Status of Study of Spin Dynamics in Electrostatic Rings to Search Electric Dipole Moment

Denis Zyuzin, Yu. Senichev

Institute for Nuclear Physics Forschungszentrum Juelich

December 17, 2011

Contents

- 2 Spin dynamics simulation
 - First approach
 - Non-linear model
- 3 Methods to increase SCT
 - Customly shaped deflectors
 - Alternating spin aberration method

Our goal

Track particle with initial horizontal spin polarization for a very large number of orbits, say 10^9 , to detect the appearance of a vertical spin component that will indicate the presence of an electric dipole moment. EDM of proton $d_p < 10^{-26} e \cdot \text{cm}$. So we need a storage ring which will conserve horizontal spin polarization for a long time.

Our goal

Track particle with initial horizontal spin polarization for a very large number of orbits, say 10^9 , to detect the appearance of a vertical spin component that will indicate the presence of an electric dipole moment. EDM of proton $d_p < 10^{-26} e \cdot \text{cm}$. So we need a storage ring which will conserve horizontal spin polarization for a long time.

Spin coherence time

SCT

Spin coherence time (SCT) — time when RMS spin orientation of the bunch particles reaches one radian.

Requirements of planned SrEDM experiment: the SCT should be more than 1000 seconds.

During this time each particle performs about 10^9 turns in storage ring moving on different trajectories through the optics elements.

T-BMT equation

$$\frac{d\vec{S}}{dt} = \mu\vec{S} \times \left(\vec{B} - c\beta \times \vec{E}\right) + d\vec{S} \times \left(\vec{E} + \vec{\beta}c \times \vec{B}\right)$$

 μ , d — magnetic and electric dipole moments, c is the speed of light, β is the relative velocity and E, B — the electric and the magnetic field vectors.

$$\begin{aligned} \frac{d\vec{S}}{dt} &= \vec{\omega}_G \times \vec{S} \\ \vec{\omega}_G &= -\frac{e}{m_0 \gamma c} \left\{ G c \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right\} \\ G &= \frac{g - 2}{2}, \end{aligned}$$

G — the anomalous magnetic moment, g is the gyromagnetic ratio and ω_G is the spin precession frequency.

T-BMT equation

$$\frac{d\overrightarrow{S}}{dt} = \mu\overrightarrow{S} \times \left(\overrightarrow{B} - c\beta \times \overrightarrow{E}\right) + d\overrightarrow{S} \times \left(\overrightarrow{E} + \overrightarrow{\beta}c \times \overrightarrow{B}\right)$$

 μ , d — magnetic and electric dipole moments, c is the speed of light, β is the relative velocity and E, B — the electric and the magnetic field vectors.

$$\begin{aligned} \frac{d\vec{S}}{dt} &= \vec{\omega}_G \times \vec{S} \\ \vec{\omega}_G &= -\frac{e}{m_0 \gamma c} \left\{ G c \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right\} \\ G &= \frac{g - 2}{2}, \end{aligned}$$

G — the anomalous magnetic moment, g is the gyromagnetic ratio and ω_G is the spin precession frequency.

Electric dipole moment

Spin dynamics simulation Methods to increase SCT

SrEDM

Purely Electrostatic Ring

$$\overrightarrow{\omega}_{G} = -\frac{e}{m_{0}\gamma c} \left\{ \left(\frac{1}{\gamma^{2} - 1} - G \right) \left(\overrightarrow{\beta} \times \overrightarrow{E} \right) \right\}.$$

Frozen Spin Method

Consider $\gamma = \gamma_{mag}$:

$$\frac{1}{\gamma_{mag}^2 - 1} - G = 0,$$

and $\omega_G = 0$. Proton "magic" energy is 232 MeV.

