified output unit using the standard output
format of the VEctor data type of COSYScript (see the Programmer’s Manual [COSY Types]). First, the
x coordinate values of all the rays are output, where the first component corresponds to the reference ray.
Next, the a coordinate values are output, followed by y, b,..., δz. Note that using the WRITE command
of COSYScript, it is also possible to print any other quantity of interest either to the screen or to a file.

The rays output by PRAY or WRAY can be read from the specified unit by the command

RRAY <unit> ;

However RRAY does not read the ray output by PR. Before calling RRAY, the command CR has to
be called. Instead of writing and reading the rays, it is also possible to copy the momentary rays to a
specified array. The command

SRAY <name> ;

copies the momentary rays to an array <name>, which has to be specified by the user. The array can be
specified using the VARIABLE command of COSYScript (see the Programmer’s Manual [COSYScript]).
It could have the form

VARIABLE <name> 201 8 ;

which declares a one dimensional array with eight entries. Each entry can hold a maximum of 201 16 byte
blocks, which can store up to 200 rays. The additional one ray is to be reserved for the reference ray. The
opposite operation can be performed by the command

LRAY <name> ;

where the rays stored in the array <name> are copied into the system, and the functionality is analogous
to that of RRAY for PRAY and WRAY. Before calling LRAY, the command CR has to be called.

To the current set of momentary coordinates of the rays in the system, the command

ARAY <unit> ;

appends another set stored in a file produced by PRAY or WRAY via the specified unit. Note that
currently the resulting set begins with the additional set and the pre-existed set is shifted toward the end.
Unlike RRAY and LRAY, the command CR must not be called before calling ARAY. The command

ADDRAYS <file1> <file2> <file> ;

adds two sets of rays that are produced by PRAY or WRAY and stored in file1 and file2, and stores
the resulting rays in a file by PRAY in the sequence of file1 and file2. Provide file names. The process of
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ADDRAYS internally calls CR, so ADDRAYS has to be called independently from the current setup
of rays to avoid any unwanted overwriting of rays.

To handle the spin coordinates associated to the rays, there are a similar set of commands. The
command

PSPI <unit> ;

prints the momentary spin vector coordinates corresponding to the rays to the specified output unit. Each
spin vector is output in one line, and the first vector in the output corresponds to the reference ray. The
command

WSPI <unit> ;

prints the momentary spin vector coordinates corresponding to the rays to the specified output unit.
WSPI prints all the coordinate values in the full digit length of double precision number expression.
First, the sx coordinate values of all the spin vectors are output, where the first component corresponds
to the reference ray. Next, the sy coordinate values are output, followed by sz.

The spin vectors output by PSPI or WSPI can be read from the specified unit by the command

RSPI <unit> ;

Instead of writing and reading the spin vectors, it is also possible to copy the momentary spin vectors to
a specified array. The command

SSPI <name> ;

copies the momentary spin vectors to an array <name>, which has to be specified by the user. The
array can be specified using the VARIABLE command of COSYScript (see the Programmer’s Manual
[COSYScript]). It could have the form

VARIABLE <name> 201 3 ;

which declares a one dimensional array with three entries. Each entry can hold a maximum of 201 16
byte blocks, which can store up to 200 spin vectors. The additional one vector is to be reserved for the
reference ray. The opposite operation can be performed by the command

LSPI <name> ;

where the spin vectors stored in the array <name> are copied into the system, and the functionality is
analogous to that of RSPI for PSPI and WSPI.

To the current set of momentary spin vector coordinates corresponding to the rays in the system, the
command

ASPI <unit> ;

appends another set stored in a file produced by PSPI or WSPI via the specified unit; see the description
for ARAY above. The command

ADDSPIS <file1> <file2> <file> ;

adds two sets of spin vectors that are produced by PSPI or WSPI and stored in file1 and file2, and
stores the resulting spin vectors in a file by PSPI in the sequence of file1 and file2. Provide file names;
see the description for ADDRAYS above.
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3.2.5 Plotting System and Trajectories

Besides computing transfer maps and rays, COSY INFINITY also allows to plot the system or any part
of it and the rays going through it. The command

PTY < scale > ;

selects the type of system plot. If scale is zero, the reference trajectory will be plotted as a straight line;
this is also the default if PTY is not called. If scale is nonzero, all rays including the reference trajectory
are displayed in laboratory coordinates. To account for the fact that in such a view rays are rather close
to the reference trajectory and hence may be hard to distinguish, the coordinates transverse to the optic
axis will be magnified by the value of scale.

BP ;

defines the beginning of a section of the system that is to be plotted, and the command

EP ;

defines the end of the section. The command

PP <unit> <phi> <theta> ;

plots the system to the graphics output unit. Following the convention of printing graphics objects
discussed in the Programmer’s Manual [Graphics], positive units produce a low-resolution ASCII plot
of 80 columns by 24 lines, which does not require any graphics packages. Negative units correspond to
various graphics standards.

The picture of the trajectories and elements is fully three dimensional and can be viewed from different
angles. Phi=0 and Theta=0 correspond to the standard x projection; Phi=0 and Theta=90 correspond
to the y projection; and Phi=90 and Theta=0 correspond to viewing the rays along the beam.

There is an abbreviated way to produce both an x projection and a y projection simultaneously. The
command

PG <Unit1> <Unit2> ;

produces both x and y pictures, including length (lower right), height (upper left) and depth (lower left)
of the system with all selected rays and the envelope if selected. Unit1 and Unit2 denote the graphics
output units (see the Programmer’s Manual [Graphics]). The command

PGE <Unit1> <Unit2> ;

produces both x and y pictures, including length (lower right), height (upper left) and depth (lower
left) of the system and the beam envelope. Unit1 and Unit2 denote the graphics output units (see the
Programmer’s Manual [Graphics]).

In a picture, it is sometimes advantageous to identify a particular location on the reference trajectory,
for example to identify a focal plane or a plane of interest in a ring. This can be achieved with the
command

PS <d> ;

which draws a Poincare section plane with width d at the momentary position of the reference trajectory.

There are several parameters which control the graphics output of a system. Such a graphics displays
the central trajectory along with all rays and the envelope, the optical elements, two letters below each
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element indicating its type and three numbers indicating the height, width, and depth of the system.
Before the system is computed, this default can be changed by

• LSYS = 0 ; (Suppresses the beamline elements)

• LCE = 0 ; (Suppresses the types of the elements)

• LAX = 0 ; (Suppresses the numbers describing the size of the system)

These options can become important when graphics output of huge machines is desired. These choices
can then avoid memory overflow and incomprehensible picture.

3.3 Supported Elements

In this section we present a list of all elements available in COSY INFINITY. They range from standard
multipoles and sectors over glass lenses and electromagnetic cylindrical lenses to a general element, which
allows the computation of the map of any element from measured field data. The maps of all elements
can be computed to arbitrary order and with arbitrarily many parameters. No approximation to the
symplectic equations of motion [14] are being made. In particular, there is no expansions of square roots
that is frequently performed [69] [17] [81].

Elements based on strong focusing devices such as multipoles and bending magnets can be computed
with their fringe fields or without, which is the default. Section 3.3.7 beginning on page 24 describes
various fringe field computation modes available.

The simplest particle optical element, the field- and material free drift, can be applied to the map with
the command

DL <length> ;

The element

CB ;

changes the bending direction of bending magnets and deflectors. Initially, the bending direction is
clockwise. The procedure CB changes it to counterclockwise, i.e. a left handed coordinate system, and
each additional CB switches it to the other direction. Note that at the location of output with PM
etc., it is important that the coordinate system is again right handed, so an even number of CB calls is
necessary. It is also possible to change the bending direction of all the elements in an already computed
map using the command MT (see index).

COSY INFINITY supports a large ensemble of other particle optical elements, and it is very simple
to add more elements. The following subsections contain a list of momentarily available elements.

3.3.1 Multipoles

COSY INFINITY supports magnetic and electric multipoles in a variety of ways. There are the following
magnetic multipoles:

MQ <length> <flux density at pole tip> <aperture> ;

MH <length> <flux density at pole tip> <aperture> ;
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MO <length> <flux density at pole tip> <aperture> ;

MD <length> <flux density at pole tip> <aperture> ;

MZ <length> <flux density at pole tip> <aperture> ;

which let a magnetic quadrupole, sextupole, octupole, decapole or duodecapole act on the map. The
aperture is the distance from reference trajectory to pole tip. For the sake of speed, direct formulas
for the aberrations are used for orders up to two. There is also a superimposed multipole for multipole
strengths up to order five:

M5 <length> <BQ >< BH >< BO >< BD >< BZ> <aperture> ;

And finally, there is a general superimposed magnetic multipole with arbitrary order multipoles:

MM <length> <MA> <NMA> <aperture> ;

Contrary to the previous procedure, the arguments now are the array MA and the number NMA
of supplied multipole terms. Besides the magnetic multipole just introduced, which satisfies midplane
symmetry, there is also a routine that allows the computation of skew multipoles. The routine

MMS <length> <MA> <MS> <NMA> <aperture> ;

lets a superposition of midplane symmetric and skew multipoles act on the map. The array MA contains
the strengths of the midplane symmetric multipoles in the same units as above. The array MS contains
the strengths of the skew multipoles; the units are such that a pure skew 2n pole corresponds to the
midplane symmetric multipole with the same strength rotated by an angle of π/2n.

Similar procedures are available for electrostatic multipoles

EQ <length> <voltage at pole tip> <aperture> ;

EH <length> <voltage at pole tip> <aperture> ;

EO <length> <voltage at pole tip> <aperture> ;

ED <length> <voltage at pole tip> <aperture> ;

EZ <length> <voltage at pole tip> <aperture> ;

which let an electric quadrupole, sextupole, octupole, decapole or duodecapole act on the map. The
strengths of the multipoles are described by their voltage in kV. There is an electric multipole

E5 <length >< EQ >< EH >< EO >< ED >< EZ> <aperture> ;

which lets a superimposed electric multipole with components EQ through EZ act on the map, and there
is the procedure

EM <length> <EA> <NEA> <aperture> ;

which lets a general electrostatic multipole with arbitrary order multipoles act on the map. Similar to the
magnetic case, there are also electric skew multipoles. The routine

EMS <length> <EA> <ES> <NEA> <aperture> ;

lets a superposition of midplane symmetric and skew multipoles act on the map. The array EA contains
the strengths of the midplane symmetric multipoles in the same units as above. The array ES contains
the strengths of the skew multipoles; like in the magnetic case, the units are such that a pure skew 2n pole
corresponds to the midplane symmetric multipole with the same strength rotated by an angle of π/2n.
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3.3.2 Bending Elements

COSY INFINITY supports both magnetic and electrostatic elements including so called combined function
elements with superimposed multipoles. In the case of magnetic elements, edge focusing and higher order
edge effects are also supported. By default, all bending elements bend the reference trajectory clockwise,
which can be changed with the command CB (see index).

The following commands let an inhomogeneous combined function bending magnet and a combined
function electrostatic deflector act on the map:

MS <radius> <angle> <aperture> < n1 > < n2 > < n3 > < n4 > < n5 > ;

ES <radius> <angle> <aperture> < n1 > < n2 > < n3 > < n4 > < n5 > ;

The radius is measured in meters, the angle in degrees, and the aperture is in meters and corresponds to
half of the gap width. The indices ni describe the midplane radial field dependence which is given by

F (x) = F0 ·

[
1−

5∑
i=1

ni ·
(

x

r0

)i
]
,

where r0 is the bending radius. Note that an electric cylindrical condenser has n1 = 1, n2 = −1, n3 = 1,
n4 = −1, n5 = 1, etc, and an electric spherical condenser has n1 = 2, n2 = −3, n3 = 4, n4 = −5, n5 = 6,
etc. Homogeneous dipole magnets have ni = 0.

There are various specialized electrostatic deflectors [75]. The element

EC <radius> <angle> <aperture> <N> < n > ;

invokes an electrostatic combined function deflector without the limitation to 5th order. Here N is an
array containing the above indices ni up to the n-th. The element

ECL <radius> <angle> <aperture> ;

invokes an electrostatic cylindrical deflector, and the element

ESP <radius> <angle> <aperture> ;

invokes an electrostatic spherical deflector.

Since there is frequently various confusion about electric elements and their properties, we describe a
few elementary consistency tests and observations that are useful for checking purposes. First, an electric
cylindrical condenser is invariant under translation along the y axis, and the y motion behaves like a drift.
Furthermore, although the x motion depends on y and b, an offset in the y direction does not alter the
x motion. Thus, a map produced by ECL, MECL, and a y offset map M△y, need to commute, i.e. we
must have MECL ◦M△y = M△y ◦MECL. A particularly powerful way to check this within the transfer
map concept of COSY is to make the offset ∆y a DA parameter, and correspondingly use the command
“SA 0 DA(5) ;”.

A similar consistency test can be performed for an electric spherical condenser, for which any transfer
map must be invariant under any rotation around an axis through the center. One of the meaningful
tests based on this observation for which the geometry is easily worked out is a tilt of the plane of
motion through the condenser along a central axis that is parallel to the reference orbit. A corresponding
tilting map M△ consists of moving to the center, rotating, and moving back; expressed in COSY’s axis
manipulating tools, it can be achieved for example by ”SA -R 0 ; RA DA(5) ; SA R 0 ;”. Now choosing
a spherical condenser with a deflection of 180◦ entails that the reference orbit after the device is parallel
with the the one before the device, but points in the opposite direction, so that the necessary back rotation
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requires the same (and not the opposite) angle. So, letting MESP180 denote the spherical deflector, we
must have that M△ ◦MESP180 ◦M△ agrees with MESP180. Yet another test is based on the observation
that the motion is that of a Kepler problem, which entails that the motion should return to the exact
original state after one full revolution, independent of initial conditions. Thus MESP360, or a combination
of k copies of MESP (360/k) for any k must lead to an identity map.

The element

DI <radius> <angle> <aperture> < ϵ1 > <h1 > < ϵ2 > <h2 > ;

lets a homogeneous dipole with entrance edge angle ϵ1 and entrance curvature h1 as well as exit edge angle
ϵ2 and exit curvature h2 act on the map. All angles are in degrees, the curvatures in 1/m, the radius is in
m, and the aperture is half of the gap width. Positive edge angles correspond to weaker x focusing, and
positive curvatures to weaker nonlinear x focusing.

In the sharp cut off approximation, the horizontal motion in the homogeneous dipole is based on
geometry. The vertical effects of edge angle and curvatures is approximated by a linear and quadratic
kick, which is a common approximation of hard-edge fringe-field effects. As described in Section 3.3.7, it
is also possible to treat the influence of extended fringe fields on horizontal and vertical motion in detail
and full accuracy.

The element

MSS <radius r0 > <angle ϕ0 > <aperture> < ϵ1 > <h1 > < ϵ2 > <h2 > < w > ;

allows the user to specify the two dimensional structure of the main field in polar coordinates, which is
described by a two dimensional array w(i,j). The following factor is imposed to the main field specified by
the first seven arguments, namely <radius> through <h2 >, with the same meaning to those of DI.

F (r, ϕ) =

4∑
i=1

4∑
j=1

w(i,j) · (r − r0)
i−1

(
ϕ− ϕ0

2

)j−1

= w(1,1) + w(2,1) · (r − r0) + w(1,2) ·
(
ϕ− ϕ0

2

)
+ . . .+ w(4,4) · (r − r0)

3

(
ϕ− ϕ0

2

)3

.

