The Fast Multipole Method in the Differential Algebra Framework for Space Charge Field Calculation

He Zhang, Martin Berz

Beam Theory and Dynamic Group, Department of Physics and Astronomy, Michigan State University

TM11

□ ▶ < □ ▶ < □

- Introduction of the fast multipole method (FMM)
- Multiple level fast multipole algorithm (MLFMA) in the differential algebra framework
- Numerical experiment results

・ 同 ト ・ ヨ ト ・ ヨ ト -

I. INTRODUCTION

He Zhang, Martin Berz The Fast Multipole Method in the Differential Algebra Fra

・ロン ・聞と ・聞と

æ

Most algorithm in beam community follows into two categories:

- Particle Particle Interaction (PPI): MAPRO2, SC3DELP, TOPKARK, SCHERM, Improved SCHERM,
- Particle in Cell (PIC): SCHEFF, PICNIC, GPT, IMPACT Z, WARP

We want to bring a new algorithm into the beam community:

• Fast Multipole Method (FMM), L.Greengard and V.Rokhlin, 1987

伺下 イヨト イヨト

- Include the charged region with a box, then cut the box into small boxes.
- For each box (and the charges inside), the whole region can be divided into the near region and the far region to the box.
- For each box (charges inside), the contribution from the boxes (charges) in its near region is calculated directly.
- For each box, its far region is where we can play tricks and gain efficiency!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- For any box, its field in its far region can be expressed by a multipole expansion. (box-particle relation, O(N log N).)
- Multipole expansion in source box can be converted into local expansion in observer box.(box-box relation, O(N).)
- For each box, the field contributed from the far region boxes (charges) can be calculated from the local expansion.
- For each box, the total field is the summation of the near region part and the far region part.

ee code

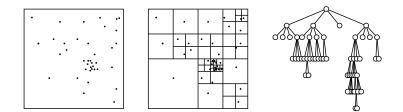
II. Multiple Level Fast Multipole Algorithm in DA framework

・ 同 ト ・ ヨ ト ・ ヨ ト

Single Level FMM

Two operations in COSY:

• Automatic Taylor expansion of a function


$$f(x + \delta x) = f(x) + f'(x)\delta x + \frac{1}{2!}f''(x)\delta x^{2} + \frac{1}{3!}f'''(x)\delta x^{3} + \dots$$

In COSY,
$$f(x + da(1)) = f(x) + f'(x)da(1) + \frac{1}{2!}f''(x)da(1)^{2} + \frac{1}{3!}f'''(x)da(1)^{3} + \dots$$

• Composition of two maps

$$G(x) = G(F) \circ F(x)$$
, or $G(x) = G(F(x))$

In COSY, it can can be done by the command POLVAL.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Define:

parent boxes, child boxes, childless boxes, colleagues

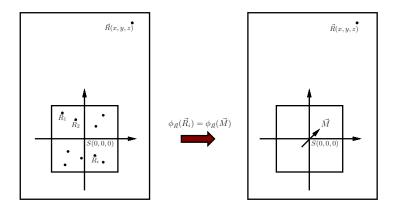
MLFMA

- List 1, (U_b) Empty if b is a parent box. All the childless boxes adjacent to b and b itself if b is a childless box.
- List 2, (V_b) All the child boxes of the colleagues of b's parent box that are well separated to b.
- List 3, (W_b) Empty if b is a parent box. All the descents descendants of b's colleagues that are not adjacent to b.
- List 4, (X_b) All the boxes whose list 3 contains b.

5 4		1	4		2	-2 - 1
0	4				2	2
5	2	2	1	1	1	2
	2	2	1	b	1	2
4			3 1 3 3 2	$\frac{1}{3}$ $\frac{1}$	1	
			4			

• List 5, (Y_b) All the other boxes. (All the boxes that are well separated from *b*'s parent.)

伺下 イヨト イヨト


Considering two boxes b and c, operations according to their relations.

