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Background



Abel differential equation

y′ = p(x)y2 +q(x)y3 (∗)

I x ∈ [a,b]
I p,q are:

- real, complex polynomials of bounded degrees
- trigonometric, Laurent polynomials of bounded degrees
- piecewise-linear functions ...



Smale-Pugh problem

y′ = p(x)y2 +q(x)y3 (∗)

Find a uniform (in p,q in a given class) upper bound on the
number of closed periodic solutions y = y(x) such that y(a) =
y(b).



Center-Focus problem

y′ = p(x)y2 +q(x)y3 (∗)

Find conditions on p,q (in a given class) for all solutions to be
periodic, i.e. for (∗) to have a center.



Relation to the classical problems





dx
d t

=−y+F (x,y)
dy
d t

= x+G(x,y)
(∗∗)

⇓ Cherkas transform

y′ = p(x)y2 +q(x)y3 (∗)
Hilbert’s 16th problem, second part
Given a polynomial vector field (∗∗) of a given degree find a
uniform (in F,G) upper bound for the number of isolated
closed trajectories (limit cycles).

Poincaré’s Center-Focus problem
Given a polynomial vector field (∗∗) of a given degree find
conditions for all the trajectories near the origin to be closed.



Why Abel equation?

1. Closely related to the corresponding classical problems.

2. (Arguably) the simplest case where these problems remain
non-trivial.

3. A lot of encouraging results on both the above problems
have been obtained, starting with Lins Neto, Lloyd, Alwash ...

4. Powerful (and partially new in this context)
algebraic-analytic tools are applicable.



Analytic - algebraic tools

- Classical and generalized moments, iterated integrals

- Composition algebra

- Algebraic geometry

- Analytic continuation (the main topic of this talk),
i.e. reading out the global properties of f (z) = ∑∞

k=0 akzk from
its Taylor coefficients ak.



New tools: a short review



First return map

y′ = p(x)y2 +q(x)y3 (∗)

G(p,q,a,b,ya) = ya +
∞

∑
k=2

vk (p,q,a,b)yk
a

Smale-Pugh: count zeros of G(y)− y.
Center-Focus: give conditions for vk ≡ 0 for k = 2,3, . . . ,
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Inverse Poincaré map

ya = G−1 (yx) = yx +
∞

∑
k=2

ψk (p,q,x)yk
x



Poincaré coefficients

ya = G−1 (yx) = yx +
∞

∑
k=2

ψk (p,q,x)yk
x

y′ = p(x)y2 +q(x)y3 (∗)





ψ0 (x) ≡ 0
ψ1 (x) ≡ 1
ψn (0) = 0
ψ ′

n (x) =−(n−1)p(x)ψn−1 (x)− (n−2)q(x)ψn−2 (x)

ψn (x) = ∑α
∫

p
∫

q · · ·
∫

p · · ·
∫

q
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Composition Algebra

y′ = p(x)y2 +q(x)y3 (∗)

Composition condition (Alwash-Lloyd, ...)
P =

∫
p and Q =

∫
q are said to satisfy Composition condition

on [a,b] if ∃W (x) with W (a) = W (b) and P̃(x) , Q̃(x) such
that

P(x) = P̃(W (x)) , Q(x) = Q̃(W (x))

Theorem
Composition =⇒ Center.

Conjecture
For p, q - polynomials Composition ⇐= Center.
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Current status of Composition conjecture

1. True for small degrees of p and q (Alwash, Lloyd, Blinov,
...,)

2. True for some specific families (Alwash, Llibre, Zoladek,
Briskin-Francoise-Yomdin, Brudnyi, ...,)

3. True in rather general situations “up to small correction”
(see below)

4. A general result strongly supporting the conjecture has
been recently announced by H. Zoladek



Iterated integrals

Poincaré coefficients are linear combinations of iterated
integrals

ψn (x) = ∑α
∫

p
∫

q · · ·
∫

p · · ·
∫

q

Recently a classical Chen’s theory of iterated integrals has
been applied to the study of the Center conditions for Abel
equation.

In particular, the notions of the “universal center” and the
“tree composition condition” have been studied (A. Brudnyi,
Gine-Grau-Llibre, Brudnyi - Yomdin ).