A special case of the homogeneous dipole described above is the magnetic rectangle or parallel-faced
dipole, in which both edge angles equal one half of the deflection angle and the curvatures are zero. For
convenience, there is a dedicated routine that lets a parallel faced magnet act on the map:

DP <radius> <angle> <aperture> ;

Finally, there is a very general combined function bending magnet with shaped entrance and exit edges

MC <radius> <angle> <aperture> <N> <S1> <S2> < n > ;

Here N is an array containing the above ni, and S1 and S2 are arrays containing the n coefficients s1, ...
sn of two n-th order polynomials describing the shape of the entrance and exit edges as

S(x) = s1 · x+ ...+ sn · xn.

Again positive zeroth order terms entail weaker x focusing. In the sharp cut off approximation, the edge
effects of the combined function magnet are treated as follows. All horizontal edge effects of order up to
two are treated geometrically like in the case of the dipole. The vertical motion as well as the contribution
to the horizontal motion due to the non-circular edges are treated by kicks. The treatment of the element
in the presence of extended fringe fields is described in Section 3.3.7.
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Note that when comparing COSY bending elements without extended fringe fields to those of other
codes, it is important to realize that some codes actually lump some fringe-field effects into the terms of
the main fields. For example, the code TRANSPORT gives nonzero values for the element (x, yy), which
is produced by a fringe-field effect, even if all TRANSPORT fringe-field options are turned off.

3.3.3 Wien Filters

Besides the purely magnetic and electric bending elements, there are routines for superimposed electric
and magnetic deflectors, so-called Wien Filters or E cross B devices. The simplest Wien Filter consists
of homogeneous electric and magnetic fields which are superimposed such that the reference trajectory is
straight. This element is called by

WF <radiusE> <radiusM> <length> <aperture> ;

The radii describe the bending power of the electric and magnetic fields, respectively. The strengths
are chosen such that each one of them alone would deflect the beam with the specified radius. For positive
radii, the electric field bends in the direction of positive x, and the magnetic field bends in the direction
of negative x. For equal radii, there is no net deflection. There is also a combined function Wien Filter:

WC <radiusE > <radiusM > <length> <aperture> <NE> <NM> < n > ;

Here NE and NM describe the inhomogeneity of the electric and magnetic fields, respectively via

F (x) = F0 ·

[
1 +

n∑
i=1

N(i) · xi

]

3.3.4 Wigglers and Undulators

COSY INFINITY allows the computation of the maps of wigglers. For the midplane field inside the
wiggler, we use the following model:

Bm(x, z) = B0 cos

(
2π

λ
z + k · z2

)
At the entrance and exit, the main field is tapered by an Enge function

B(x, z) =
Bm(x, z)

1 + exp (a1 + a2 · z/d+ ...+ a10 · (z/d)9)
.

The wiggler is represented by the following routine:

WI < B0 > < λ > <L> < d > <k> <I> <A> ;

where L is the length and d is the half gap. If I=0, the fringe field is modeled with some default values
of the coefficients ai. If I=1, the user is required to supply the values of a1 to a10 for the entrance fringe
field in the array A. The exit fringe field is assumed to have the same shape as the entrance fringe field.

3.3.5 Cavities

There is a model for a simple cavity in COSY INFINITY. It provides an energy gain that is position
dependent but occurs over an infinitely thin region. The voltage of the cavity as a function of position
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and time is described by

V = P (x, y) · sin
(
2π

(
ν · t+ ϕ

360

))
,

so that ν is the frequency in Hertz, ϕ is the phase in degrees at which the reference particle enters the
cavity. The peak voltage P is given in kV.

The cavity is represented by the following routine:

RF <V> < n > < ν > < ϕ > < d > ;

where V is a two dimensional array containing the coefficients of a polynomial of order n describing the
influence of the position as

P (x, y) =

n∑
i,j=0

V(i+1,j+1) · xiyj = V(1,1) + V(2,1) · x+ V(1,2) · y + . . .

and d is the aperture.

3.3.6 Cylindrical Electromagnetic Lenses

COSY INFINITY also allows the use of a variety of cylindrical lenses, in which focusing effects occur only
due to fringe-field effects.

The simplest such element consists of only one ring of radius d that carries a current I. The on-axis
field of such a ring is given by

B(s) =
µ0I

2d
· 1(

1 + (s/d)
2
)3/2 (2)

which follows readily from the Biot-Savart law. This current ring is represented by the procedure

CMR < I > < d > ;

A magnetic field of more practical significance is that of the so-called Glaser lens, which represents a
good approximation of the fields generated by strong magnetic lenses with short magnetic pole pieces [49].
The lens is characterized by the on-axis field

B(s) =
B0

1 + (s/d)2

where B0 is the maximum field in Tesla and d is the half-width of the field. The Glaser lens is invoked by
calling the procedure

CML < B0 > < d > ;

There are several magnetic solenoid elements available in COSY INFINITY.

CMSI < I > < n > < d > < l > ;

invokes a thin solenoid with the theoretical on-axis field distribution

B(s) =
µ0In

2

(
s√

s2 + d2
− s− l√

(s− l)2 + d2

)
,

obtained from (2), where I is the current, n the number of turns per meter, d the radius and l the length
of the solenoid.
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CMS < B0 > < d > < l > ;

invokes the solenoid with the following tanh-based on-axis field model:

B(s) =
B0

2 tanh (l/2d)

(
tanh

( s
d

)
− tanh

(
s− l

d

))
,

where B0 is the field strength at the center of the solenoid, d is its aperture and l its length. The field
fall-off of this element is much more rapid than with CMSI. The element

CMST < In > < R1 > < R2 > < l > ;

invokes a thick solenoid with the theoretical on-axis field distribution

B(s) =
µ0In

2(R2 −R1)

[
s log

(
R2 +

√
R2

2 + s2

R1 +
√
R2

1 + s2

)
− (s− l) log

(
R2 +

√
R2

2 + (s− l)2

R1 +
√
R2

1 + (s− l)2

)]
,

where In is the product of the current I and the number of current turns per meter n, R1 is the inner
radius (aperture), R2 is the outer radius, and l is the length.

The details on the features of these cylindrical magnetic elements can be found in [72].

There is a magnetic round lens with a Gaussian potential

V (s) = V0 · exp
(
−
( s
d

)2)
,

which is invoked with the procedure

CMG < V0 > < d > ;

Besides the magnetic round lenses, there are various electrostatic round lenses. The element

CEL < V0 > < d > < L > < c > ;

lets an electrostatic lens consisting of three tubes act on the map. This lens is often called three-cube
einzel lens. Figure 1 shows the geometry of the lens which consists of three coaxial tubes with identical
radii d, of which the outer ones are on ground potential and the inner one is at potential V0 in kV. The
length of the middle tube is L, and the distance between the central tube and each of the outside tubes
is c. Such an arrangement of three tubes can be approximated to produce an axis potential of the form

V (s) = − V0

2ωc/d

[
ln

(
cosh (ω(s+ L/2)/d)

cosh (ω(s+ L/2 + c)/d)

)
+ ln

(
cosh (ω(s− L/2)/d)

cosh (ω(s− L/2− c)/d)

)]
,

where the value of the constant ω is 1.315. For details, refer to [60].

There is another electrostatic lens,

CEA < V0 > < d > < L > < c > ;

which lets a so-called three-aperture einzel lens act on the map. The geometry of the lens is shown in
Figure 1. The outer apertures are on ground potential and the inner one is at potential V0. The axis
potential of the system can be approximated to be

V (s) =
V0

πc
·
[
(s+ L/2 + c) tan−1

(
s+ L/2 + c

d

)
+ (s− L/2− c) tan−1

(
s− L/2− c

d

)

−(s+ L/2) tan−1

(
s+ L/2

d

)
− (s− L/2) tan−1

(
s− L/2

d

)]
.
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Figure 1: The constitution of electrostatic lenses of the procedures CEL and CEA

An often used approximation for electrostatic lenses is described by a potential distribution of the following
form

V (s) = V0 · exp
(
−
( s
d

)2)
.

A lens with this field can be invoked by calling the routine

CEG < V0 > < d > ;

All round lenses are computed using COSY INFINITY’s 8th order Runge Kutta DA integrator. The
computational accuracy can be changed from its default of 10−10 using the procedure ESET (see index).

3.3.7 Fringe Fields

A detailed analysis of particle optical systems usually requires the consideration of the effects of the fringe
fields of the elements [91] [93] [28] [15] [16] [40] [57] [92] [14]. While COSY INFINITY does not take fringe
fields into account in its default configuration, there are commands that allow the computation of their
effects with varying degrees of accuracy and computational expense.

There are two main ways of computing fringe fields of particle optical elements, namely utilizing one
of the built-in modes provided by the various modes of the command FR, or one of the general element
procedures described in detail in Section 3.3.8.

FR <mode> ;

provides various modes for fringe field map computations, which differ at the level of accuracy employed
for computations. In the following, the modes will be described in decreasing order of accuracy.

In all cases, the mode set with FR stays effective until the next call to FR, and it is possible to change
the computation mode within the computation. Whenever a new fringe field mode is desired, FR has to
be called again with the new mode (which then remains in effect until the mode is changed with another
call to FR). The default fringe field mode of COSY INFINITY is FR 0.

FR 3 & FR 2.5
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Enge Function, Dipole, Entrance: Default

Figure 2: Enge function falloff of COSY’s default dipole, drawn by the command FP.

This mode is the most accurate fringe-field mode. The fringe field falloff is based on the standard descrip-
tion of the s-dependence of multipole strengths by a six parameter Enge function. The Enge function is
of the form

F (z) =
1

1 + exp(a1 + a2 · (z/D) + ...+ a6 · (z/D)5)
,

where z is the distance perpendicular to the effective field boundary. In the case of multipoles, the
distance coincides with the arc length along the reference trajectory. D is the full aperture (i.e., in case of
multipoles D = 2 · d) of the particle optical element, and a1 through a6 are the Enge coefficients. Using
COSY INFINITY’s DA based numerical integrator [68], if a supported element is called, the resulting map
including fringe-field effects is computed using the full accuracy of the integrator and a default set of Enge
coefficients. The values of the default set represent measurements of a family of unclamped multipoles
used for PEP [34], and are listed in Table 1.

However, while in many cases the bulk of the effects can be described well with the default values of the
coefficients, they depend on the details of the geometry of the element including shimming and saturation
effects in magnetic elements. The coefficients should be adjustable such that the Enge function fits the
specific measured or computed data. Fitting programs for this purpose have been written in COSYScript,
or can be obtained as a companion of RAYTRACE [64]. Note that in the optimization process it is
important that the Enge coefficients are chosen such that the effective field boundary coincides with the
origin. It is also important that the fringe field coefficients lead to an Enge function which represents the
fringe field well over an interval ranging from at least 3 ·D inside the element to at least 5 ·D outside the
element, where D = 2 · d is as above.

Once an appropriate set of Enge coefficients has been determined, it is possible to use them by this
mode. This is achieved with the command

FC <IMP> <IEE> <IEM> < a1 > < a2 > < a3 > < a4 > < a5 > < a6 > ;

which sets the Enge coefficients a1 through a6 to the specified values. IMP is the multipole order (1 for
dipoles, 2 for quadrupoles, etc). IEE identifies the data belonging to entrance (1) and exit (2) fringe fields.
IEM denotes magnetic (1) or electric (2) elements. Using FC repeatedly, it is possible to set coefficients
for the description of all occurring elements.

After setting the Enge coefficients with FC, the behavior of the resulting Enge function is diagnosed;
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if the resulting fringe fields are inappropriate (e.g., if the fields do not not drop monotonically from 1
inside to 0 outside), an error message is issued. There is a convenient tool to draw Enge functions and
the derivatives. The command

FP <IMP> <IEE> <IEM> <string> <order> <IU> ;

draws a picture of the Enge function (order = 0) or the derivative (order = the desired order of the
derivative) to the graphics output unit IU (see the Programmer’s Manual [Graphics]). A title can be
added to the picture by using the string parameter. FP uses the Enge coefficients that are loaded ahead
of time. Figure 2 is an example of such a picture, and is produced by the following commands:

FD ; {load default fringe field coefficients}
FP 1 1 1 ’Default’ 0 -12 ; {output to PDF file pic001.pdf}

To illustrate the concept of Enge coefficients, Tables 1 through 5 list some sets of Enge coefficients
taken from various magnets.

COSY INFINITY uses a set of Enge coefficients for typical magnets based on measured data from
PEP [34] by default, listed in Table 1. Unless specified explicitly using FC, regardless magnetic or electric,
and entrance or exit, the following coefficients are used as mentioned on page 27 in the description of the
procedure FD. The user does not have to do anything except for specifying the fringe field computation
mode by the command FR, because these coefficients are loaded via FD as soon as the command OV is
called.

a1 a2 a3 a4 a5 a6
Dipole 0.478959 1.911289 -1.185953 1.630554 -1.082657 0.318111
Quadrupole 0.296471 4.533219 -2.270982 1.068627 -0.036391 0.022261
Sextupole 0.176659 7.153079 -3.113116 3.444311 -1.976740 0.540068
and higher

Table 1: COSY INFINITY Enge coefficients by default. They are based on measured data from PEP at
SLAC [34].

A benign Enge function can be achieved by utilizing only 2 coefficients, instead of 6. Furthermore, one
may want the same effective field boundary in both cases. An example of the resulting Enge coefficients
is given in Table 2.

a1 a2 a3 a4 a5 a6
Dipole −0.003183 1.911302 0.00 0.00 0.00 0.00
Quadrupole 0.00004 4.518219 0.00 0.00 0.00 0.00
Sextupole −0.000117 7.135786 0.00 0.00 0.00 0.00

Table 2: Enge coefficients for a simple model.

The Large Hadron Collider’s High Gradient Quadrupoles of the interaction regions have been designed
by G. Sabbi. Based on the magnet end design described in [83], the Enge coefficients given in Table 3
have been obtained.

a1 a2 a3 a4 a5 a6
Lead end −0.939436 3.824163 3.882214 1.776737 0.296383 0.013670
Return end −0.77462 3.75081 2.80154 0.833833 0.131406 0.0362236

Table 3: Enge coefficients of an LHC HGQ [83].
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Table 4 lists the Enge coefficients modeling the NSCL’s S800 spectrograph magnets which were obtained
by fitting measured field data by D. Bazin [35].

a1 a2 a3 a4 a5 a6
Quad. I Entr. 0.150894 7.26981 −2.73798 2.0669 −0.256704 0.00

Exit 0.15839 7.22058 −2.93658 2.62889 −0.333535 0.00
Quad. II Entr. 0.0965371 6.63297 −2.718 10.9447 1.64033 0.00

Exit 0.235452 6.60424 −3.42864 4.38392 −0.573524 0.00
Dipole I Entr. 0.31809 2.11852 −1.0255 0.797148 0.00 0.00

Exit 0.38027 2.01144 −0.900505 0.773862 0.00 0.00
Dipole II Entr. 0.395308 2.03151 −0.910001 0.784602 0.00 0.00

Exit 0.326167 2.08628 −1.01685 0.803716 0.00 0.00

Table 4: Enge coefficients of the S800 spectrograph at NSCL [35].

Finally, Table 5 lists a set of Enge coefficients obtained by F. Méot from a warm large aperture
(diameter ∼ 30 cm) quadrupole that is part of a QD kaon spectrometer in operation at GSI.

a1 a2 a3 a4 a5 a6
0.1122 6.2671 −1.4982 3.5882 −2.1209 1.723

Table 5: Enge coefficients of a room temperature quadrupole at GSI.