Rela	tions	Operations		
$c \in U_b$	$b \in U_c$	$C_c ightarrow C_b, \ C_b ightarrow C_c$		
$c \in V_b$	$b \in V_c$	$M_c ightarrow L_b, \ M_b ightarrow L_c$		
$c \in W_b$	$b \in X_c$	$M_c ightarrow C_b, \ C_b ightarrow L_c$		
$c \in X_b$	$b \in W_c$	$C_c \rightarrow L_b, \ M_b \rightarrow C_c$		
$c \in Y_b$	$b \in Y_c$	Do nothing		

・ 同 ト ・ ヨ ト ・ ヨ ト

1

Multipole expansion from charges (for the childless boxes)

• • = • • = •

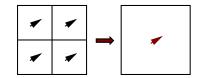
MLFMA

$$\phi = \sum_{i=1}^{n} \frac{q_i}{\sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}}$$

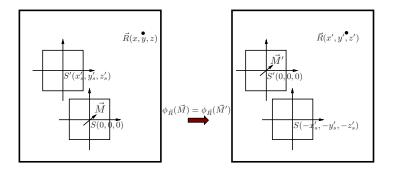
=
$$\sum_{i=1}^{n} \frac{d_r \cdot q_i}{\sqrt{1 + (x_i^2 + y_i^2 + z_i^2)d_r^2 - 2x_id_x - 2y_id_y - 2z_id_z}}$$

=
$$d_r \cdot \bar{\phi}_{c2m}$$

with


$$\begin{aligned} d_x &= \frac{x}{x^2 + y^2 + z^2}, \quad d_y &= \frac{y}{x^2 + y^2 + z^2}, \\ d_z &= \frac{z}{x^2 + y^2 + z^2}, \quad d_r &= \sqrt{d_x^2 + d_y^2 + d_z^2}, \\ \bar{\phi}_{c2m} &= \sum_{i=1}^n \left\{ q_i / \sqrt{1 + (x_i^2 + y_i^2 + z_i^2)d_r^2 - 2x_id_x - 2y_id_y - 2z_id_z} \right\}. \\ |\epsilon| &\leq C \cdot \left(\frac{a}{r}\right)^{p+1} \cdot \frac{1}{r-a}, \text{ where } C &= \sum_{i=1}^n |q_i| \text{ and } r_i \leq a \text{ for any } i. \end{aligned}$$

Error


イロト イヨト イヨト ノヨー クタウ

Multipole expansions for the parent boxes

Translate the position of a multipole expansion

MLFMA

In parent box frame, new DA variables are chosen as

$$\begin{aligned} & d'_{x} = \frac{x - x'_{o}}{r'^{2}} = \frac{x'}{r'^{2}}, \qquad d'_{y} = \frac{y - y'_{o}}{r'^{2}} = \frac{y'}{r'^{2}} \\ & d'_{z} = \frac{z - z'_{o}}{r'^{2}} = \frac{z'}{r'^{2}}, \end{aligned}$$

Relation between the old and new DA variables.

$$d_{x} = (d'_{x} + x'_{o} \cdot (d'^{2}_{x} + d'^{2}_{y} + d'^{2}_{z})) \cdot R,$$

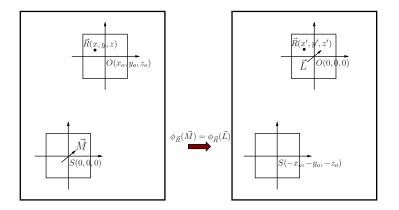
$$d_{y} = (d'_{y} + y'_{o} \cdot (d'^{2}_{x} + d'^{2}_{y} + d'^{2}_{z})) \cdot R,$$

$$d_{z} = (d'_{z} + z'_{o} \cdot (d'^{2}_{x} + d'^{2}_{y} + d'^{2}_{z})) \cdot R,$$

with

$$R = \frac{1}{1 + (x_o'^2 + y_o'^2 + z_o'^2)(d_x'^2 + d_y'^2 + d_z'^2) + 2x_o'd_x' + 2y_o'd_y' + 2z_o'd_z'}.$$

▲圖→ ▲ 国→ ▲ 国→


Э

In child box frame $\phi = d_r \cdot \overline{\phi}_{c2m}$ In the parent box frame $\phi' = d'_r \cdot \sqrt{R} \cdot \phi_{m2m} = d'_r \cdot \overline{\phi}_{m2m}$

with
$$d'_r = \sqrt{d'^2_x + d'^2_y + d'^2_z}$$
,
and $\phi_{m2m} = \bar{\phi}_{c2m} \circ M_{m2m}$,
where M_{c2m} is the map from r

where M_{m2m} is the map from the old DA variables into the new DA variables

Convert a multipole expansion into a local expansion

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

MLFMA

New DA variables in the observer frame

$$\begin{array}{rcl} d'_{x} & = & x - x'_{o} = x', \\ d'_{y} & = & y - y'_{o} = y', \\ d'_{z} & = & z - z'_{o} = z'. \end{array}$$