Generalized Moments

y′ = p(x)y2 + εq(x)y3

G−1 (yb,ε) = yb +
∞

∑
k=2

ψk (p,q,b,ε)yk
b

Theorem

J (y) =
d

dε
G−1 (y,ε)

∣∣
ε=0 =

∞

∑
k=3

mk (p,q)yk

where the coefficients mk are the generalized moments

mk =
∫ b

a
Pk (x)q(x)dx, P =

∫
p
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Infinitesimal Smale-Pugh and C-F problems

Infinitesimal Smale-Pugh problem
Count the number of zeros of J (y).

The answer can be obtained by many methods. In particular,
the “Petrov trick” works (L. Gavrilov), as well as the Taylor
domination method described below.

Infinitesimal Center-Focus problem
Give conditions on p,q,a,b for mk ≡ 0, k = 0,1, ...

For p,q polynomials - completely solved by Pakovich and
Muzichuk. Difficult result, but the answer is “close to
Composition Condition”.



Algebraic Geometry applied to C-F

y′ = p(x)y2 +q(x)y3 (∗)

P - projective completion of the space of coefficients p and q,
H ⊂ P the infinite hyperplane.

Theorem
Center equations Ψk = 0 at infinity (i.e. restricted to H)
reduce to the moment equations mk = 0.

Pakovich results + some Algebraic Geometry (study of
singularities near infinity) =⇒

Composition set is a “skeleton” of the Center set



A sample specific result

Theorem ([Briskin et al.(2010)])
Assume

1. q(x) with degq = d is fixed;
2. p = αmxm +αm+1xm+1 + · · ·+αnxn;
3. [m+1,n+1] does not contain nontrivial multiples of

prime divisors of d +1.

If Abel equation (∗) has a center then either:
1. p,q satisfy Composition Condition; or
2. p equals one of the finite number of polynomials p1, . . .ps

(depending on q).



Analytic continuation



Goal

G−1 (p,q,y)− y =
∞

∑
k=2

ψk (p,q)yk
(

ψk = ∑α
∫

p
∫

q · · ·
∫

p · · ·
∫

q
)

I (y) =
∞

∑
k=0

mk (p,q)yk
(

mk =
∫ b

a
Pk (x)q(x)dx

)

Ultimate Goal
Estimate the number of zeros of the function G−1(y)− y,
based on the properties of its Taylor coefficients.

Intermediate goal
The same for the function I (y).



Bernstein classes

Definition
f analytic in DR and continuous in DR belongs to the first
Bernstein class B1

K,α,R if

maxDR |f |
maxDαR |f |

≤ K

Theorem ([Van der Poorten(1977)])
The number of zeros of f ∈ B1

K,α,R in DαR is at most

logK

log 1+α2

2α
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Bernstein classes

Definition
f (x) = ∑∞

i=0 aixi belongs to the Bernstein class B2
C,N,R if

|ak|Rk≤C max
i=0,...,N

|ai|Ri ((N,R,C)- Taylor domination property)

Theorem (Biernacki, 1932)
If f is p-valent in DR, i.e. the number of solutions in DR of
f (z) = c for any c does not exceed p, then for k > p

|ak|Rk ≤ (Ak/p)2p max
i=0,...,p

|ai|Ri.

For p = 1,a0 = 0,R = 1 |ak| ≤ k|a1| (De Branges)
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Bernstein classes

Partial inverse:

Theorem (See, e.g. [Roytwarf and Yomdin(1997)])
If f ∈ B2

C,N,R then for every α < 1 and R′ < R, f ∈ B1
K,α,R′ with

K = K
(

C,α, R′
R ,N

)
. If f ∈ B1 then it belongs also to B2 with

appropriate N,C,R.

Corollary
Let f ∈ B2

C,N,R. Then for any R′ < R, f has at most

M = M
(

N, R′
R ,C

)
zeros in DR′ .

Problem: bound zeroes beyond the disk of convergence.



Uniform Taylor domination

fλ (z) =
∞

∑
k=0

ak (λ )zk, ak (λ ) ∈ C [λ ] , λ ∈ Cn

For our original problems λ = (p,q,a,b) comprises the set of
the coefficients of p,q and the end-points a,b. The position of
singularities (and hence the radius of convergence R(λ )) of
G−1 and of I depend on λ .