Any set of fringe field parameters (electric/magnetic, entrance/exit) not explicitly set remains in its
default configuration, and each FC command stays in effect until FC (or FR; see below) is called again.
Therefore, if all dipoles, all quadrupoles, etc. in the system have the same fringe field falloff, it is sufficient
to call FC only once for each type. In case there are different types, FC has to be called each time before
the specific element. Sometimes it has proven helpful to lump several calls of FC into a procedure. One
such procedure that is already part of COSY INFINITY is

FD ;

which sets all values to the default; this procedure is automatically called when COSY INFINITY’s DA
system is initialized, and it must be called again to reset the Enge coefficients to their default value, in
case they have been changed. The accuracy of this computation mode is limited only by the accuracy of
the numerical integrator. The computation is performed by COSY INFINITY’s 8th order Runge Kutta
DA integrator, and the computational accuracy can be set with the procedure

ESET < ϵ > ;

where ϵ is the maximum error in the weighted phase space norm discussed in connection with the procedure
WSET (see index). The default for ϵ is 10−10 and can be adjusted downwards if needed.

COSY INFINITY’s 8th order Runge Kutta DA integrator outputs a log file called RKLOG.DAT. In a
rare occasion, a strange system error might happen. A Windows PC user contacted us in 2017 to report
that the system issued an error “severe: write to READONLY file, unit 77, ... RKLOG.DAT”, even
though RKLOG.DAT is not a read-only file in COSY INFINITY. It turns out that the error was caused
by an antivirus program locking the file as a read-only file while scanning. It can be avoided by forcing
the antivirus program to exclude the user’s work directory from scanning.

Note for the expert user: The trajectories of the particles are apparently affected by the fringe fields
even before entering and after exiting the main part of the element. In case of bending elements, this means
that the reference particle’s trajectory can be different from what one expects from the geometric estimate
using the concept of hard edge elements. The fringe-field mode FR 3 forces the reference trajectory to
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travel perpendicularly through the transversal/radial axis in the middle of the element. Hence if the
bending element is mirror symmetric along this middle line, the map of the element will reflect this
symmetry.

If it is desired that this symmetry adjustment is not made, it is possible to utilize the fringe-field mode
FR 2.5. In this case, the map computation starts well outside the entrance fringe field, travels through
the element including the entrance and the exit fringe fields, and ends well outside the exit fringe field.
This includes the necessary negative length adjustments using drifts for the outsides of both the entrance
and the exit effective field boundaries. Normally, in this method the symmetry discussed above is broken,
though for typical fringe fields, the offset is quite small. The method for the mode FR 3, described here,
has been implemented in early 2013, and the earlier map computation under the mode FR 3 corresponds
to the mode that is now referred to as FR 2.5.

Since very detailed fringe field calculations are often computationally expensive, COSY INFINITY
allows to compute their effects with lower degrees of accuracy.

FR 2 & FR 1.9

The fringe-field mode FR 2 produces less accurate fringe fields than mode FR 3 and FR 2.5, at a
gain of computation time of typically more than one order of magnitude. Mode FR 2 uses parameter
dependent symplectic map representations of fringe field maps stored in files to approximate the fringe
field via symplectic scaling [56] [55]. The default reference maps are stored in the file SYSCA.DAT. If
needed, other reference files that give better representations of the user data can be created and stored in
files by WSM (see index). How this is done can be seen in the procedure

CRSYSCA ;

This procedure produces the file SYSCA.DAT, which is shipped with the code. Such maps can be declared
to be the new standard with the command

FC2 <IMP> <IEE> <file> ;

which declares file to be the actual reference file for the fringe field described by IMP and IEE; the meaning
of IMP and IEE is discussed above for the command FC. The original default files can be reactivated by

FD2 ;

The fringe-field mode FR 2 is especially helpful in the final design stages of a realistic system after
approximate parameters of the elements have been obtained by neglecting fringe fields or with fringe-field
mode FR 1 (see below). The last step of the optimization can then be made using the default scaled
fringe field maps. A high degree of accuracy almost equal to that of the fringe-field mode FR 3 discussed
above can be obtained by computing new fringe field reference maps with the command WSM based on
the approximate values obtained by the previous fits.

Note for the expert user: it is possible to set the fringe-field mode to FR 1.9, which differs from
mode FR 2 only by the fact that each fringe field map is composed with the inverse of its linear part.
This approach leaves the linear part of the system’s map unaltered when turning fringe fields on and off,
rendering the refitting of imaging properties or tunes unnecessary, but allows for an approximate but quite
accurate study of only the nonlinear effects introduced by the fringe fields.

FR 1

This mode entails approximate fringe fields with an accuracy comparable to the fringe field integral
method [92]. In fact, internally mode FR 1 is exactly the same as mode FR 3, but it forces the numerical
integration algorithm to go through the fringe field region in only two steps.



3.3 Supported Elements 29

FR 0

All fringe fields are disregarded in this default mode. In this mode, a sharp cutoff approximation is used
for all elements.

Stand Alone Fringe Fields

It is also possible to calculate stand alone fringe field maps. If the mode is set to FR -1, only the entrance
fringe field maps of all listed elements are computed; if the fringe-field mode is set to FR -2, only exit
fringe field maps are computed. In both cases, the computational accuracy is equivalent to that of mode
FR 3.

Fringe fields produced with modes FR -1 or FR -2 can be thought of as fringe field elements with
zero length. However, the apertures, strengths, etc. of the magnets have an influence on the results.
(These are not thin lens models; the finite length fringe field maps are composed with negative drifts to
give in the end a total length of zero.) To clarify this, notice that the following two code fragments are
equivalent:

FR 3 ;

MQ L Q D ;

FR 0 ;

and

FR -1 ;

MQ L Q D ;

FR 0 ;

MQ L Q D ;

FR -2 ;

MQ L Q D ;

FR 0 ;

The fringe field maps computed using the modes FR -1 or FR -2 can be used in two ways: if the
fringe fields do not change anymore, the data can be stored and re-used with the commands SM and
AM, or PM and RM (see Section 3.2.3). In the case the maps of entrance or exit fringe fields are re-used
in this way, it is important to turn all fringe fields off with the command FR 0, because otherwise the
fringe fields would be taken into account twice. It is also important that in the case of bending elements
with non-perpendicular entrance or exit (see Section 3.3.2), the fringe field maps computed using FR -1
and FR -2 do not contain the effects of any curved entrance and exit plane. Thus, in the case fringe field
maps are re-used later with turned off fringe fields, it is important to leave all edge effects in the body of
the element. Using modes FR -1 and FR -2, it is also possible to determine new fringe field reference
maps that can be used with symplectic scaling using the commands WSM and RSM.

General Fringe Field Maps

Besides the computation of fringe-field effects in the formalism of Enge type multipole functions, fringe-
field effects can also be computed by any of the general particle optical elements GE, MGE, or MF
discussed in Section 3.3.8. This allows the highly accurate treatment of strongly overlapping fringe fields
or fringe fields that cannot be represented well by Enge functions.

We end this section on fringe-field effects with a few general comments. In the case of straight multipole
elements, the total fringe field in the midplane is the sum of the individual multipole components which
fall off with their respective Enge functions. The nonlinearities of the off-plane fields are computed in
COSY INFINITY from this information in agreement with Maxwell’s equations [4]. In the case of the
dipole element DI, the Enge function modulates the falloff of the midplane dipole field perpendicular to
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the edge of the magnet. As long as the edges are long enough, this allows a very accurate description both
for straight and circular edges, where circular edges may require Enge coefficients that differ slightly from
those of straight edges with the same aperture. Again, the off-midplane fields are computed in agreement
with Maxwell’s equations.

In the case of all other bending elements, certain models have to be used to describe the details of the
fringe field falloff in the Enge model. In the case of the inhomogeneous magnet MS, the inhomogeneity of
the field which is determined by the distance to the center of deflection is modulated with an Enge falloff.
In the case of the combined function magnet MC, the inhomogeneity of the field is modulated by a falloff
function following as in the case of the dipole whose edge angles and curvatures are chosen to match the
linear and quadratic parts of the curves described by S1 and S2. The remaining higher order edge effects
are superimposed by nonlinear kicks before and after the element.

For general purpose bending magnets, it is rather difficult to formulate field models that describe all
details to a high accuracy, and hence the accuracy of the computation of aberrations is limited by these
unavoidable deficiencies. In case field measurements are available, the general element approach described
above allows a detailed analysis of such measured data.

3.3.8 General Particle Optical Elements

In this section, we present procedures that allow the computation of an arbitrary order map for a com-
pletely general optical element whose fields are described by measurements.

One way to compute a map of a general optical element is to use the procedure GE, which uses
measurements along the independent variable s. Its use ranges from special measured fringe fields over
dedicated electrostatic lenses to the computation of maps for cyclotron orbits. It can also be used to
custom build new elements that are frequently used (see Section 5.7 on page 54).

GE <n> <m> <S> <H> <V> <W> ;

lets an arbitrary particle optical element act on the map. The element is characterized by arrays specifying
the values of multipole strengths at the n positions along the independent variable contained in the array
S. The array H contains the corresponding curvatures at the positions in S. V and W contain the electric
and magnetic scalar potentials in S.

The elements in V and W have to be DA variables containing the momentary derivatives in the x
direction (variable 1) and s direction (variable 2), and m is the order of the s-derivatives. One way to
compute these DA variables is to write two COSY functions that compute V and W as a function of x
and s. Suppose these functions are called VFUN(X,S) and WFUN(X,S), then the requested DA variable
can be stored in V and W with the commands

V(I) := VFUN(0+DA(1),S(I)+DA(2)) ;

W(I) := WFUN(0+DA(1),S(I)+DA(2)) ;

Another way to compute a map of a general optical element is to use the procedures MGE and MF.
While MGE uses measured data of the field along the independent variable s, MF uses measured data
of the field on the midplane in Cartesian coordinates [67] [66]. For deflecting elements, MF is more direct
for the user. The command

MF <s> <BY> <Nx > <Nz > < △x > < △z > <S> < d > <Sx > <Sz > <Sϕ > ;

lets an arbitrary particle optical element act on the map. The element is characterized by a two dimensional
array BY(ix,iz) specifying the values of the field strength in the y direction By in the midplane along an
equidistant grid. Figure 3 shows how the data grid is specified and the Cartesian coordinates corresponding
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Figure 3: The specification of measured field data of the procedure MF

to the data grid. Nx and Nz are the numbers of measured data grid points in the x and z direction. △x
and △z are the lengths of each grid in the x and z direction. As shown in Figure 3, Sx and Sz are the
values of (x, z) coordinates of the starting point of the reference particle in the element, and Sϕ is the
angle (degree) at the starting point of the reference particle. s is the arclength along the reference particle,
and d is the aperture.

The interpolation to evaluate the values of the field strength in the element is done by the method of
Gaussian interpolation. S describes the width of the Gaussian curves. The value of the field strength By

at the coordinates point (x, z) is interpolated by the following equation.

By(x, z) =
∑
ix

∑
iz

BY(ix,iz) ·
1

πS2
exp

(
−
(
x− x(ix)

△x · S

)2

−
(
z − z(iz)

△z · S

)2
)
,

where x(ix) and z(iz) are the coordinates of the (ix, iz)-th grid point. A note has to be made to choose
the suitable S. If S is too small, the mountains structure of Gaussians is observed. On the other hand, if
S is too large, the original value supplied by the measured data is washed out. The suitable value of S
depends on the original function shape of the measured data. For constant fields, the suitable S may be
about 1.8. For quickly varying fields, it may be about 1.0. And larger values of S provide more accurate
evaluation of the derivatives. In general, suitable values of S may be around 1.2 < S < 1.6.

Another note about the Gaussian interpolation is, since a Gaussian function falls down quickly, the
time consuming summation over all the Gaussians is not necessary. The summation is well approximated
by the 8S neighboring Gaussians of each side. For the value outside the area, the edge value is used. When
such a situation happens, the total number of such points is reported as follows:

*** WARNING IN MF, OUT OF RANGE OF DATA AT 123 POINTS

In the case of quickly varying fields, a larger area of data has to be prepared.

Since the procedure MF consumes the memory size in the program, a small size is prepared for the
download version of cosy.fox. If the measured data is bigger than 700×30 gridpoints, change the size for
the array in cosy.fox in the following line.

VARIABLE MFD 6 700 30 ;

If this modification requires increasing the size of COSY INFINITY’s internal memory, it is important to
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replace all occurrences of the parameter in question in all Fortran files. For example, if the error message
demands the PARAMETER LVAR to be increased, change the value of LVAR in the PARAMETER
statements in foxy.f, foxgraf.f, and dafox.f.

MGE is similar to MF except that data for multipole terms are specified. It can be used for multipoles
whose field distribution cannot be described analytically by Enge functions etc. The command

MGE <NP> <A> <Ns > < △s > <S> < d > ;

lets a superimposed magnetic multipole based on measured data act on the map. Ns is the number of
measured data grid points along s, where each point is spaced equidistantly by △s. S describes the width
of the Gaussian as MF, and d is the aperture. NP is the maximum number of multipole components. The
measured data is passed by a two dimensional array A(ip,is), where ip denotes the multipole component
as 1 for quadrupole, 2 for sextupole and so on, and is = 1, ..., Ns denotes the is-th data point. A should
be prepared to represent the field strength of the ip-th component at the pole tip at the is-th position.

The same interpolation method is used as MF, so do the same cautions apply including the one on
the memory size. The value of field strength B of the ip-th component at the coordinates point s is
interpolated as

B(ip, s) =
∑
is

A(ip,is) ·
1√
πS

exp

(
−
(
s− s(is)

△s · S

)2
)
,

where s(is) = △s · (is − 1) is the coordinate of the is-th grid point. Note that the total length of the
element is △s · (Ns − 1).

The map of the general element is computed using COSY INFINITY’s 8th order Runge Kutta DA
integrator. The computational accuracy can be changed from its default of 10−10 using the procedure
ESET (see index).

3.3.9 Absorber Wedges

COSY INFINITY allows the computation of the maps of absorber wedges. To activate the wedge com-
putation mode, “WAS 1 ;” has to be placed before the OV command, under which wedge computations
are to be executed. The command

WAS <mode> ;

controls the wedge computation mode. If mode is 0, wedge computations cannot be executed. Mode 1
activates the wedge computations.

The element

WA < S1 > < S2 > < n > <length> <aperture> ;

lets a wedge absorber with shaped entrance and exit edges act on the map. The physical properties of
the absorbing material have to be specified by calling BBC prior to WA, which sets the parameters for
the Bethe-Bloch formula as described below. The entrance and exit edge surfaces are specified by S1, S2

and n, where S1 and S2 are two dimensional arrays containing the coefficients of polynomials of order n
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describing the shape of the edge surfaces as

g1(x, y) =

n∑
i,j=0

S1(i+1,j+1) · xiyj = S1(1,1) + S1(2,1) · x+ S1(1,2) · y + . . .

g2(x, y) =

n∑
i,j=0

S2(i+1,j+1) · xiyj = S2(1,1) + S2(2,1) · x+ S2(1,2) · y + . . .

As described in Figure 4, the positive value of the polynomials g1 and g2 corresponds to the inward
direction in the wedge. Note that the polynomials g1 and g2 must not have nonzero constant parts,
namely it must be S1(1,1) = S2(1,1) = 0. For mirror symmetric edges, S1(i,j) = S2(i,j) for all i and j,
1 ≤ i, j ≤ n+ 1. The length is that of the reference orbit in the wedge absorber.