Electric dipole moment

Spin dynamics simulation Methods to increase SCT

SrEDM

Purely Electrostatic Ring

$$\overrightarrow{\omega}_{G} = -\frac{e}{m_{0}\gamma c}\left\{\left(\frac{1}{\gamma^{2}-1}-G\right)\left(\overrightarrow{\beta}\times\overrightarrow{E}\right)\right\}.$$

Frozen Spin Method

Consider $\gamma = \gamma_{mag}$:

$$\frac{1}{\gamma_{mag}^2 - 1} - G = 0,$$

and $\omega_G = 0$. Proton "magic" energy is 232 MeV.

First approach Non-linear mode

Spin oscillation of non-magic particle

If $\gamma \neq \gamma_{mag}$:

$$\overrightarrow{\omega}_{G} = -\frac{e}{m_{0}\gamma c} \left\{ -2G\frac{\Delta p}{p} \left(\overrightarrow{\beta} \times \overrightarrow{E} \right) \right\}.$$

Spin oscillation tune ν_{sz} satisfies:

$$S_z = S_{z_0} \cos 2\pi \nu_{sz} n, \ \nu_{sz} = \frac{e\overline{E}_x L_{cir}}{2\pi m_0 c^2 \gamma} G \frac{\Delta p}{p},$$

where \overline{E}_x is the average value of the deflecting electric field. If $(\Delta p/p)_{\text{max}} = 10^{-4}$, then $\nu_{sz} = 1.588 \cdot 10^{-4}$, or SCT = 6300 turns ≈ 1 msec.

First approach Non-linear mode

Spin oscillation of non-magic particle

If $\gamma \neq \gamma_{mag}$:

$$\overrightarrow{\omega}_{G} = -\frac{e}{m_{0}\gamma c} \left\{ -2G\frac{\Delta p}{p} \left(\overrightarrow{\beta} \times \overrightarrow{E} \right) \right\}.$$

Spin oscillation tune ν_{sz} satisfies:

$$S_z = S_{z_0} \cos 2\pi \nu_{sz} n, \ \nu_{sz} = \frac{e\overline{E}_x L_{cir}}{2\pi m_0 c^2 \gamma} G \frac{\Delta p}{p},$$

where \overline{E}_x is the average value of the deflecting electric field. If $(\Delta p/p)_{\text{max}} = 10^{-4}$, then $\nu_{sz} = 1.588 \cdot 10^{-4}$, or SCT = 6300 turns ≈ 1 msec.

Using of RF cavity to increase SCT

With $(\Delta p/p) = (\Delta p/p)_{\text{max}} \cos(\nu_z \varphi)$ equation describing the oscillation of the spin:

$$\frac{d^2 S_z}{d\varphi^2} + \left\{ \frac{e\overline{E}_x L_{cir}}{2\pi m_0 c^2 \gamma} 2G\left(\frac{\Delta p}{p}\right)_{\max} \cos\left(\nu_z \varphi\right) \right\}^2 S_z = 0.$$

The spin vibrates within a very narrow angle Φ_{\max} with longitudinal tune $\Phi \sim \Phi_{\max} \sin(\nu_z \varphi)$. The value $\Phi_{\max} \sim (\nu_{sz}/\nu_z)^2$ depends on the frequency ratio.

First approach Non-linear mode

Equilibrium energy level modulation

Figure: Phase trajectory in longtitudinal plane for initial coordinate x = 3mm, y = 0.

If $(\Delta p/p)_{\rm max} = 10^{-4}$ and the beam emmitance 2mm \cdot mrad, SCT will be \sim 500 sec.

