Reprint Server

The Development of Stochastic Processes in COSY INFINITY


Abstract

COSY Infinity is an arbitrary-order beam dynamics simulation and analysis code. It can determine high-order transfer maps of combinations of particle optical elements of arbitrary field configurations. For precision modeling, design, and optimization of next-generation muon beam facilities, its features make it a very attractive code. Certain new features are being developed for inclusion in COSY to follow the distribution of charged particles through matter. To study in detail some of the properties of muons passing through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map–Monte-Carlo approach in which transfer map methods describe the average behavior of the particles in the accelerator channel including energy loss, and Monte-Carlo methods are used to provide small corrections to the predictions of the transfer map accounting for the stochastic nature of scattering and straggling of particles. The advantage of the new approach is that it is very efficient in that the vast majority of the dynamics is represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects as well as possible particle decay. The gains in speed are expected to simplify the optimization of muon cooling channels which are usually very computationally demanding due to the need to repeatedly run large numbers of particles through large numbers of configurations. Progress on the development of the required algorithms is reported.


J. Kunz, P. Snopok, M. Berz, K. Makino, in: 5th International Particle Accelerator Conference, (2014) 457


Download

Click on the icon to download the corresponding file.

Download Adobe PDF version (1221801 Bytes).


Go Back to the reprint server.
Go Back to the home page.


This page is maintained by Kyoko Makino. Please contact her if there are any problems with it.