The model for the energy loss particles experience depending on the distance s traveled within the
absorber is given by the Bethe-Bloch formula

dE

ds
= −Kρ

Z

A

z2

β2

(
log

(
2mec

2β2γ2Tmax

I2

)
− 2β2 − δ − 2

C

Z

)
with the parameters

• K = 15.35375
(
MeV · cm3

)
(m · g)−1.

• Z is the atomic number of the absorber material.

• A is the atomic mass of the absorber material.

• ρ is the density of the absorber material in g · cm−3.

• I is the ionization potential in MeV.

• δ is the density correction parameter.

• C is the shell correction parameter.

and the maximal kinetic energy transferred to a single electron in the absorber in a collision

Tmax =
2mec

2β2γ2

1 + 2γme/m0 + (me/m0)
2 .

Note that in this case E is the total energy of the particle and that the unit of the dE/ds is MeV ·m−1.
The right hand side of the Bethe-Bloch formula depending on energy has been implemented as the function
BETHEBLOCH(E), where E is the total energy of the particle.

Prior to calling the function BETHEBLOCH one needs to call the procedure

BBC < Z > < A > < ρ > < I > < δ > < C > ;

to set the proper parameters for the Bethe-Bloch formula.

If the user wishes to use a different energy loss function rather than the Bethe-Bloch formula, the user
can replace the function BETHEBLOCH with an appropriate function by coding it in cosy.fox.

There is a procedure

EL < Ei > < cti > < l > < Ef > < ctf > ;
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Figure 4: The geometric setup for the procedures WA and WL.

which calculates the kinetic energy and time of flight (times the speed of light c) as an expansion in
the arclength s for the currently set beam after it travels through an absorber of thickness l. The input
parameters are the initial energy and time of flight (times c) Ei and cti and the thickness l, and the output
variables are Ef and ctf for the final energy and time of flight (times c) after the wedge respectively.
Since internally the function BETHEBLOCH is invoked, the user has to call BBC to set the absorber
characteristics prior to calling EL.

The procedure

WL < S1 > < S2 > < n > < l1 > < l2 > < lf > ;

allows to compute the total distance that a particle travels inside the wedge depending on its initial
conditions. As WA, S1 and S2 are two dimensional arrays containing the coefficients of polynomials of
order n, g1 and g2, describing the shape of the entrance and exit edge surfaces. l1 and l2 are the positions
of entrance and exit surface respectively, and l1 is typically zero. Then, lf is an output for the total
length traveled inside the wedge for the particle depending on the initial conditions as a DA-vector taking
account of the shape of edges.

3.3.10 Glass Lenses and Mirrors

COSY INFINITY also allows the computation of higher order effects of general glass optical systems. At
the present time, it contains elements for spherical lenses and mirrors, parabolic lenses and mirrors, and
general surface lenses and mirrors, where the surface is described by a polynomial. There is also a prism.
All these elements can be combined to systems like particle optical elements, including misalignments.
The dispersion of the glass can be treated very elegantly by making the index of refraction a parameter
using the function PARA.

The command

GLS <R1> <R2> <N> <L> < d > ;

lets a spherical glass lens act on the map. R1 and R2 are the radii of the spheres; positive radii correspond
to the center of the sphere to be to the right. N is the index of refraction, L is the thickness, and d the
aperture radius. The command
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GL <P1> < n1 > <P2> < n2 > <N> <L> < d > ;

lets a glass lens whose surface is specified by two polynomials of orders n1 and n2 act on the map. P1
and P2 are two dimensional arrays containing the coefficients of the polynomials in x and y that describe
the s position of the entrance and exit surface as a function of x and y in the following way:

P (x, y) =

n∑
i,j=0

P(i+1,j+1) · xiyj = P(1,1) + P(2,1) · x+ P(1,2) · y + . . .

N is the index of refraction, L the thickness of the lens and d its aperture. The command

GP <PHI1> <PHI2> <N> <L> < d > ;

lets a glass prism act on the map. PHI1 and PHI2 are the entrance and exit angles measured with respect
to the momentary reference trajectory, N is the index of refraction, L the thickness along the reference
trajectory, and d is the aperture radius.

Besides the refractive glass optical elements, there are mirrors. In the following mirror elements, d is
the aperture radius. The command

GMS <R> < d > ;

lets a spherical mirror with radius R act on the map. The command

GMP <R> < d > ;

lets a parabolic mirror with central radius of curvature R act on the map. The command

GMF <PHI> < d > ;

lets a flat mirror with the tilt angle PHI act on the map. The command

GM <P> < n > < d > ;

lets a general glass mirror act on the map. P is a two dimensional array containing the coefficients of the
polynomial in x and y that describes the surface in the same way as with GL, and is the dimension.

3.3.11 Misalignments

The differential algebraic concept allows a particularly simple and systematic treatment of misalignment
errors in optical systems. Such an error is represented by a coordinate change similar to the one discussed
in Section 4.1. COSY INFINITY offers three different misalignment commands. The first command

SA <DX> <DY> ;

offsets the optic axis by DX in x direction and DY in y direction. DX and DY are counted positive if the
optic axis is shifted in direction of positive x and y, respectively. The command

TA <AX> <AY> ;

represents a tilt of the optic axis by an angle in degrees of AX in x direction and AY in y direction. AX
and AY are counted positive if the direction of tilt is in the direction of positive x and y, respectively.
The command

RA <ANGLE > ;
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represents a rotation of the optic axis around ANGLE measured in degrees. ANGLE is counted positive
if the rotation is counterclockwise if viewed in the direction of the beam. The routine RA can be used to
rotate a given particle optical element by placing it between counteracting rotations. This can for example
be used for the study of skew multipoles. However, note that it is not possible to rotate different multipole
components by different angles. This can be achieved with the routines MMS and EMS discussed in
Section 3.3.1.

In order to simulate a single particle optical element that is offset in positive x direction, it is necessary
to have the element preceded by an axis shift with negative value and followed by an axis shift with positive
value. Similarly simple geometric considerations tell how to treat single tilted and rotated elements.

The misalignment routines can also be used to study beams that are injected off the optical axis of
the system. In this case, just one of each misalignment commands is necessary at the beginning of the
system.

We note that the misalignment routines, like most other COSY routines, can be called both with
real number and differential algebraic arguments, in particular using the PARA argument (see Section
5.2). The first case allows the simulation of a fixed given misalignment, whereas the second case allows to
compute the map depending on the misalignment.

In the first case, the values of the computed transfer map are only approximate if SA and TA are
used. The accuracy increases with decreasing misalignments and increasing calculation orders. For the
study of misalignments of elements, the actual accuracy is usually rather high since the values of the
misalignments are usually very small. In the case of a deliberate offset of the beam, for example for the
study of injection and extraction processes, it may be necessary to increase the computation order to
obtain accurate results. In the second case, the results are always accurate. The command RA always
produces accurate results in both cases.

3.4 Lattice Converters

There are tools to convert existing lattices described in the other formats into COSYScript language. The
following subsections explain the currently available lattice converters. The converters are web-based, and
the links to the web pages of the converters can be found at https://cosyinfinity.org .

We appreciate receiving other converters to COSYScript written by users to be available to the other
users.

3.4.1 MAD Input

Many existing accelerator lattices are described in the MAD standard [58] [59]. To allow the use of
such MAD lattices in COSY INFINITY, there is a conversion utility that transforms MAD lattices to the
COSY INFINITY lattices. This utility was originally written by Roger Servranckx using the original MAD
compiler source code which was written by Christopher Iselin. The current program has been adjusted to
MAD version 8.22 by Weishi Wan and Kyoko Makino. The MAD to COSY converter is provided on the
web at https://cosyinfinity.org .

The converter is based on MAD version 5, but will also accept most higher level input. The important
beamline elements are translated into the respective ones in COSY INFINITY; these include drifts, mul-
tipoles, superimposed multipoles, and bends. Some elements supported by MAD are translated to drifts
and may have to be adjusted manually.

To generate a COSY deck from a MAD deck, the end of the MAD deck should have the form
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USE, <name of beamline>
COSY

STOP

where according to the MAD syntax, the USE command specifies the beamline to be translated, and the
command COSY actually generates the COSYScript source.

3.4.2 SXF Input

The SXF format (Standard eXchange Format) is meant to be a general lattice description language and is
intended to facilitate the cooperation between different groups and the comparison of results obtained with
different codes. The language specifications that are in most parts very similar to MAD were developed
by H. Grote, J. Holt, N. Malitsky, F. Pilat, R. Talman, G. Tahern and W. Wan.

3.4.3 GICOSY Input

GICOSY used at GSI and University of Gießen is based on COSY 5.0, with additions done later at Gießen
in the years 1986 - 1998. The code was written by Martin Berz, Bernd Hartmann, Klaus Lindemann,
Achim Magel, Helmut Weick, and in former times was also referred to as simply GICO. (From the GICOSY
web site https://web-docs.gsi.de/˜weick/gicosy/.)

To allow the use of GICOSY lattices in COSY INFINITY, there is a conversion utility that transforms
GICOSY lattices to the COSY lattices. This utility was written by Shashikant Manikonda.

The GICOSY to COSY converter is provided on the web at https://cosyinfinity.org.

3.4.4 OptiM Input

OptiM is a code for linear and nonlinear optics calculations written by Valeri Lebedev at Fermilab. (From
the OptiM web site https://pbar.fnal.gov/organizationalchart/lebedev/OptiM/optim.htm.)

To allow the use of OptiM lattices in COSY INFINITY, there is a conversion utility that transforms
OptiM lattices to the COSY lattices. This utility was written by Pavel Snopok [87].

4 Analyzing Systems with COSY INFINITY

4.1 Image Aberrations

Very often not the matrix elements of the transfer map are of primary significance, but rather the maximum
size of the resulting aberration for the phase space defined with SB and the parameters defined with SP.
COSY INFINITY provides two tools to obtain the aberrations directly. The command

PA <unit> ;

prints all aberrations to the output unit in a similar way as PM. If not all aberrations are of interest, the
COSY function

MA(<phase space variable>,<element identifier>)



38 4 ANALYZING SYSTEMS WITH COSY INFINITY

returns the momentary value of the aberration. The phase space variable is a number from 1 to 6
corresponding to x, a, y, b, t, d, and the element identifier is an integer whose digits denote the above
variables. For example, MA(1,122) returns the momentary value of the aberration due to the element
(x, xaa).

For comparison and other reasons, it is often helpful to express the map in other coordinates than
those used by COSY INFINITY (see Section 3.2.1, for example the ones used in TRANSPORT [33] and
GIOS. The routine

PT <unit> ;

prints the map in Transport and GIOS coordinates to the output unit.

We want to point out that in the differential algebraic concept, it is particularly simple to perform such
nonlinear coordinate changes to arbitrary orders. In order to print maps in yet different coordinates, the
user can make a procedure that begins with a unity map, applies the transformation to COSY coordinates,
applies the COSY map, and then applies the transformation back to the original coordinates.

4.2 Analysis of Spectrographs

To first order, the resolution ∆δ of an imaging spectrograph is given by the following simple formula:

∆δ =
(x, x) · 2X0

(x, d)

where X0 is the half width of the slit or aperture at the entrance of the device. Here δ can be any one of
the quantities δk, δm and δz, and it is assumed that to first order, the final position does not depend on
the other quantities, or all particles have the same initial values for the other quantities.

In all but the simplest spectrographs, however, it is important to consider higher order effects as well as
the finite resolution of the detectors. Usually these effects decrease the resolution, more so for larger initial
phase spaces and low detector resolutions. The resolution of the spectrograph under these limitations can
be computed with the following command

AR <MAP> <X> <A> <Y> <B> <D> <PR> <N> <R> ;

where MAP is the map of the spectrograph to be studied, X, A, Y, B and D are the half widths of the
beam at the entrance of the spectrograph, PR is the resolution of the detector, and R is the resulting
resolution of the spectrograph. To compute the resolution, a total of N particles are distributed randomly
and uniformly within a square initial phase space and then sent through the map. Then the measurement
error is introduced by adding a uniformly distributed random number between -PR and PR to the x
coordinate. The width of the resulting blob of measurements is computed, where it is assumed that the
blob is again filled uniformly.

In many cases the resolution of spectrographs can be increased substantially with the technique of
trajectory reconstruction [19]. For this purpose, positions of each particle are actually measured in two
detector planes, which is equivalent to knowing the particle’s positions and directions.

Assuming that the particle went through the origin, the energy of the particle is uniquely determined by
some complicated nonlinear implicit equations. Using DA methods, it is possible to solve these equations
analytically and relate the energy of the particle to the four measured quantities. Besides the energy, it is
also possible to compute the initial angle in the dispersive plane, the initial position in the non-dispersive
plane, and the angle in the non-dispersive plane. The accuracy of these equations is limited only by the
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measurement accuracy and by the entering spot size in the dispersive plane. This is performed by the
command

RR <MAP> <X> <A> <Y> <B> <D> <PR> <AR> <N> <O> <MR> <R> ;

where the parameters are as before, except that AR is the resolution in the measurement of the angle, and
O is the order to which the trajectory reconstruction is to be performed. On return, MR is the nonlinear
four by four map relating initial a, y, b and d to the measured final x, a, y, b. Using these relationships
as well as the measurement errors and the finite dispersive spot size, the resolution array R containing
the resolutions of the initial a, y, b and d is computed by testing N randomly selected rays and subjecting
them to statistical measurement errors similarly as with the computation of the uncorrected resolution.

4.3 Analysis of Rings

Instead of by their transfer matrices, the linear motion in particle optical systems is often described by
the tune and twiss parameters. These quantities being particularly important for repetitive systems, they
allow a direct answer to questions of linear stability, beam envelopes, etc. In many practical problems,
their dependence on parameters is very important [11] [14] [17]. For example, the dependence of the tune
on energy, the chromaticity, is a very crucial quantity for the design of systems. Using the maps with
knobs, they can be computed totally automatically without any extra effort. The command

TP <MU> ;

computes the tunes which are stored in the one dimensional array with three entries MU which is defined
by the user. In most cases, an allocation length of 100 should be sufficient, and so the declaration of MU
could read

VARIABLE MU 100 3 ;

If the system is run with parameters, MU will contain DA vectors describing how the respective tunes
depend on the parameters. Note that COSY INFINITY can also compute amplitude dependent tune
shifts in the framework of normal form theory. This is described in detail in this section.

For the computation of amplitude tune shifts and other characteristics of the repetitive motion, COSY
INFINITY contains an implementation of the DA normal form algorithm described in [10] [7] [14] [24]. This
replaces the COSY implementation of the less efficient and less general mixed DA-Lie normal form [47].
Normal Form algorithms provide nonlinear transformations to new coordinates in which the motion is
simpler. They allow the determination of pseudo invariants of the system [14] [13] [20] [30] [66] [57], and
they are the only tool so far to compute amplitude tune shifts. As pointed out in [11], chromaticities and
parameter dependent tune shifts alone can be computed more directly using the command TP described
above. The command

NF <EPS> <MA> ;

computes the normal form transformation map MA of the momentary transfer map. This variable has to
be allocated by the user, and in most cases

VARIABLE MA 1000 8 ;

should be sufficient. Since the normal form algorithm sometimes has problems with the possible occurrence
of small denominators, it is not always possible to perform a transformation to coordinates in which the
motion is given by circles. The variable EPS sets the minimum size of a resonance denominator that is
not removed. The command
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TS <MU> ;

employs the normal form algorithm to compute all the tune shifts of the system, both the ones depending
on amplitude and the ones depending on parameters like chromaticities, which alone can be computed
more efficiently as shown above. MU is a one dimensional array with three entries which is defined by the
user in a similar way to TP. On return, MU will contain the tune shifts with amplitudes and parameters
as DA vectors. If the system is run with parameters, MU will contain DA vectors describing how the
respective tunes depend on the amplitudes (first, third and possibly fifth exponents for x, y and t) and
parameters (beginning in columns five or 7).