The second order influence on spin

The spin tune in the second approach versus momentum:

$$\frac{d^2 S_z}{d\varphi^2} + \left\{ \frac{e\overline{E}_x L_{cir}}{2\pi m_0 c^2 \gamma} \left[-2G \frac{\Delta p}{p} + \frac{1+3\gamma^2}{\gamma^2} G\left(\frac{\Delta p}{p}\right)^2 \right] \right\}^2 S_z = 0$$

and

$$\nu_{sz} = \frac{e\overline{E}_{x}L_{cir}}{2\pi m_{0}c^{2}\gamma} \left\langle -2G\left(\frac{\Delta p}{p}\right)_{m}\cos\left(\nu_{z}\varphi\right) + \frac{1+3\gamma^{2}}{\gamma^{2}}G\left(\frac{\Delta p}{p}\right)_{m}^{2} \cdot \cos^{2}(\nu_{z}\varphi) \right\rangle = \frac{e\overline{E}_{x}L_{cir}}{2\pi m_{0}c^{2}\gamma} \frac{1+3\gamma^{2}}{\gamma^{2}} \frac{G}{2}\left(\frac{\Delta p}{p}\right)_{m}^{2}$$

Variation of spin tune

Assuming "magic" condition we define a variation of the spin tune through the finite differences up to second order:

$$\begin{split} \delta\nu_{S} &= \frac{e}{2\pi m_{0}c^{2}}\delta\left(\frac{1}{\gamma^{2}-1}-G\right)L_{\text{orb}}E_{x}\frac{1}{\gamma}\left[1+\frac{\delta L_{\text{orb}}}{L_{\text{orb}}}+\frac{\delta E_{x}}{E_{x}}+\gamma\delta\left(\frac{1}{\gamma}\right)\right],\\ \delta\left(\frac{1}{\gamma^{2}-1}-G\right) &= -2G\frac{\Delta p}{p}+\frac{1+3\gamma^{2}}{\gamma^{2}}G\left(\frac{\Delta p}{p}\right)^{2}+\ldots\\ \frac{\delta L_{\text{orb}}}{L_{\text{orb}}} &= \alpha_{1}\frac{\Delta p}{p}+\alpha_{2}\left(\frac{\Delta p}{p}\right)^{2}+\ldots\\ \frac{\delta E_{x}}{E_{x}} &= -k_{1}\frac{x}{R}+k_{2}\left(\frac{x}{R}\right)^{2}+\ldots\\ \gamma\delta\left(\frac{1}{\gamma}\right) &= -\frac{\gamma^{2}-1}{\gamma^{3}}\left(\frac{\Delta p}{p}\right)+\frac{(\gamma^{2}-1)^{2}}{2\gamma^{5}}\left(\frac{\Delta p}{p}\right)^{2}+\ldots \end{split}$$

Variation of spin tune

Assuming "magic" condition we define a variation of the spin tune through the finite differences up to second order:

$$\begin{split} \delta\nu_{S} &= \frac{e}{2\pi m_{0}c^{2}}\delta\left(\frac{1}{\gamma^{2}-1}-G\right)L_{\text{orb}}E_{x}\frac{1}{\gamma}\left[1+\frac{\delta L_{\text{orb}}}{L_{\text{orb}}}+\frac{\delta E_{x}}{E_{x}}+\gamma\delta\left(\frac{1}{\gamma}\right)\right],\\ \delta\left(\frac{1}{\gamma^{2}-1}-G\right) &= -2G\frac{\Delta p}{p}+\frac{1+3\gamma^{2}}{\gamma^{2}}G\left(\frac{\Delta p}{p}\right)^{2}+\ldots\\ \frac{\delta L_{\text{orb}}}{L_{\text{orb}}} &= \alpha_{1}\frac{\Delta p}{p}+\alpha_{2}\left(\frac{\Delta p}{p}\right)^{2}+\ldots\\ \frac{\delta E_{x}}{E_{x}} &= -k_{1}\frac{x}{R}+k_{2}\left(\frac{x}{R}\right)^{2}+\ldots\\ \gamma\delta\left(\frac{1}{\gamma}\right) &= -\frac{\gamma^{2}-1}{\gamma^{3}}\left(\frac{\Delta p}{p}\right)+\frac{(\gamma^{2}-1)^{2}}{2\gamma^{5}}\left(\frac{\Delta p}{p}\right)^{2}+\ldots\end{split}$$