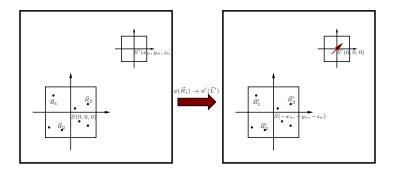
The relation between the new and the old DA variables

► < Ξ ►</p>

Э

< ∃ >

The multipole expansion in the source frame $\phi = d_r \cdot \overline{\phi}$ The local expansion in the observer frame


$$\phi = \sqrt{R} \cdot \bar{\phi}_{m2l} = \phi_{m2l}$$

where \sqrt{R} is converted from $d_r, \bar{\phi}_{m2l} = \bar{\phi} \circ M_{m2l}$, and M_{m2l} is the map between the DA variables. Error

$$|\epsilon| \leq C \cdot \left(\frac{a}{r'_o}\right)^{p+1} \cdot \frac{1}{r'_o - a} + C \cdot \left(\frac{r'}{b}\right)^{p+1} \cdot \frac{1}{b - r'}.$$

ゆ ト く ヨ ト く ヨ ト

Calculate the local expansion from charges.

In the observer (small box) frame, the new DA variables are

$$\begin{array}{rcl} d'_x & = & x - x'_o = x', \\ d'_y & = & y - y'_o = y', \\ d'_z & = & z - z'_o = z'. \end{array}$$

Then the local expansion is

$$\phi_{\rm L} = \sum_{i=1}^{n} \frac{q_i}{\sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2}}$$

=
$$\sum_{i=1}^{n} \frac{q_i}{\sqrt{(x'_o - x_i + d'_x)^2 + (y'_o - y_i + d'_y)^2 + (z'_o - z_i + d'_z)^2}}$$

Error

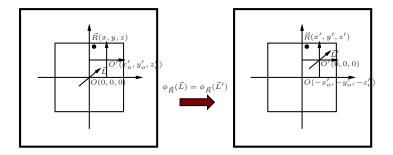
$$|\epsilon| \leq C \cdot \left(\frac{r'}{b}\right)^{p+1} \cdot \frac{1}{b-r'_{a}} + \frac{1}{b-r'_{a}} + \frac{1}{b} + \frac{1}{b-r'_{a}} + \frac{1}{b} + \frac{$$

MLFMA

Calculate the field from the multipole expansion. The multipole expansion is $\phi = d_r \cdot \overline{\phi}$, then

$$E_{x} = \{-\frac{\partial\bar{\phi}}{\partial d_{x}} \cdot (d_{r}^{2} - 2d_{x}^{2}) + 2\frac{\partial\bar{\phi}}{\partial d_{y}} \cdot d_{x}d_{y} + 2\frac{\partial\bar{\phi}}{\partial d_{z}} \cdot d_{x}d_{z} + \bar{\phi} \cdot d_{x}\} \cdot d_{r}$$

$$E_{y} = \{2\frac{\partial\bar{\phi}}{\partial d_{x}} \cdot d_{y}d_{x} - \frac{\partial\bar{\phi}}{\partial d_{y}}(d_{r}^{2} - 2d_{y}^{2}) + 2\frac{\partial\bar{\phi}}{\partial d_{z}} \cdot d_{y}d_{z} + \bar{\phi} \cdot d_{y}\} \cdot d_{r}$$


$$E_{z} = \{2\frac{\partial\bar{\phi}}{\partial d_{x}} \cdot d_{z}d_{x} + 2\frac{\partial\bar{\phi}}{\partial d_{y}} \cdot d_{z}d_{y} - \frac{\partial\bar{\phi}}{\partial d_{z}} \cdot (d_{r}^{2} - d_{z}^{2}) + \bar{\phi} \cdot d_{z}\} \cdot d_{r}$$

with

$$d_r = \sqrt{d_x^2 + d_y^2 + d_z^2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Translate a local expansion from a parent box to its child boxes

DA variables in the child box frame

$$\begin{array}{rcl} d_x & = & x'_o + d'_x, \\ d_y & = & y'_o + d'_y, \\ d_z & = & z'_o + d'_z. \end{array}$$

The local expansion in the parent box frame is ϕ_{m2l} . The local expansion in the child box frame is

$$\phi = \phi_{m2l} \circ M_{l2l} = \phi_{l2l},$$

where M_{l2l} is the map between the old and the new DA variables.