Note that in some cases when the system is on or very near a resonance or is even unstable, the normal
form algorithm may fail due to occurrence of a small denominator. In this case, the respective tunes
will be returned as zero. This also happens sometimes if the map is supposed to be symplectic yet is
slightly off because of computational inaccuracies. In this case, the use of the procedure SY (see index)
is recommended.

The command

TSC < wx > < wy > < Nx > < Ny > < δ > <file> ;

scans the tunes in the rectangular area −wx ≤ x ≤ wx, −wy ≤ y ≤ wy at Nx ×Ny equi-distant sampling
points and the resulting tune footprint data is output to a file with the specified file name. The first and
the second columns are the x, y coordinate values of each sampling point, and the third and the fourth
columns are the x, y tune values. The energy deviation can be specified via δ. The command

RFILT < Rmax > <file> <fileRlimit > ;

filters the resulting tune footprint data stored in the file as a result of TSC such that only those sampling
points within the radius Rmax, i.e. r =

√
x2 + y2 < Rmax, are kept, and outputs to a different file with

the specifled name fileRlimit. The command RFILT can be used for any other data file as long as the first
and the second columns are the x, y coordinate values.

The normal form method can also be used to compute resonance strengths, which tell how sensitive a
system is to certain resonances. Often the behavior of repetitive systems can be substantially improved
by reducing the resonance strengths. These are computed with the procedure

RS <RES> ;

where upon return RES is a complex DA vector that contains the resonance strengths; for details, refer
to [14]. The 2 ·N exponents n+

i , n
−
i in each component describe the resonance of the tunes ν as

(n⃗+
i − n⃗−

i ) · ν⃗.

The linear and nonlinear momentum compaction (dl/dp) · p/l can be computed with the routine

MCM <M> <L> <C> ;

Alternatively, it also possible to compute the Energy compaction (dr5/dr6) with the routine

ECM <M> <L> <C> ;

Finally it is also possible to analyze the spin motion with normal form methods. The command

TSP <MU> < n̄ > <KEY> ;

computes the parameter dependence of spin tune and the invariant spin axis n̄. The command
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TSS <MU> < n̄ > <KEY> ;

computes the parameter and amplitude dependence of spin tune as well as the invariant spin axis n̄. The
spin tunes are stored in the one dimensional array with three entries MU which is defined by the user,
in a similar way as the array used by TP and TS. If KEY is 0, the original orbital variables are used. If
KEY is not 0, the orbital variables are transformed to the parameter dependent fixed point.

4.4 Repetitive Tracking

COSY INFINITY allows efficient repetitive tracking of particles through maps. The command

TR <N> <NP> <ID1> <ID2> <D1> <D2> <TY> <NF> <IU>;

tracks the momentary particles selected with SR or ER through the momentary map for the required
number of iterations N. After each |NP| iterations the position of the phase space projection ID1-ID2 is
drawn to the graphics output unit IU. The phase space numbers 1 through 6 correspond to x, a, y, b,
d, t, and the numbers -1, -2, -3 correspond to the x, y and z components of the spin. If any of these
components get larger than D1, D2, they will not be drawn.

When tracking many particles, it is useful not to include the initial particles in the plot. This can be
achieved by giving a negative integer to NP.

The particles selected for repetitive tracking by the command TR are different from those used under
the command BP, thus they should be clearly separated using the command CR if the user’s input
program uses both TR and BP.

TY specifies the mode of symplectification, and NF turns on and off the display mode in normal form
variables.

TY=0

Symplectic tracking using the EXPO generating function is performed [41] [42] [40] [84].

1 ≤ |TY| ≤ 4

Symplectic tracking using the generating function of type |TY| (see [8] [14]) is performed. For TY> 0, a
fixed-point iteration is used to determine the symplectified map. For TY< 0, a Newton iteration is used
to determine the symplectification. While the Newton method is more robust, the fixed point iteration
tends to be faster if it works.

TY=-12 or TY=-13

Symplectic tracking is performed by symplectifying the linear map ML and representing the map N =
M ◦ M−1

L by the generating function of type |TY+10|. Because the linear part of N is the unity map,
only the generating functions of type 2 (for TY= −12) and 3 (for TY=−13) can be used for that purpose.

TY=-21

The tracking is performed without symplectification.

NF=0

The points will be displayed in conventional variables.

NF=1
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The points will be displayed in normal form variables.

The algorithm used for tracking is highly optimized for speed. Using the vector data type for particle
coordinates, it works most efficiently if many particles are tracked simultaneously. On scalar machines,
optimum efficiency is obtained when more than about 20 particles are tracked simultaneously. On true
high-performance vector machines, the algorithm fully auto-vectorizes, and for best efficiency, the number
of particles should be a multiple of the length of the hardware vector. On most modern CPUs, also
limited amounts of vectorization are performed automatically, and the algorithms used for the vector data
type are optimally mapped in these environments as well. In these cases, logistics overhead necessary
for the bookkeeping is almost completely negligible, and the computation time is almost entirely spent
on arithmetic. It is also worth mentioning that using an optimal tree transversal algorithm, zero terms
occurring in a map do not contribute to computation time.

The command

TRT <string>;

prints the title supplied by the string in a tracking picture produced by TR. The command TRT should
be called just before a TR call, and the title is valid only for that TR call. If TRT is not called just
before TR, no title is printed.

Sometimes it is desirable to resume tracking particles. The next command

TRR <mode>;

sets the resuming mode on (1), and off (0). By default, the resuming mode is off. When the resuming
mode is desired, TRR has to be called with 1 ahead of calling TR. Once the resuming mode is turned
on, it remains active until it is turned off.

One can output a plot at every N-th iteration starting from the initial particles as follows. If the
command TRR is called ahead of time, “TRR 0 ;” should be called to turn off the resuming mode in the
beginning.

TR 0 1 ... ; {plot of the initial particles}
TRR 1 ; {turn on the resume tracking mode}
TR N -N ... ; {plot at the N-th iteration}
TR N -N ... ; {plot at the 2*N-th iteration}

There are two ways to apply aperture cuts through repetitive tracking using TR. The command

TRAP < x > < y > <C> ;

cuts the rays in every iteration by the sizes x and y in the transverse plane. The shape of the aperture
(collimator) is elliptic with |C|=1, and rectangular with |C|=2. C=0 turns this aperture cut off. By
default, this aperture cut is turned off. If a negative number is given to C, no aperture cut is applied to
the initial particles. To apply this aperture cut, the command TRAP has to be called ahead of calling
TR, and the feature is on until it is turned off.

To insert a cutting aperture (collimator) at a specific location in the system, call the command

AP < x > < y > <C> ;

at the location while defining the system to compute a transfer map to be used for TR. AP can be placed
at multiple locations through the system. The command cuts the rays at the specified location by the
sizes x and y in the transverse plane. The shape of the aperture is elliptic with C=1, and rectangular
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with C=2. If any other value is given to C, this aperture is ignored. A UM call resets the AP apertures,
meaning that all the necessary AP apertures have to be called after UM and before TR.

If TRAP and AP (with C=1, 2) co-exist, TRAP is ignored. Using a pre-coded system setup that
includes APs, sometimes it may be necessary to turn on and off the AP aperture cutting. Turning off
APs can be handled in the following two ways, and both ways activate the co-existed TRAP. One way
is to give C by a variable, and switch the value of C from on (C=1, 2) to off (C=0) before calling APs.
Another way is to reset the internal counter of APs before calling TR by writing “NCT := 0 ;”, however
this method has to be conducted carefully as it directly alters the value of an internal global variable.

The command

TRAPN <N> ;

reports the number of rays survived through the aperture cuts of TR via the variable in the command
argument. The length 1 is enough for the command argument variable.

VARIABLE N 1 ;

The history of the number of survived particles can be reported by the command

TRAPHIST <file> <L> ;

to a file with the specified file name. Typically, use an internal global variable LTRI for <L>, i.e.

TRAPHIST traphist.txt LTRI ;

When tracking many particles with cutting apertures, the number of survived particles may be much
less than the number of initial particles. The command

TRAYPAC ;

packs rays to keep only the survived particles.

Similar to the command PRAY (see page 13), some users may want to print coordinates of the rays
during tracking using TR. The next command

TRPRAY <unit> ;

prints the coordinates of the rays to the specified output unit after each NP iterations as well as the initial
values. Each ray is output in one line with the iteration number (the first column) and the ray number
(the second column), where the ray number 0 corresponds to the reference ray. The command TRPRAY
should be called just before a TR call, and the ray printing feature is valid only for that TR call.

The command with the same functionality for PSPI (see page 15) is

TRPSPI <unit> ;

printing the spin vector coordinates corresponding to the rays to the specified output unit after each NP
iterations as well as the initial values. Each spin vector is output in one line with the iteration number
(the first column) and the ray number (the second column), where the ray number 0 corresponds to the
reference ray. The command TRPSPI should be called just before a TR call, and the spin vector printing
feature is valid only for that TR call. When TRPSPI is called at the same time with TRPRAY, different
output unit numbers have to be supplied.
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4.5 Symplectic Representations

In this section, we will present two different representations for symplectic maps, each one of which has
certain advantages. Particle optical systems described by Hamiltonian motion satisfy the symplectic
condition (see for example [50] [14])

M · J ·M t = J

where M is the Jacobian Matrix of partial derivatives of M, and J has the form

J =


0 0 0 +1 0 0
0 0 0 0 +1 0
0 0 0 0 0 +1

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0



As long as there is no damping, all particle optical systems are Hamiltonian, and so the maps are
symplectic up to possibly computation errors if they are generated numerically. There is a COSY function
that determines the symplectic error of a map:

SE(<M>)

Here M is an array of DA quantities describing the map. Note that the momentary value of the transfer
map is stored in the global COSY variable MAP. The value of the function is the weighted maximum
norm of the matrix (M ·J ·M t−J). The weighting is done such that the maximum error on a cubic phase
space with half edge W is computed. The default value for W is 0.1, which may be too large for many
cases. The value of W can be set with the procedure

WSET <W> ;

While the orbital part of maps usually satisfies the symplectic symmetry, the spin matrix must satisfy
orthogonality. Similar to the function SE,

OE(<SM>)

determines the orthogonality error of the spin matrix SM. The current system spin matrix is stored in the
array SPNR.

In some instances, it may be desirable to symplectify maps that are not fully symplectic. While the
standard elements of COSY INFINITY are symplectic to close to machine precision, the low accuracy
fringe-field modes (see Section 3.3.7) violate symplecticity noticeably. Depending on the coarseness of
the measured field data, this may also occur in the general element discussed in Section 3.3.8. To a
much lesser extent symplecticity is violated by intrinsic elements requiring numerical integration, like the
high-precision fringe fields and the round lenses discussed in Section 3.3.6. The command

SY <M> ;

symplectifies the map M using the generating function (see below) which is most accurate for the given
map.
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Symplectic maps can be represented by at least one of four generating functions in mixed variables:

F1(qi, qf ) satisfying (p⃗i, p⃗f ) = (∇⃗qiF1,−∇⃗qfF1)

F2(qi, pf ) satisfying (p⃗i, q⃗f ) = (∇⃗qiF2, ∇⃗pf
F2)

F3(pi, qf ) satisfying (q⃗i, p⃗f ) = (−∇⃗piF3,−∇⃗qfF3)

F4(pi, pf ) satisfying (q⃗i, q⃗f ) = (−∇⃗pi
F4, ∇⃗pf

F4)

In the generating function representation there are no interrelationships between the coefficients due
to symplecticity like in the transfer map, so the generating function representation is more compact.
Furthermore, it is often an important tool for the symplectification of tracking data [8] [14] [40]. The
command

MGF <M> <F> <I> <IER> ;

attempts to compute the I th generating function of the specified map M. If IER is equal to zero, this
generating function exists and is contained in F. If IER is nonzero, it does not exist. While in principle,
any generating function that exists represents the map, especially for high order maps, certain inaccuracies
often result for numerical reasons. If I is chosen to be −1, the generating function representing the linear
part of the map best is determined. For I = −2, the generating function representing the whole map best
is computed. The case I = −2 is very expensive computationally and should only be used in crucial cases
for high orders. In both cases, on return I contains the number of the chosen generating function.

The map which corresponds to a generating function F of type I is obtained by

GFM <M> <F> <I> ;

Other redundancy free representations of symplectic transfer maps are Lie factorizations including the
Dragt-Finn factorization [14] [3] [38]. They are based on Lie transformation operators of the form

exp(: f :) = 1+ : f : +
: f :2

2
+ ...

where f is a function of the canonical coordinates qi and pi. The colon denotes a Poisson bracket waiting
to happen, i.e. : f : g = {f, g} . When x⃗f describes a final set of canonical coordinates with x⃗ =
(q1, p1, . . . , qn, pn) and x⃗i describes an initial set, then x⃗f = exp(: f :)x⃗i is a symplectic mapping. Those
Lie transformation operators have the property

e:f : (g(x⃗)) = g
(
e:f :x⃗

)
for any function g : R2n → R with n being the dimension of the required configuration space. Therefore
we find

e:f : (e:g:x⃗) = (e:g:x⃗) ◦
(
e:f :x⃗

)
.

The circle ◦ symbolizes the composition of maps. Two composed symplectic maps are therefore represented
by the product of their Lie transformation operators in reversed order. As an example, a symplectic map
can be written in the form

L̃e:f>:x⃗+ C⃗

were L̃ is an operator such that L̃x⃗ is the linear part of the map, f> is a polynomial in the xi containing
only orders higher than 2. Finally C⃗ represents the constant part of the map. As mentioned previously
this representation is equal to (

e:f>:x⃗
)
◦
(
L̃x⃗
)
+ C⃗

Besides this factorization, there are various others that are similar and have certain advantages [3]. They
are shown in the table below. As shown in [3], it is one of the strong points of the map representation and
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the differential algebraic techniques that the computation of these Dragt-Finn factorization is possible to
arbitrary order with a relatively simple algorithm. It is actually much easier to compute them from the
map than using Lie algebraic techniques alone. The command

MLF <MA> <C> <M> <F> <I> ;

computes the factorization from the transfer map MA. On return, the vector C contains the constant part,
M the linear part and F contains the fi from the list below. In case of the last four factorization, F has
to be an array. I is the identifier of the factorization following the numbering in the list.