Customly shaped deflectors Alternating spin aberration method

Variation of spin tune

Grouping the coefficients we have:

$$\delta\nu_{S} = \frac{eL_{\text{orb}}E_{x}}{2\pi m_{0}\gamma c^{2}}G\left\{-2\frac{\Delta p}{p} + \left(\frac{\Delta p}{p}\right)^{2}\left[\frac{5\gamma^{2}-1}{\gamma^{2}} - 2\alpha_{1} - \frac{1+3\gamma^{2}}{\gamma^{2}}k_{1}\frac{x}{R} + \frac{1+3\gamma^{2}}{\gamma^{2}}k_{2}\left(\frac{x}{R}\right)^{2}\right] + 2\frac{\Delta p}{p}\left[k_{1}\frac{x}{R} - k_{2}\left(\frac{x}{R}\right)^{2}\right]\right\}$$

Customly shaped deflectors Alternating spin aberration method

Variation of spin tune

Finally we have

$$\delta\nu_{S} = \frac{e\mathcal{L}_{\text{orb}}\mathcal{E}_{x}}{2\pi m_{0}\gamma c^{2}}G\left[F_{2}\left(\alpha_{1},k_{1},k_{2},\frac{x}{R}\right)\left(\frac{\Delta p}{p}\right)^{2} + 2F_{1}\left(k_{1},k_{2},\frac{x}{R}\right)\frac{\Delta p}{p}\right]$$

Or the spin tune equation can be represented in another form:

$$\delta\nu_{S} = \frac{eL_{\text{orb}}E_{x}}{2\pi m_{0}\gamma c^{2}}G\left[\tilde{F}_{2}\left(k_{2},\frac{\Delta p}{p}\right)\left(\frac{x}{R}\right)^{2} + 2\tilde{F}_{1}\left(k_{1},\frac{\Delta p}{p}\right)\frac{x}{R} + \tilde{F}_{0}\left(\alpha_{1},\frac{\Delta p}{p}\right)\right]$$

Customly shaped deflectors Alternating spin aberration method

Variation of spin tune

Finally we have

$$\delta\nu_{S} = \frac{eL_{\mathsf{orb}}E_{x}}{2\pi m_{0}\gamma c^{2}}G\left[F_{2}\left(\alpha_{1},k_{1},k_{2},\frac{x}{R}\right)\left(\frac{\Delta p}{p}\right)^{2} + 2F_{1}\left(k_{1},k_{2},\frac{x}{R}\right)\frac{\Delta p}{p}\right]$$

Or the spin tune equation can be represented in another form:

$$\delta\nu_{S} = \frac{eL_{\text{orb}}E_{x}}{2\pi m_{0}\gamma c^{2}}G\left[\tilde{F}_{2}\left(k_{2},\frac{\Delta p}{p}\right)\left(\frac{x}{R}\right)^{2} + 2\tilde{F}_{1}\left(k_{1},\frac{\Delta p}{p}\right)\frac{x}{R} + \tilde{F}_{0}\left(\alpha_{1},\frac{\Delta p}{p}\right)\right]$$

Customly shaped deflectors Alternating spin aberration method

Variation of spin tune

Figure: Two dimensional parabolic dependence of spin tune aberration on $\left(\frac{\Delta p}{p}\right)^2$ and $\left(\frac{x}{R}\right)^2$

Customly shaped deflectors Alternating spin aberration method

Variation of spin tune

Figure: Two dimensional parabolic dependence of spin tune aberration on $\left(\frac{\Delta p}{p}\right)^2$ and $\left(\frac{x}{R}\right)^2$

Cylindrical deflectors

We studied how the SCT depends on initial conditions in a structure without optimization with $k_1 = 1$, $k_2 = -1$. Figure shows the maximum spin deflection angle after 10^9 turns for different initial horizontal deviations.