Uniform Taylor domination
Characterize families fλ (z) for which

|ak(λ )|Rk(λ )≤ C max
i=0,...,N

|ai(λ )|Ri(λ )

with N and C not depending on λ .



Uniform Taylor domination

Uniform Taylor domination implies a uniform in λ bound on
zeroes in any disk DαR(λ ) for any fixed α < 1.

Hope (at present works only in toy examples):
If we control the singularities (for example, for solutions of
linear polynomial ODE’s) we can cover all the plane with a
finite number of such concentric disks, and so to get a global
bound on zeroes uniform in λ .



Analytic continuation
Recurrence relations and Taylor domination
Bautin’s approach to Taylor domination
Taylor domination and Remez inequalities



Finite determinacy

|ak|Rk≤C max
i=0,...,N

|ai|Ri ((N,R,C)- Taylor domination property)

This is an “infinite” condition: have to use ALL the Taylor
coefficients. But if these coefficients are produced by a
recurrence relation with a finite number of parameters, the
problem becomes “finitely determined”.



Basic recurrence relations

1. Rational functions
f (x) = ∑∞

k=0 akzk = P(z)
Q(z) , Q(z) = zd + c1zd−1 + · · ·+ cd. Then

for each k > degP we have

ak =
d

∑
j=1

cjak−j.

2. Solutions of linear ODE’s with polynomial coefficients
Q(z)yr = P1(z)yr−1 + · · ·+Pr(z)y, Q(z) as above. Then for
each k we have

ak =
d

∑
j=1

[cj +Sj(
1
k
)]ak−j.



Basic recurrence relations

3. Finally, for the Poincaré function we have
ψ ′

n(x) =−(n−1)p(x)ψn−1(x)− (n−2)q(x)ψn−2(x).

For the first case (Rational functions) - there is (d,C(d))
Taylor domination (“Turan’s lemma”).

For the second case (solutions of Fuchsian ODE’s) - there is
(N,C(d)) Taylor domination, where
N = C1(d)max(‖P1‖, . . . ,‖Pr‖). (Very recent result).

For the third case ???



Analytic continuation
Recurrence relations and Taylor domination
Bautin’s approach to Taylor domination
Taylor domination and Remez inequalities



Generalized Bautin’s method

fλ (x) =
∞

∑
k=0

ak (λ )xk, ak (λ ) ∈ C [λ ] ,λ ∈ Cn

Theorem (Bautin, 1939)
The Bautin ideal {a0 (λ ) , . . . ,aN (λ ) , . . .} stabilizes at index d
=⇒ for each λ , fλ (x) has at most d zeros in a small
neighborhood of the origin.

Question
Can one explicitly estimate the size of the neighborhood via
Taylor domination?
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Generalized Bautin’s method

fλ (x) =
∞

∑
k=0

ak (λ )xk, ak (λ ) ∈ C [λ ]

k > d ⇒ ak (λ ) =
d

∑
i=0

ϕk
i (λ )ai (λ )

I Estimate ‖ϕk
i ‖ in terms of ‖ak‖ =⇒ Taylor domination.

I Was done in [Francoise and Yomdin(1997)] based on
Hironaka’s division theorem.

I Problem: non-uniform! While the radius of convergence
R(λ ) is ∼ C

|λ |K1
, we can bound zeros only in DR′(λ ) with

R′ ∼ 1
|λ |K2

, K2 > K1.



Example

Iλ (y) =
∞

∑
k=0

mk (λ )yk
(

mk (λ ) =
∫ b

a
Pk (x)q(x)dx

)

Theorem ([Briskin and Yomdin(2005)])
Let P(x) and the degree d of q be fixed, and let R be the
radius of convergence of Iλ (y). Let N (P,d,a,b) be the Bautin
index. Then

j > N =⇒ mj =
N

∑
i=0

cj
imi, s.t.