1: M(x⃗) =n L̃ exp (: f> :) x⃗+ C⃗

-1: M(x⃗) =n exp (: f> :) L̃x⃗+ C⃗

2: M(x⃗) =n L̃ exp (: f3 :) exp (: f4 :) . . . exp (: fn+1 :) x⃗+ C⃗

-2: M(x⃗) =n exp (: fn+1 :) . . . exp (: f3 :) L̃x⃗+ C⃗

3: M(x⃗) =2n+1 L̃ exp (: f3,3 :) exp (: f4,5 :) exp (: f6,9 :) . . . exp
(
: f(2n+2),(2n+1+1) :

)
x⃗+ C⃗

-3: M(x⃗) =2n+1 exp
(
: f2n+2,2n+1+1 :

)
. . . exp (: f6,9 :) exp (: f4,5 :) exp (: f3,3 :) L̃x⃗+ C⃗

Here fi denotes homogeneous polynomials of exact order i and fi,j polynomials with orders from i to j.
Given a factorization, the command

LFM <MA> <C> <M> <F> <I> ;

calculates the according map. The command

LFLF <C> <M> <F> <P> <I> <J> ;

computes the factorization of type J with exponent P from a factorization of type I with exponent F. With-
out the map representation this would be a very elaborate task, because the Campbell-Baker-Hausdorff
formula would be needed to the appropriate order.
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5 Examples

This section provides several examples for the use of core features of COSY INFINITY. The code demo.fox
which is distributed with COSY INFINITY contains many more programs that can serve as demonstra-
tions. Further ideas how to use COSYScript can also be obtained by studying cosy.fox.

5.1 A Simple Sequence of Elements

After having discussed the particle optical elements and features available in COSY INFINITY in the
previous sections, we now discuss the computation of maps of simple systems.

We begin with the computation of the transfer map of a quadrupole doublet to fifth order. Here the
COSYScript input resembles the input of many other optics codes [18]. This example program is available
as beamdemo ele.fox at the COSY INFINITY download site.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

OV 5 2 0 ; {order 5, phase space dim 2, # of parameters 0}
RP 10 4 2 ; {kinetic energy 10MeV, mass 4 amu, charge 2}
UM ; {sets map to unity}
DL .1 ; {drift of length .1 m}
MQ .2 .1 .05 ; {focusing quad; length .2 m, field .1 T, aperture .05 m}
DL .1 ;

MQ .2 -.1 .05 ; {defocusing}
DL .1 ;

PM 6 ; {prints map to display}
ENDPROCEDURE ;

RUN ; END ;

The first few lines of the resulting transfer map look like this:

0.7084973 -0.1798231 0.000000 0.000000 0.000000 100000

0.6952214 1.234984 0.000000 0.000000 0.000000 010000

0.000000 0.000000 1.234984 -0.1798231 0.000000 001000

0.000000 0.000000 0.6952214 0.7084973 0.000000 000100

-0.7552786E-01-0.5173667E-01 0.000000 0.000000 0.000000 300000

0.2751173 0.1728297 0.000000 0.000000 0.000000 210000

-0.4105720 -0.2057599 0.000000 0.000000 0.000000 120000

0.3541071 0.8137949E-01 0.000000 0.000000 0.000000 030000

0.000000 0.000000 0.5676314E-01-0.5150461E-01 0.000000 201000

The different columns correspond to the final coordinates x, a, y, b and t. The lines contain the various
expansion coefficients, which are identified by the exponents of the initial condition. For example, the
third column, hence the final coordinate y, of the last line is the number 0.5676314E-01, where the
exponents are noted as 201000, which means xxy. So, the value of the expansion coefficient (y, xxy) is
0.05676314.
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5.2 Maps with Knobs

The DA approach easily allows to compute maps not only depending on phase space variables, but also
on system parameters. This can be very helpful for different reasons. For example, it directly tells how
sensitive the system is to errors in a particular quantity. In the same way it can be used to find out ideal
positions to place correcting elements. Furthermore, it can be very helpful for the optimization of systems,
and sometimes very fast convergence can be achieved with it (for details, see the Programmer’s Manual
[Optimization]).

In the context of COSY INFINITY, the treatment of such system parameters or knobs is particularly
elegant.

In the following example, we compute the map of a system depending on the strength of one quadrupole.
The COSY function PARA(I) is used, which identifies the quantity as parameter number I by turning
it into an appropriate DA vector.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

OV 5 2 1 ; {order 5, phase space dim 2, parameters 1}
RP 10 4 2 ; {sets kinetic energy, mass and charge}
UM ;

DL .1 ;

MQ .2 .1*PARA(1) .05 ; {quadrupole; now field is a DA quantity}
DL .1 ;

MQ .2 -.1 .05 ;

DL .1 ;

PM 11 ; {prints map depending on quad strength to unit 11}
ENDPROCEDURE ;

RUN ; END ;

Since COSYScript supports freedom of types at compile time, the second argument of the quad can
be either real or DA. For details, consult the Programmer’s Manual.

The idea of maps with knobs can also be used to compute the dependence on the particle mass and
charge as well as on energy in case time of flight terms are not needed. In the following example, the map
of the quad doublet is computed including the dependence on energy, mass and charge.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

OV 5 2 3 ; {order 5, phase space dim 2, parameters 3}
RP 10*PARA(1) 4*PARA(2) 2*PARA(3) ; {sets kinetic energy, mass

and charge as DA quantities}
UM ;

DL .1 ;

MQ .2 .1 .05 ;

DL .1 ;

MQ .2 -.1 .05 ;

DL .1 ;

PM 11 ; {prints map with dependence on energy,

mass and charge, to unit 11}
ENDPROCEDURE ;

RUN ; END ;
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5.3 Grouping of Elements

Usually it is necessary to group a set of elements together into a cell. For example, since most circular
accelerators are built of several at least almost identical cells, it is desirable to refer to the cell as a
block. Similar situations often occur for spectrometers or microscopes if similar quad multiplets are used
repetitively.

Grouping is easily accomplished in COSY INFINITY by just putting the elements into a procedure.
In the following example, the strength of a quadrupole in the cell of an accelerator is adjusted manually
such that the motion in both planes is stable. Since the motions are stable if the two traces are less than
two in magnitude, the map is printed to the screen which allows a direct check.

INCLUDE ’COSY’ ;

PROCEDURE RUN ; VARIABLE QS 1 ; {declare a real variable}
PROCEDURE CELL Q H1 H2 ; {defines a cell of a ring}

DL .3 ; DI 10 20 .1 0 0 0 0 ; DL .1 ; MH .1 H1 .05 ;

DL .1 ; MQ .1 Q .05 ; DL .3 ; MH .1 H2 .05 ;

ENDPROCEDURE ;

OV 3 2 0 ; RPP 1000 ; {third order, one GeV protons}
QS := .1 ; {set initial value for quad}
WHILE QS#0 ; WRITE 6 ’ GIVE QS ’ ; READ 5 QS ;

UM ; CELL QS 0 0 ; PM 6 ; WRITE 6 ME(3,3) ;

ENDWHILE ;

ENDPROCEDURE ; RUN ; END ;

Such groupings can be nested if necessary, and parameters on which the elements in the group depend
can be passed freely. Note that calling a group entails that all elements in it are executed; so grouping is
not a means to reduce execution time, but a way to organize complicated systems into easily manageable
parts. Reduction of execution time can be achieved by saving maps of subsystems that do not change
using SM and AM discussed above.

5.4 Optimization

One of the most important tasks in the design of optical systems is the optimization of certain parameters
of the system to meet certain specifications. Because of the importance of optimization, there is direct
support from COSYScript via the FIT and ENDFIT commands. COSY INFINITY provides several
Fortran based optimizers; a detailed description of the optimizers available in COSY INFINITY can be
found in the Programmer’s Manual [Optimization].

In the first example we illustrate a simple optimization task: to fit the strengths of the quadrupoles of
a symmetric triplet to perform stigmatic point-to-point imaging. To monitor the optimization process, the
momentary values of the quad strengths and the objective function are printed to the screen. Furthermore,
a graphics display of the system at each step of the optimizer is displayed in two graphics windows, here
identified with the graphics output units -1 and -2, one for each phase space projection, creating a movie-
like effect. The Programmer’s Manual [Supported Graphics Drivers] lists the graphics drivers currently
supported in COSY INFINITY. At the end, the final pictures of the x and y projection of the system are
printed in PDF format, identified with the graphics output unit -12, for inclusion in this manual. This
example program is available as beamdemo fit.fox at the COSY INFINITY download site.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;
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MQ MQ MQ 0.400.10

0.10 Y-motion

Figure 5: The x, y pictures of ray trajectories through a FIT–ENDFIT optimized quadrupole triplet. The
pictures are the resulting PDF files pic001.pdf, pic002.pdf by executing the COSYScript example program
beamdemo fit.fox.

VARIABLE Q1 1 ; VARIABLE Q2 1 ; VARIABLE OBJ 1 ;

PROCEDURE TRIPLET A B ;

MQ .1 A .05 ; DL .05 ; MQ .1 -B .05 ; DL .05 ; MQ .1 A .05 ;

ENDPROCEDURE ;

OV 1 2 0 ; RP 1 1 1 ;

SB .15 .15 0 .15 .15 0 0 0 0 0 0 ;

{sets half widths of beam .15 m in x, y and .15 rad in a, b}
Q1 := .5 ; Q2 := .5 ; {start values of Q1, Q2}
FIT Q1 Q2 ;

UM ; CR ; {clears the rays}
ER 1 3 1 3 1 1 1 1 ; {ensemble of rays, 3 in a, b}
BP ; {begins a picture}
DL .2 ; TRIPLET Q1 Q2 ; DL .2 ;

EP ; {ends the picture}
PG -1 -2 ; {outputs the x,y pictures to default windows}
OBJ := ABS(ME(1,2))+ABS(ME(3,4)) ;

{defines the objective OBJ.

ME(1,2): map element (x,a), ME(3,4): map element (y,b)}
WRITE 6 ’Q1, Q2: ’ Q1 Q2 ’OBJECTIVE: ’ OBJ ;

ENDFIT 1E-5 1000 1 OBJ ;

{fits OBJ by Simplex algorithm. This is point-to-point for both x, y}
PG -12 -12 ;

{output final pictures to PDF files pic001.pdf and pic002.pdf}
ENDPROCEDURE ;

RUN ; END ;

The final x, y pictures, also output to PDF files, are shown in Figure 5.

Besides providing “canned” optimization strategies, COSYScript allows to follow one’s own path of
optimizing a system, which typically consists of several runs with varying parameters and subsequent
optimizations.

In the following example, the goal is to vary several parameters of the system manually, fit the quad
strengths, and then look at the spherical aberrations. This process is repeated by inputting different
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values for the parameters until the spherical aberrations have been reduced to a satisfactory level. When
this is achieved, the pictures of the system are output directly to PostScript (PS) files, identified with the
graphics output unit -10, with the names pic001.ps and pic002.ps.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

VARIABLE Q1 1 ; VARIABLE Q2 1 ; VARIABLE L1 1 ; VARIABLE L2 1 ;

VARIABLE OBJ 1 ; VARIABLE ISTOP 1 ;

PROCEDURE TRIPLET ;

UM ; CR ; ER 1 4 1 4 1 1 1 1 ; BP ;

DL L1 ; MQ .1 Q1 .05 ; DL L2 ; MQ .1 -Q2 .05 ;

DL L2 ; MQ .1 Q1 .05 ; DL L1 ; EP ; PP -1 0 0 ;

ENDPROCEDURE ;

OV 3 2 0 ; RP 1 1 1 ; SB .08 .08 0 .08 .08 0 0 0 0 0 0 ; ISTOP := 1 ;

WHILE ISTOP#0 ;

WRITE 6 ’ GIVE VALUES FOR L1, L2: ’ ; READ 5 L1 ; READ 5 L2 ;

Q1 := .5 ; Q2 := .5 ; CO 1 ;

FIT Q1 Q2 ; TRIPLET ; OBJ := ABS(ME(1,2))+ABS(ME(3,4)) ;

ENDFIT 1E-5 1000 1 OBJ ;

CO 3 ; TRIPLET ;

WRITE 6 ’ SPHERICAL ABERRATION FOR THIS SYSTEM: ’ ME(1,222) ;

WRITE 6 ’ CONTINUE SEARCH? (1/0) ’ ; READ 5 ISTOP ;

ENDWHILE ; PP -10 0 0 ; PP -10 0 90 ;

ENDPROCEDURE ; RUN ; END ;

This example shows how it is possible to phrase more complicated interactive optimization tasks in
COSYScript. One can even go far beyond the level of sophistication displayed here; by nesting sufficiently
many WHILE, IF, and LOOP statements, it is often possible to optimize a whole system in one inter-
active session without ever leaving COSY INFINITY. For example, the first order design in [5] which is
subject to quite a number of constraints and requires a sophisticated combination of trial and optimization
was performed in this way.

5.5 Normal Form, Tune Shifts and Twiss Parameters

The following example shows the use of normal form methods and parameter dependent Twiss parameters
for the analysis of a repetitive system. For the sake of simplicity, we choose here a simple FODO cell that
is described by the procedure CELL. The map of the cell is computed to fifth order, with the energy as a
parameter. In the cell itself, the quadrupole strength is another parameter.

As a first step, the parameter dependent tunes are computed and written to the output unit 7, following
the algorithm in [11]. Next follow the tunes depending on parameters and amplitude; this is done with
DA normal form theory [10] [14]. Finally, several other quantities and their parameter dependence are
computed using the procedure GT. They include the parameter dependent fixed point, the parameter
dependent Twiss parameters, as well as the parameter dependent damping (which here is unity because
no radiation effects are taken into account).

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

VARIABLE A 100 2 ; VARIABLE B 100 2 ; VARIABLE G 100 2 ;

VARIABLE R 100 2 ; VARIABLE MU 100 2 ; VARIABLE F 100 6 ;



52 5 EXAMPLES

PROCEDURE CELL ;

DL .1 ; DI 1 45 .1 0 0 0 0 ; DL .1 ; MQ .1 -.1*PARA(2) .1 ; DL .2 ;

ENDPROCEDURE ;

OV 5 2 2 ; RP 1*PARA(1) 1 1 ; UM ; CELL ;

TP MU ; WRITE 7 ’ DELTA DEPENDENT TUNES ’ MU(1) MU(2) ;

TS MU ; WRITE 7 ’ DELTA AND EPS DEPENDENT TUNES ’ MU(1) MU(2) ;

GT MAP F MU A B G R ;

WRITE 7 ’ DELTA DEPENDENT FIXED POINT ’ F(1) F(2) F(3) F(4) ;

WRITE 7 ’ DELTA DEPENDENT ALPHAS ’ A(1) A(2) ;

WRITE 7 ’ DELTA DEPENDENT BETAS ’ B(1) B(2) ;

WRITE 7 ’ DELTA DEPENDENT GAMMAS ’ G(1) G(2) ;

WRITE 7 ’ DELTA DEPENDENT DAMPINGS ’ R(1) R(2) ;

ENDPROCEDURE ; RUN ; END ;

5.6 Repetitive Tracking

In the following example, we want to study the nonlinear behavior of a ring by a qualitative analysis
of tracking data using the command TR. The ring consists of 18 identical cells. Nine of these cells are
packed into a half ring by the procedure HALFRING. At execution, the system asks for the values of
the strengths of the two hexapoles which influence its degree of nonlinearity. The tracking data for each
setting are displayed in a graphics window, here identified with the graphics output unit -1, and then also
output to a PostScript (PS) file with the graphics output unit -10, which lists the setting information via
the command TRT. One example case is shown in Figure 6.