Customly shaped deflectors Alternating spin aberration method

Cylindrical deflectors

The maximum angle for spin particles with initial x = 2mm can be up to 10 radians even at the momentum deviation $\Delta p/p = 10^{-4}$. It means that spin of the particle will make ≈ 1.5 turnovers during this time, or RMS spin deviation is about 2 radians, which corresponds to a SCT about 500 seconds.

Methods to increase SCT

Our goal is to achieve maximum flatness in the working range of the beam parameters.

• The first method is to fit the parameters of electrical deflector and ring lattice in order to reduce this dependence that is to choose the lattice with a compensation of the mutual influence of all parameters.

In other words, we need to make the surface maximally flat in the workspace of $(\Delta p/p)^2$ and $(x/R)^2$.

• The second method is to alternately change the deflector parameters and thereby to alternate spin rotation.

Methods to increase SCT

Our goal is to achieve maximum flatness in the working range of the beam parameters.

• The first method is to fit the parameters of electrical deflector and ring lattice in order to reduce this dependence that is to choose the lattice with a compensation of the mutual influence of all parameters.

In other words, we need to make the surface maximally flat in the workspace of $(\Delta p/p)^2$ and $(x/R)^2$.

• The second method is to alternately change the deflector parameters and thereby to alternate spin rotation.

Customly shaped deflectors Alternating spin aberration method

$k_1 = 0.94, \ k_2 = 0.96$

Figure: Maximum spin deflection angle after 10^9 turns versus x deviation

Maximum spread spin angle for the entire beam is less than 1 radian, or RMS deviation is about 0.2 radians, which corresponds to SCT about 5000 seconds.

Customly shaped deflectors Alternating spin aberration method

$k_1 = 0.94, \ k_2 = 0.96$

Figure: Maximum spin deflection angle after 10^9 turns versus x deviation

Maximum spread spin angle for the entire beam is less than 1 radian, or RMS deviation is about 0.2 radians, which corresponds to SCT about 5000 seconds.

Customly shaped deflectors Alternating spin aberration method

$k_1 = 0.94, \ k_2 = 0.96$

Problems for customly shaped deflectors:

- How to create plates with the required k_1 and k_2
- How to adjust optics to the required minimum SCT

Customly shaped deflectors Alternating spin aberration method

$k_1 = 0.94, \ k_2 = 0.96$

Problems for customly shaped deflectors:

- How to create plates with the required k_1 and k_2
- How to adjust optics to the required minimum SCT

Alternating spin aberration lattice

The ring is equipped with two types of deflector with $k_1 = \text{const}$, and $k_2 = k_{av} \pm \delta k$ changing from one deflector to another.

- In such optics is easier to achieve minimum spin aberration
- Raising the field strength between the plates in even deflectors and reducing in the odd deflectors it effectively adjust the required coefficients k_1 and k_2 . It allows to adjust the spin of aberration to minimum.

Alternating spin aberration lattice

The ring is equipped with two types of deflector with $k_1 = \text{const}$, and $k_2 = k_{av} \pm \delta k$ changing from one deflector to another.

- In such optics is easier to achieve minimum spin aberration
- Raising the field strength between the plates in even deflectors and reducing in the odd deflectors it effectively adjust the required coefficients k_1 and k_2 . It allows to adjust the spin of aberration to minimum.

Customly shaped deflectors Alternating spin aberration method

Alternating spin aberation lattice

Figure: Maximum spin deflection angle after 10^9 turns versus x deviation

Alternating spin aberration lattice

The ring is equipped with two types of deflector with $k_1 = \text{const}$, and $k_2 = k_{av} \pm \delta k$ changing from one deflector to another.

- In such optics is easier to achieve minimum spin aberration
- Raising the field strength between the plates in even deflectors and reducing in the odd deflectors it effectively adjust the required coefficients k_1 and k_2 . It allows to adjust the spin of aberration to minimum.

Customly shaped deflectors Alternating spin aberration method

Thanks

Thank you for your attention.

Denis Zyuzin, Yu. Senichev Spin Dynamics in Electrostatic Rings