∣∣∣cj
i

∣∣∣≤ C (P,d,a,b)
1
Rj

Corollary
In this case, for any R1 < R, Iλ (y) has at most
Z = Z

(
C,N, R1

R ,
)
zeros in DR1 . (But C depends on P!)
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Open questions

fλ (z) =
∞

∑
k=0

ak (λ )zk, ak (λ ) ∈ C [λ ]

I Identify “natural” families fλ (z) for which the global
analytic continuation is feasible

I Find the radius of convergence R(λ )
I Find positions and types of singularities
I Give conditions for a uniform Taylor domination

Conjecture
The answers can be given in “algebraic terms”, through certain
“Bautin-type” ideals (see [Yomdin(1998)] for some very initial
results).



Analytic continuation
Recurrence relations and Taylor domination
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Taylor domination and Remez inequalities



Remez-type inequalities

Theorem (Remez, 1936)
Let p(x) be a real polynomial of degree d, I ⊂ R an interval
and B⊆ I a set of positive measure. Then

max
I
|p(x)| ≤

(
4µ (I)
µ (B)

)d

max
B
|p(x)|

Theorem (Turan-Nazarov inequality)
Let p(x) = ∑d

i=1 ai eλix with λi ∈ C. Then

max
I
|p(x)| ≤ eµ(I)maxi |ℜλi|

(
c ·µ (I)
µ (B)

)d−1

max
B
|p(x)|

Both can be extended to discrete and finite sets B
([Yomdin(2011), Friedland and Yomdin(2011)]).
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Main result

mk (α) =
∫ α

0
xkf (x)dx

Theorem
Assume that f (x) has at most d sign changes and satisfies

max
[0,α ]

|f (x)| ≤ K
(

α
µ (Ω)

)d

max
Ω
|f (x)|

for any measurable Ω⊂ [0,α]. Then

max
[0,α]

|f (x)| ≤ 1
α

K ·C (d) max
i=0,...,d

|mi|α−i



Main result

max
[0,α]

|f (x)| ≤ 1
α

K ·C1 (d) max
i=0,...,d

|mi|α−i

Integrating with xk we get immediately

mk (α) =
∫ α

0
xkf (x)dx≤

∫ α

0
xk dx

1
α

K ·C1 (d) max
i=0,...,d

|mi|α−i =

= αkC(K,d) max
i=0,...,d

|mi|α−i.

Corollary
The sequence {mk} has the domination property with
R = α−1, N = d and C depending only on K and d.



Main result

Given a family fβ (x) with the same number of sign changes d
and the same Remez constant K for each β , put λ = (α,β ).

gλ (y) =
∞

∑
k=0

mk (λ )yk, mk (λ ) =
∫ α

0
xkfβ (x)dx

(The radius of convergence R = α−1).

Theorem
The family gλ (y) has the uniform Taylor domination property
with R = α−1, N = d and C depending only on d,K.

Reformulation
Number of zeros of gλ inside its disk of convergence can be
uniformly in λ bounded in terms of d,K.



Another point of view

max
[0,λ ]

|f (x)| ≤ 1
λ

K ·C (d) max
i=0,...,d

|mi|λ−i

Mf (s) =
∫ b

a
xsf (x)dx Mellin transform

Corollary
The Mellin transform satisfies a “discrete Remez-type
inequality”

∣∣Mf (s)
∣∣≤ bs ·C∗ ·K · max

si∈{0,1,...,d}
∣∣Mf (si)

∣∣



Proof idea

I Build an auxiliary polynomial P(x) with the same sign
pattern as f (x)

I Consider the integral
∫

Pf
I

∫
Pf ≤ C1 ·λ d ·max0,...,d |mi|Ri

I Find a “big enough” Ω⊂ [0,λ ] on which f is small

I Apply Remez inequality for f



Infinitesimal Smale-Pugh

Iλ (y) =
∞

∑
k=0

mk (λ )yk
(

mk (λ ) =
∫ λ

0
Pk (x)q(x)dx

)

mk (λ ) =
∫

γ
sk−1g(s)ds

g(s) = ∑
branches of P−1

q
(
P−1 (s)

)
semi-algebraic, no poles

Fact
# of sign changes of g(s)≤ d = d (degP,degq).

Conjecture
g(s) satisfies Remez-type inequality with K depending only on
degP,degq (OK if g is a polynomial).
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