INCLUDE ’COSY’ ;

PROCEDURE RUN ; VARIABLE QS 1 ; VARIABLE H1 1 ; VARIABLE H2 1 ; VARIABLE N 1 ;

PROCEDURE CELL Q H1 H2 ; {defines a cell of a ring}
DL .3 ; DI 10 20 .1 0 0 0 0 ; DL .1 ; MH .1 H1 .05 ;

DL .1 ; MQ .1 Q .05 ; DL .3 ; MH .1 H2 .05 ;

ENDPROCEDURE ;

PROCEDURE HALFRING Q H1 H2 ; VARIABLE I 1 ;

LOOP I 1 9 ; CELL Q H1 H2 ; ENDLOOP ; ENDPROCEDURE ;

OV 3 2 0 ; RPP 1000 ; {third order, one GeV protons}
QS := -.05 ; H1 := .01 ;

WHILE H1#0 ; WRITE 6 ’ GIVE HEXAPOLE STRENGTHS ’ ; READ 5 H1 ; READ 5 H2 ;

UM ; HALFRING QS H1 H2 ;

WRITE 6 ’ GIVE NUMBER OF TURNS ’ ; READ 5 N ;

CR ;

SR .005 0 .005 0 0 0 0 0 1 ;

SR .01 0 .01 0 0 0 0 0 1 ;

SR .015 0 .015 0 0 0 0 0 1 ;

SR .02 0 .02 0 0 0 0 0 1 ;

TR N 1 1 2 .03 .002 0 0 -1 ;

TRT SI(N)&’ turns, H1=’&SF(H1,’(F6.3)’)&’, H2=’&SF(H2,’(F6.3)’) ;

TR N 1 1 2 .03 .002 0 0 -10 ; {output to a PS file}
ENDWHILE ;

ENDPROCEDURE ; RUN ; END ;

Instead of PostScript (PS), the user may want to output directly to a PDF file (the graphics unit
number -12). Refer to the Programmer’s Manual [Supported Graphics Drivers] for the graphics drivers
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Figure 6: An example tracking picture, produced by the command TR using an example COSYScript
program listed in Section 5.6. The resulting PostScript (PS) file is hand-edited to increase the size of the
dots for the inclusion on this page. Follow the instructions in Section 5.6 for hand-editing.

currently supported in COSY INFINITY.

For the purpose of efficiency, the command TR outputs dots to the graphics output via the COSY
intrinsic procedure GRDOT (see the Programmer’s Manual). The font size of the dots is adjusted to
appear comfortable in US letter size or A4 size, even for large scale production runs using TR. However,
when a TR graphics output picture file is to be included with much smaller size in a document, like
this manual or scientific papers, the dots may become too small to be displayed meaningfully. In such a
situation, the font size of the dots can be increased by hand-editing some of the TR produced graphics
output picture files. Below, the instructions are given how to hand-edit PostScript (PS) and PDF graphics
output picture files produced by COSY INFINITY via the graphics output unit numbers -10 and -12, both
of which are ASCII text files, thus the user can hand-edit using an ASCII text editor. The hand-editing
instructions are current as of August 2013.

How to increase the size of dots – PostScript (PS) (the graphics output unit number -10)

1. Using an ASCII text editor, open the TR produced PostScript (PS) file. The file must be the one
directly obtained via the graphics output unit number -10 by executing COSY INFINITY.

2. Search lines containing the word “scalefont”.

3. Identify the “scalefont” command line that determines the font size of dots. This should be the
22nd line (or thereabouts) of the PS file, and it is the second “scalefont” command line. Note
that it is not the first “scalefont” command line, which determines the default font size of the
PS file. It also can be located as the line just before the first dot outputting line, where a dot is
represented by “<B7>” in the PS file.

4. Comment out the “scalefont” command line identified by the previous step. For this, place a “%”
mark in the beginning of the line, and the line will look like:
%/Helvetica findfont 0.005200000 scalefont setfont

5. Save and close the PS file.
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How to increase the size of dots – PDF (the graphics output unit number -12)

1. Using an ASCII text editor, open the PDF file produced by TR. The file must be the one directly
obtained via the graphics output unit number -12 by executing COSY INFINITY. Different from
most other pdf producing tools, COSY purposely outputs its pdf graphics as ASCII to allow for later
(expert) modification as necessary. When the user is not used to the process here, we recommend
to make a backup copy of the PDF file before proceeding further.

2. There are several topics requiring extra care when handling PDF files.

(a) A PDF file contains the byte sizes of its contents as crucial (and sensitive!!) information. When
the byte size is altered, the file may get corrupted. Thus, hand-editing has to be performed
very carefully so that the total character count is not changed. If the file is damaged, start over
utilizing the backup copy of the original PDF file.

(b) PDF files are sensitive to the action of saving/writing. While one software program such as
Acrobat is opening the PDF file, another software program such as an ASCII text editor cannot
save/write to the same PDF file.

(c) Most software programs that can handle/open PDF files such as Acrobat use binary form when
saving/writing. This is the case even if the original PDF file is an ASCII text file like the one
produced by TR discussed here. Thus any saving/writing by any other software program other
than an ASCII text editor must be avoided during the process discussed here.

3. Search lines containing the word “Tf”.

4. Identify the “Tf” command line that determines the font size of dots. This should be the 8th line
(or thereabouts) of the PDF file, and it is the second “Tf” command line. Note that it is not the
first “Tf” command line that determines the default font size of the PDF file. It also can be located
as the line just before the first dot outputting line, where a dot is represented by “<B7>” in the
PDF file.

5. Comment out the “Tf” command line identified by the previous step. For this, replace the first
character of the line by a “%” mark. Originally the identified “Tf” command line looks like this:
/F1 0.008000000 Tf

After the proper change, the line will look like:
%F1 0.008000000 Tf

As cautioned in the step 2, this change has to be performed carefully not to alter the number of
characters in this line.

6. Save and close the PDF file.

5.7 Introducing New Elements

When looking into the physics part of COSY INFINITY, it becomes apparent that all particle optical
elements described above are nothing but procedures written in COSYScript. Due to the openness of the
approach, users can construct their own particle optical elements.

Here we want to show how a user can define his own particle optical element and work with it. As
a first example, we begin with a skew quadrupole that is rotated against the regular orientation by the
angle ϕ. The action of such a quad can be obtained by first rotating the map by −ϕ, then let the quad
act, and finally rotate back. All these steps are performed on the DA variable containing the momentary
value of the transfer map, which is the global COSY array MAP. For the conversion of degrees to radians,



5.8 Introducing New Features 55

the global COSY variable DEGRAD is used. Note that many important global variables of COSY are
described in Section 5.8.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

PROCEDURE SQ PHI L B D ; {computes the action of a skew quad}
PROCEDURE ROTATE PHI ; {local procedure for rotation}

VARIABLE M 1000 4 ; VARIABLE I 1 ;

M(1) := COS(PHI*DEGRAD)*MAP(1) + SIN(PHI*DEGRAD)*MAP(3) ;

M(3) := -SIN(PHI*DEGRAD)*MAP(1) + COS(PHI*DEGRAD)*MAP(3) ;

M(2) := COS(PHI*DEGRAD)*MAP(2) + SIN(PHI*DEGRAD)*MAP(4) ;

M(4) := -SIN(PHI*DEGRAD)*MAP(2) + COS(PHI*DEGRAD)*MAP(4) ;

LOOP I 1 4 ; MAP(I) := M(I) ; ENDLOOP ; ENDPROCEDURE ;

ROTATE -PHI ; MQ L B D ; ROTATE PHI ; ENDPROCEDURE ;

OV 5 2 0 ; RP 1 1 1 ;

UM ; DL .1 ; SQ -30 .2 .1 .1 ; DL .1 ; SQ 30 .2 .1 .1 ; PM 6 ;

ENDPROCEDURE ; RUN ; END ;

It is clear that a similar technique can be used to study misaligned elements. In a similar way, it is
easily possible to generate a “kick-environment” in COSY INFINITY, where every particle optical element
is just represented by a kick in its center.

This technique is also useful in many other ways. For example, if a certain element is rather time
consuming to compute, which can be the case with cylindrical lenses to high orders, one can write a
procedure that computes the map of the element, including the dependence on some of its parameters,
and saves the map somewhere. When called again with different values, the procedure decides if the values
are close enough to the old ones to just utilize the previously computed map with the parameters plugged
in, or if it is necessary to compute the element again. In case the parameters are varied only slightly, a
very significant speed up can be achieved in this way, yet for the user the procedure looks like any other
element.

5.8 Introducing New Features

The whole concept of COSY INFINITY is very open in that it easily allows extensions for specific tasks.
The user is free to provide his own procedures for particle optical elements or for many other purposes. To
interface with COSY INFINITY most efficiently, it is important to know the names of certain key global
variables, functions and procedures. Furthermore it is important to know that all quantities in COSY
INFINITY are in SI units, with the exception of voltages, which are in kV.

For some applications, it is helpful to access some of COSY INFINITY’s global variables. Since the
physics of the code is written in its own language, all these variables are directly visible to the user. The
first set of relevant global variables are the natural constants describing the physics. These variables are
set after the routine OV or DEF is called and can be utilized for calculations by the user. The data are
taken from [45] (CAUTION: The data was updated in September 2001 in cosy.fox). In order to match
other codes, the variables can be changed by the user in cosy.fox if necessary.

AMU Atomic Mass Unit 1.66053873 · 10−27 kg
AMUMEV Atomic Mass Unit in MeV computed as AMU·c2/e∼= 931.4940136 MeV
EZERO The charge unit e 1.602176462 · 10−19 C
CLIGHT The speed of light c 2.99792458 · 108 m/s
PI the value of π 3.1415926535897932384626433832795028842
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The second set of variables describes the reference particle. These variables are updated every time the
procedure RP is called.

E0 Energy in MeV
M0 Mass in AMU
Z0 Charge in units
V0 Velocity in m/s
P0 Momentum p0c in MeV
CHIM Magnetic Rigidity
CHIE Electric Rigidity
ETA Kinetic Energy over mc2

Finally, there are the variables that are updated by particle optical elements:

MAP Array of 8 DA vectors containing Map
RAY Array of 8 VE vectors containing Coordinates
SPOS Momentary value of the independent variable

COSY INFINITY contains several procedures that are not used explicitly by the user but are used
internally for certain operations. Firstly, there are the three DA functions

DER(<n>,<a>)

INTEG(<n>,<a>)

PB(<a>,<b>)

which compute the DA derivation with respect to variable n, the integral with respect to variable n, and
the Poisson bracket between a and b. Another helpful function is

NMON(<NO>,<NV>)

which returns the maximum number of coefficients in a DA vector in NV variables to order NO. An
important procedure is

POLVAL <L> <P> <NP> <A> <NA> <R> <NR> ;

where <P>, <A>, and <R> are arrays, and POLVAL lets the polynomial described by the NP DA
vectors or Taylor models stored in the array P act on the NA arguments A, and the result is stored in the
NR Vectors R.

In the normal situation, L should be set 1. After POLVAL has already been called with L= 1, and
if it is called with the same polynomial array P again, a certain part of internal analysis of P can be
avoided by calling POLVAL with L= −1 or L= 0. (There are other advanced settings for L, but their use
is discouraged for normal users because they may interfere with the internal use of POLVAL of various
COSY tools.)

The type of A is free, but all the array elements of A have to be the same type; it can be either DA or
CD, in which case the procedure acts as a concatenator, it can be real, complex or intervals, in which case
it acts like a polynomial evaluator, or it can be of vector type VE, in which case it acts as a very efficient
vectorizing map evaluator and is used for repetitive tracking. If necessary, adding 0*A(1) to subsequent
array elements A(I) can make the type of the argument array element agree to that type of A(1).

Further details on using the COSY INFINITY environment for active programming tasks can be found
in the Programmer’s Manual.
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7 COSYScript

The COSYScript language is based on a minimal and compact syntax. Experience shows that the
COSY Syntax Table combined with some examples usually allows users to work with COSYScript within
minutes. Refer to the Programmer’s Manual for further details.

COSYScript is object oriented with parametric polymorphism (dynamical type assignment). The
language is compiled and linked to a meta-format on the fly and immediately executed. Combined with
the ability to include pre-compiled code, this leads to a very rapid turnaround from input completion
to execution. Combined with built-in tools for optimization, this makes the tool particularly suitable
for simulation, as a control language, and for fast prototyping.

Great emphasis is put on performance, evidenced by negligible overhead to the cost of the operations
on the types. COSYScript usually outperforms code based on the C++ and F90 interfaces discussed in
the Programmer’s Manual.

7.1 COSYScript Syntax Table

BEGIN ; END ;
VARIABLE <name> <length> ;
PROCEDURE <arguments> ; ENDPROCEDURE ;
FUNCTION <arguments> ; ENDFUNCTION ;

<name> := <expression> ; (Assignment)

IF <expression> ; ELSEIF <expression> ; ENDIF ;
WHILE <expression> ; ENDWHILE ;
LOOP <name> <beg> <end> ; ENDLOOP ;
PLOOP <name> <beg> <end> ; ENDPLOOP <comm. rules> ;
FIT <variables> ; ENDFIT <parameters, objectives> ;

WRITE <unit> <expressions> ; READ <unit> <names> ;
SAVE <filename> ; INCLUDE <filename> ;
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[15] M. Berz, B. Erdélyi, and K. Makino. Fringe field effects in small rings of large acceptance. Physical
Review ST-AB, 3:124001, 2000.
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Charge, 9

Dependence (Example), 48
Unit, 55

Chromatic Effects, 9
Chromaticity, 39
CMG (Cylindrical Magnetic Gaussian), 23
CML (Cylindrical Magnetic Lens), 22
CMR (Cylindrical Magnetic Ring), 22
CMS (Cylindrical Magnetic Solenoid), 23
CMSI (Cylindrical Magnetic Solenoid), 22
CMST (Cylindrical Magnetic Solenoid), 23
CO (Calculation Order), 9
Coil Loop, 22
Collimator, 42
Combined Function Wien Filter, 21
Composing Map, 11
Computational Correction, 39
Condition of Symplecticity, 44
Constants, Physical, 55
Conversion

GICO Input, 37
GICOSY Input, 37
Lattice Input, 36
MAD Input, 36
OptiM Input, 37
SXF Input, 37

Coordinate Transformations, 38
Coordinates, 9
Correction, Reconstructive, 39
COSY

Installation, 4
Language (COSYScript), 58
Obtaining Source, 4

COSY 5.0, 6, 7
COSY Language, see COSYScript
COSY Variables, 9
cosy.fox, 8, 31, 33, 47, 55
COSYSript, 58
CR (Clear Rays), 13, 41

64



INDEX 65

Crosscompiler
GICO to COSY, 37
GICOSY to COSY, 37
MAD to COSY, 36
OptiM to COSY, 37
SXF to COSY, 37

CRSYSCA (Create SYSCA.DAT), 28
Current Ring, 22
Customized

Element, 54
Features, 55

Cylindrical Lenses, 22

D
DA, 6

Normal Form Algorithm, 39
Decapole

Electric, 18
Magnetic, 18

Deflector
Bending Direction, 17
Electric, 19
Inhomogeneities, 19

δk (COSY Variable), 9
δm (COSY Variable), 9
δz (COSY Variable), 9
demo.fox, 47
DER (COSY Function), 56
Derivation, 56
Derivative, 56
DI (Dipole), 20, 29
Differential Algebra, 6
Dipole, 20

Bending Direction, 17
Edge Angles, 20

DL (Drift Length), 17
Dodecapole

Electric, 18
Magnetic, 18

Download, 4
Dragt-Finn Factorization, 45
Drift, 17
Driving Terms of Resonances, 40
Dynamic Typing, 58
Dynamical Variables, 9

E
E cross B device, 21
E5 (Electric Multipole), 18
EC (Electric Deflector, Combined Function), 19
ECL (Electric Cylindrical Deflector), 19
ECM (Energy Compaction), 40