同下 イヨト イヨト

- Now we have the potential expressed as a polynomial of coordinates up to order *p*.
- Take the derivative of a coordinates to get the field expression in a polynomial of coordinates up to order p 1.
- Submit the charge positions into the expression to calculate the potential/field.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Description of the MLFMA

- Construct the hierarchical box structure (partial tree).
- Upwards: Calculate the multipole expansions for all the boxes.
- Downwards: For each box, check its the relation with other boxes and operate according to the above table. Then translate the local expansion from parent boxes to the child boxes.
- Calculate the potential/field, which comes from direct calculation and multipole or local expansions.

▲ 同 ▶ → 目 ▶ → 目 ▶ →

MLFMA

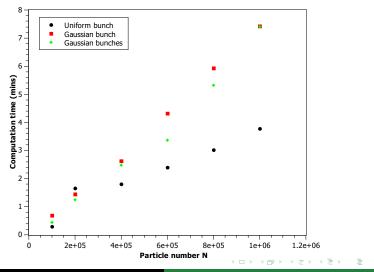
DA representation

$$f(x + da(1)) \to f(x) + f'(x)da(1) + \frac{1}{2!}f''(x)da(1)^2 + \dots + \frac{1}{n!}f^n(x)da(1)^n$$
TM representation
$$f(x + tm(1)) \to (f(x) + f'(x)tm(1) + \frac{1}{2!}f''(x)tm(1)^2 + \dots + \frac{1}{n!}f^n(x)tm(1)^n,])$$

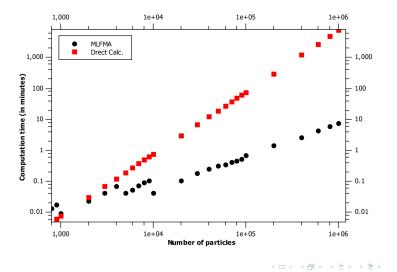
$$\to (TM_f, I)$$
with
$$f(x) - TM_f(x) \in I$$

Expansions

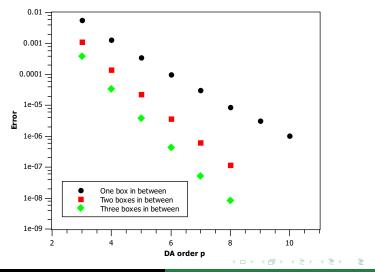
$$\vec{M} = d_r \cdot \phi_{\mathrm{da}} \quad \rightarrow \quad \vec{M} = d_r \cdot (\phi_{\mathrm{tm}}, I)$$
$$\vec{L} = \phi_{\mathrm{da}} \quad \rightarrow \quad \vec{L} = (\phi_{\mathrm{tm}}, I)$$

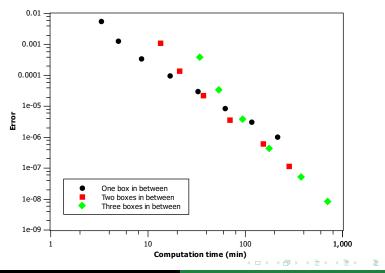

<ロト < 団 > < 臣 > < 臣 > -

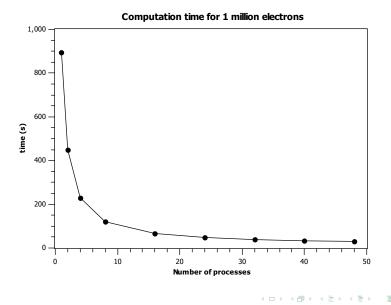
Ξ.


III. Numerical experiments

▶ < E > < E >


Computation time for different charge distribution


Compare the MLFMA with direct calculation



Accuracy increases with DA order

Accuracy and computation time

Summary

- Combined the FMM with DA for a new algorithm, sacles with O(N).
- MLFMA works for arbitrary charge distribution.
- Parrallel MLFMA, 10 million MSU HPC np=90, p=5, t=167s.

Future work

- Keep polishing the algorithm.
- Boundary conditions.
- TM version for rigorous calculation.
- Map method.
- Simulation.

THANK YOU!

He Zhang, Martin Berz The Fast Multipole Method in the Differential Algebra Fra

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3