ED (Electric Decapole), 18
Edge

Curved, 20
Fields, 24
Focusing, 20
Tilted, 20

EH (Electric Hexapole), 18
Einzel Lens, 23
EL (s Dependent Energy), 33
Electric

Deflector, 19
Rigidity, 56

Electron Beam, 9
Element

Absorber Wedge, 32
General, 30
Grouping, 49
Measured Field, 30, 32
New, 54
Rotated, 35
Shifted, 35
Squew, 55
Supported, 17
Tilted, 35
Wedge, 32, 34

Ellipse
Sigma matrix, 12

ELSEIF (COSYScript command), 58
EM (Electric Multipole), 18
EMS (Electric Multipole), 18
ENCL (Energy closed orbit), 13
END (COSYScript command), 8, 58
ENDFIT (COSYScript command), 49, 50, 58
ENDFUNCTION (COSYScript command), 58
ENDIF (COSYScript command), 58
ENDLOOP (COSYScript command), 58
ENDPLOOP (COSYScript command), 58
ENDPROCEDURE (COSYScript command), 58
ENDWHILE (COSYScript command), 58
Energy, 9

Compaction (ECM), 40
Enge Function, 25
ENVEL (Envelope), 13
EO (Electric Octupole, 18
EP (End Picture), 16
EQ (Electric Quadrupole, 18
ER (Ensemble of Rays), 13, 41
Error, 18, 35
ES (Electric Sector), 19
ESET (Epsilon Set), 24, 27, 32
ESP (Electric Spherical Deflector), 19
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Example
Charge Dependent Map, 48
COSYScript
beamdemo ele.fox, 47
beamdemo fit.fox, 49
demo.fox, 47

Customized Element, 55
Customized Optimization, 51
Grouping of Elements, 49
Mass Dependent Map, 48
Normal Form, 51
Optimization, 49
Sequence of Elements, 47
Tracking, 52
Transfer Map Output, 47
Tune Shifts, 51
Twiss Parameters, 51

EXPO, 41
EZ (Electric Dodecapole), 18

F
F90 Interface, 6
Fi (Generating Functions), 45
FC (Fringe-Field Coefficients), 25
FC2 (Fringe-Field Files), 28
FD (Fringe-Field Default), 27
FD2 (Fringe-Field Files Default), 28
Field-Free Region, 17
Fields

Measured, 30, 32
FIT (COSYScript command), 49, 50, 58
Fitting, 49
Fixed Point, 39
Flat Mirror, 35
Focal Plane (PS), 16
Focusing

Strong, 17, 19, 20
Weak, 22

Font Size, 53, 54
Fortran 90, 6
FP (Fringe-Field Picture), 26
FR (Fringe-Field Mode), 24
FR 0 (Fringe-Field Mode 0), 29
FR 1 (Fringe-Field Mode 1), 28
FR 2 (Fringe-Field Mode 2), 28
FR 3 (Fringe-Field Mode 3), 24
Fringe Field, 24

Coefficients (FC), 25
Default (FD), 27
Files (FC2), 28
Files Default (FD2), 28
General Maps, 29

Mode 0, 29
Mode 1, 28
Mode 2, 28
Mode 3, 24
Picture (FP), 26
Standalone, 29

FUNCTION (COSYScript command), 58

G
γ (Relativistic Factor), 9
Gaussian

Interpolation, 31
Lens, 23, 24

GE (General Element), 30
General Glass Mirror, 35
Generating Functions, 45
GFM (Generating Function), 45
GICO

Input for COSY, 37
GICOSY

Input for COSY, 37
GIOS, 6–8

Map in Coordinates, 38
GL (General Glass Lens), 35
Glaser Lens, 22
Glass

Lenses, 34
Mirrors, 34
Prism, 35

Global Variables, 55
GLS (Spherical Glass Lens), 34
GM (General Glass Mirror), 35
GMF (Flat Glass Mirror), 35
GMP (Parabolic Glass Mirror), 35
GMS (Spherical Glass Mirror), 35
GP (Glass Prism), 35
Grouping of Elements, 49

Example, 49
GT (Get Tune), 51

H
Hexapole

Electric, 18
Magnetic, 17

Homogeneous Magnet, 20

I
IF (COSYScript command), 58
Image

Aberrations, 37
Fitting of, 49

INCLUDE (COSYScript command), 8, 58
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Inhomogeneous Wien Filter, 21
Input, see Reading
Insertion Device, 21
Installation, 4
INTEG (COSY Function), 56
Integration, 56

Accuracy, 27
Interface

C++, 6
F90, 6

Invariant ellipse, 10
Ion Beam, 9

K
Keywords

COSYScript List of, 58
Kick Method, 6
Knobs, 48

Example, 48

L
l (COSY Variable), 9
Lattice Converters, 36
Lens

Aspherical Glass, 35
Cylindrical, 22
Glass, 35
Round, 22
Spherical Glass, 34, 35

LFLF (Lie Factorization), 46
LFM (Lie Factorization), 46
License, 4
Lie Factorization

Reversed, 46
Superconvergent, 46

LOOP (COSYScript command), 58
LRAY (Load Rays), 14
LSPI (Load Spin Vectors), 15

M
m (Particle Mass), 9
M5 (Magnetic Multipole), 18
MA (Map Aberration, COSY function), 37
MAD

Input for COSY, 36
References, 7

Magnet
Bending Direction, 17
Curved Edges, 20
Homogeneous, 20
Inhomogeneous, 20
Parallel Faced, 20

Magnetic
Current Ring, 22
Moment, 10
Rectangle, 20
Rigidity, 10, 56
Solenoid, 22, 23

Map
Application, 11
Codes, 6
Composed, 11
Computation, 10
Depending on Parameters, 48
Element of, 12
Expensive, 11
Global COSY Variable, 56
Modification (Example), 55
Read, 11
Reversed, 12
Save, 10, 11
Set to Unity, 10
Switched, 12
Tracking Particles Through, 41
Twisted, 12
with Knobs (Example), 48
Write, 11

Mass, 9
Dependence (Example), 48

Matrix Element, 12
Maximum Order, 9
MC (Magnet, Combined Function), 20, 30
MCM (Momentum Compaction), 40
MD (Magnetic Decapole), 18
ME (Map Element), 12
MeV/c, 10
MF (Measured Field Element), 30
MGE (Measured Field General Multipole Element),

32
MGF (Generating Function), 45
MH (Magnetic Hexapole), 17
Mirror

Flat Glass, 35
General Glass, 35
Glass, 35
Parabolic Glass, 35
Spherical Glass, 35

Misalignment, 35
MLF (Lie Factorization), 46
MM (Magnetic Multipole), 18
MMS (Magnetic Multipole), 18
MO (Magnetic Octupole), 18
Momentum, 10
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Compaction (MCM), 40
MQ (Magnetic Quadrupole), 17
MR (Reversed Map), 12
MS (Magnetic Sector), 19, 30
MSS (Magnetic Sector s-dependent), 20
MT (Twisted Map), 12
µ (magnetic moment), 10
Multipole, 17

Electric, 18
Magnetic, 18, 32
Skew, 18

MZ (Magnetic Dodecapole), 18

N
Natural Constants, 55
New Features

Introduction of, 55
NF (Normal Form), 39
Nonlinearities, 37
Normal Form, 39

Example, 51

O
Octupole

Electric, 18
Magnetic, 18

OE (Orthogonal Error), 44
Offset, 35
Optic Axis

Offset, 35
Rotation, 35
Tilt, 35

Optics Books, 8
OptiM

Input for COSY, 37
Optimization, 49, 58

Customized (Example), 51
Example, 49
Expensive Submaps, 11

Order
Changing, 9
Maximum, 9

Orthogonality Test, 44
Output, see Writing
OV (Order and Variables), 9

P
p (Particle Momentum), 9
PA (Print Aberrations), 37
PARA (COSY Function), 36, 48
Parabolic

Mirror, 35

Parallel Faced Magnet, 20
Parameter, 9

Automatic Adjustment, 49
Example, 48
Fixed Point Depending on, 39
Maps Depending on, 48
Maximum Values, 10
Tune Shifts Depending on, 39

Particle Optics Books, 8
PB (COSY Function), 56
PDF Graphics, 26, 49, 50, 52, 54

Editing, 54
Font Size, 54

PG (Print Graphics), 16, 50
PGE (Print Envelope), 16
Phase Space, 9

Maximum Sizes, 10
Variables, 9
Weight, 44

Physical Constants, 55
Picture, 16

Beginning, 16
End, 16
Type (PTY), 16
Writing, 16

Plane of Interest, 16
PLOOP (COSYScript command), 58
PM (Print Map), 11
Poincare Section (PS), 16
Poisson Bracket, 56
POLVAL (COSY Intrinsic Procedure), 56
Polymorphism, 58
Polynomial, 56
PostScript Graphics, 51–53

Editing, 53
Font Size, 53

PP (Print Picture), 16
PR (Print Rays), 14
PRAY (Print Rays), 13
Printing, see Writing
Prism, 35
Problems, 4
PROCEDURE (COSYScript command), 58
PROCEDURE RUN (COSY User Procedure), 8
Proton Beam, 9
Prototyping, 58
PS (Poincare Section), 16
PS Graphics, 51–53

Editing, 53
Font Size, 53

PSM (Print Spin Matrix), 11
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PSPI (Print Spin Vectors), 15
PT (Print TRANSPORT), 38
PTY (Picture Type), 16

Q
Quadrupole

Electric, 18
Magnetic, 17

Questions, 4

R
RA (Rotate Axis), 35
Ray

Add, 14
Append, 14
Clearing, 13
Computation, 12
Energy closed orbit, η function, 13
Envelope, 13
Global COSY Variable, 56
Load, 14
Read, 14
Save, 14
Selection, 13
Selection, Ensemble, 13
Sine, Cosine, Dispersion, Envelope, 13
Tracing, 6
Trajectories, 16
Write, 13, 14, 43

READ (COSYScript command), 58
Reading

Map, 11
Ray, 14
Scaling Map (RSM), 12
Spin, 15

Reconstruction of Trajectories, 38
Reconstructive Correction, 39
Reference

Files for Fringe Fields, 28
Particle, 9
Trajectory
Offset, 35
Rotation, 35
Tilt, 35

Repetitive Systems, 41
Resolution, 38

Linear, 38
Reconstructive Correction, 39
Under Aberrations, 38

Resonance Strength, 40
Reversed Map, 12
RF, 21

RF (RF Cavity), 22
RFILT (Radius Filter), 40
Rigidity

Electric, 56
Magnetic, 56

RKLOG.DAT, 27
RM (Read Map), 11
Rotation, 35
Round Lenses, 22
RP (Reference Particle), 9
RPE (Electron Reference Particle), 9
RPM (Reference Particle), 10
RPP (Proton Reference Particle), 9
RPR (Reference Particle), 10
RPS (Reference Particle Spin), 10
RR (Reconstructive Resolution), 39
RRAY (Read Rays), 14
RS (Resonance Strength), 40
RSM (Read Scaling Map), 12
RSPI (Read Spin Vectors), 15
RUN (COSY User Procedure), 8
Runge Kutta DA integrator, 24, 27, 32

S
SA (Shift Axis), 35
SAVE (COSYScript command), 58
SB (Set Beam), 10
SBE (Set ellipse), 10
SCDE (Characteristic Rays), 13
SCOFF Approximation, 20
SE (Symplectic Error), 44
Sector

Bending Direction, 17
Combined Function with Edge Angles, 20
Electric, 19
Homogeneous Magnetic, 20
Magnetic, 19
Parallel Faced, 20

Sextupole
Electric, 18
Magnetic, 17

Sharp Cut Off, 20
SI Units, 8
SIGMA, 12
Sigma Matrix, 12
Simple System (Example), 47
Skew

Electric Multipole, 18
Magnetic Multipole, 18

SM (Save Map), 10
SNM (Save Map), 11
Solenoid, 22, 23
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SP (Set Parameters), 10
Spectrograph, 38
Spectrometer, 38
Speed of Light, 55
Spherical

Lens, 34
Mirror, 35

Spin
Add, 15
Append, 15
n̄, 40, 41
Coordinates for Particle, 13
Initialization, 10
Load, 15
Orthogonality Test, 44
Printing Matrix, 11
Printing Vectors, 15, 43
Read, 15
Save, 15
Tuneshift, 41

Spot Size, 39
Squew Element, 55
SR (Select Ray), 13, 41
SRAY (Save Rays), 14
SSPI (Save Spin Vectors), 15
SSR (Select Spin of Ray), 13
Stigmatic Image, 49
Stray Fields, 24
Support, 4
Switched Map, 12
SXF

Input for COSY, 37
SY (Symplectification), 44
Symplecticity Test, 44
Symplectification, 44, 45
Syntax Table (COSYScript Language), 58
System

Optimization, 49
Plot, 16
Units, 8

T
TA (Tilt Axis), 35
Technical Support, 4
Three

Aperture Lens, 23
Tube Lens, 23

Tilt, 35
Time of Flight Terms, 9
TP (Tune on Parameters), 39
TR (Track Rays), 41, 52, 53
Tracking, 41

Aperture, 14, 42
Cut, 14, 42
Example, 52
EXPO, 41
History of Survived Rays, 43
Number of Survived Rays, 43
Pack Survived Rays, 43
Rays, 43
Resume, 42
Symplectic, 45

Trajectories, 12, 16, see Ray
Trajectory Reconstruction, 38, 39
Transfer Map Output(Example), 47
TRANSPORT, 6, 7

Map in Coordinates, 38
TRAP (Tracking Aperture), 42
TRAPHIST (Tracking Aperture Survival History),

43
TRAPN (Tracking Aperture Number of Rays), 43
TRAYPAC (Tracking Rays Packing), 43
TRIO, 6, 7
TRPRAY (Print Rays), 43
TRPSPI (Print Spin Vectors), 43
TRR (Resume Tracking), 42
TRT (Tracking Title), 42, 52
TS (Tune Shift), 40
TSC (Tune Scan), 40
TSP (Tune on Parameters, Spin), 40
TSS (Tune Shift, Spin), 41
Tune, 39

Footprint, 40
Radius Limit, 40

Scan, 40
Shift, 39, 40
Shift (Example), 51
Shift, Spin, 41

Twiss Parameters, 39
Example, 51

Twisted Map, 12

U
UM (Unity Map), 10
Undulator, 21
Unit, 8

of Coordinates, 9
System, 8

User’s Agreement, 4

V
Variable

Important Global, 55
Phase Space, 9



INDEX 71

VARIABLE (COSYScript command), 58
Voltage Unit, 8

W
WA (Wedge Absorber Element), 32
WAS (Wedge Absorber Computation Mode), 32
WC (Combined Function Wien Filter), 21
Weak Focusing Lenses, 22
Wedge, 32
WF (Wien Filter), 21
WHILE (COSYScript command), 58
WI (Wiggler), 21
Wien Filter, 21
Wiggler, 21
WL (Wedge Element), 34
WM (Write Map), 11
WRAY (Write Rays), 14
WRITE (COSYScript command), 58
Write Scaling Map (WSM), 12
Writing

Aberrations, 37
Map, 11
Map in TRANSPORT coordinates, 38
Picture, 16
Ray, 13, 14, 43
Spin, 15, 43
Spin Matrix, 11

WSET (Phase Space Weight), 44
WSM (Write Scaling Map), 12
WSPI (Write Spin Vectors), 15

X
x (COSY Variable), 9

Y
y (COSY Variable), 9

Z
z (Particle Charge), 9


