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Invariant Sets and Manifolds in ODEs

Vector field F : Rn → Rn has hyperbolic critical point at origin

Φt(x) is flow of F such that Φ0(x) = x .

Stable set: Ms ⊂ Rn

∀x ∈ Ms lim
t→∞

Φt(x) = 0.

Unstable set: Mu ⊂ Rn

∀x ∈ Mu lim
t→∞

Φ−t(x) = 0.
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Invariant Sets and Manifolds in ODEs

Invariant set of ODE is identical to invariant set of time 1 map
Φ1(x).

Stable set: Ms ⊂ Rn

∀x ∈ Ms lim
k→∞

Φk
1(x) = Φk(x) = 0.

Unstable set: Mu ⊂ Rn

∀x ∈ Mu lim
k→∞

Φk
−1(x) = Φ−k(x) = 0.
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Theorem (Invariant Manifold Theorem)

If F (0) = 0, and

DF (0) =

 λ1 0
. . .

0 λn


with λ1, . . . , λk > 0 and λk+1, . . . , λn < 0 then the invariant sets
are manifolds of dimension k and n − k.
These manifolds are tangent to the linear space spanned by
x1, . . . , xk and xk+1, . . . , xn at the origin.
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Goal

Goal

We want to obtain sharp enclosures of the invariant manifolds.

What exactly does that mean?
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1 local manifold must not intersect ”sides”

2 local manifold must intersect all ”ends”
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Goal

Goal

We want to obtain sharp enclosures of the invariant manifolds.

General recipe:

1 Construct polynomial approximation of invariant manifold

2 Add thin, heuristic error bound to approximation

3 Verify that no manifold sticks out at the sides

4 Verify that it does come out at the ends
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Invariant Manifold Approximation

Polynomial approximation is obtained in an order-by-order
construction:

1 Taylor expansion of flow around 0

2 Insert small time t0 ⇒ time t0 map Φt0(x)

3 Construct invariant polynomial γ(s) : Rk → Rn, mapping
polynomial P : Rk → Rk

Condition:
Φt0(γ(s)) = γ(P(s))

P is chosen such that γ on stable/unstable subspace Rk is
identity.

All steps non-verified, can do whatever you want (almost).
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Unstable Manifold Verification for 2D manifold in 3D

Unstable manifold in x-y plane:
Thicken in z (stable) direction by ε > 0 (typically ε ≈ 10−12)
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Γ(x , y , t) =

 x
y

γz(x , y) + εt


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Unstable Manifold Verification for 2D manifold in 3D
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Theorem

Local unstable manifold W u
loc does not intersect sides of Γ if F on

sides points inwards.

For stable manifold just use −F
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Unstable Manifold Verification for 2D manifold in 3D

Does manifold leave Γ?
Need different enclosure C to show this.
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Thickness of red ends ≈ 0.1 ⇒ very rough enclosure

Contains open neighborhood of local invariant manifold
around origin
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Unstable Manifold Verification for 2D manifold in 3D

Want to show: Every point in C\{0} leaves C .
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Can’t use Γ, because Γ contains stable manifold!

⇒ Must avoid local stable manifold in C .
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Unstable Manifold Verification for 2D manifold in 3D
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If

1 F points into C on sides (blue)

2 F points out of C on ends (red)

3 F has positive radial component in x-y plane in C\{0}:

Fx(~p) · px + Fy (~p) · py > 0 ∀~p ∈ C\{0}

then every point in C\{0} leaves C through the ends.
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Unstable Manifold Verification for 2D manifold in 3D

Numerical Problem

Since F (0) = 0 is continuous

Fx(~p) · px + Fy (~p) · py → 0

as ~p → 0.
Simple bounding not possible to show Fx(~p) · px + Fy (~p) · py > 0.
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Unstable Manifold Verification for 2D manifold in 3D

C (s, t1, t2) = s ·

 1
t1
ϑt2

 �
�

�
�

F (C (s, t1, t2)) = F

s ·

 1
t1
ϑt2


=

∫ s

0

DF

ŝ ·

 1
t1
ϑt2

 ·

 1
t1
ϑt2

 dŝ + F (C (0, t1, t2))︸ ︷︷ ︸
=0
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Unstable Manifold Verification for 2D manifold in 3D

For s 6= 0:

1

s
F (C (s, t1, t2)) =

1

s

∫ s

0

DF

ŝ ·

 1
t1
ϑt2

 ·

 1
t1
ϑt2

 dŝ

≈ 1

s

∫ s

0

DF (0) ·

 1
t1
ϑt2

 dŝ

≈ 1

s

∫ s

0

 λ1

t1λ2

ϑt2λ3

 dŝ

≈

 λ1

t1λ2

ϑt2λ3


Can be evaluated directly in Taylor Model arithmetic!

(The exact expression, not the approximation!)
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Unstable Manifold Verification for 2D manifold in 3D

C (s, t1, t2) = s ·

 1
t1
ϑt2

 �
�

�
�

For s 6= 0:

Fx(~p) · px + Fy (~p) · py
= Fx(C (s, t1, t2)) · Cx(s, t1, t2) + Fy (C (s, t1, t2)) · Cy (s, t1, t2)

= s2
(
1

s
Fx(C (s, t1, t2)) +

1

s
Fy (C (s, t1, t2)) · t1

)
︸ ︷︷ ︸

>K>0

≈ s2
(
λ1 + λ2 · t21

)
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The Lorenz Equation

The Lorenz vector field F is given by the equations

ẋ1 = σ(x2 − x1)

ẋ2 = (ρ− x3)x1 − x2

ẋ3 = x1x2 − βx3

where ρ, σ, β are parameters. In the classical Lorenz equations,
ρ = 28, σ = 10, β = 8/3.
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The Lorenz Equation

At the origin, the Lorenz System has a hyperbolic critical point
with eigenvalues

λ1 ≈ 11.8

λ2 ≈ −22.8

λ3(= β = 8/3) ≈ −2.67

Big difference between λ2 and λ3!
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Initial Manifold Enclosures

Initial Manifold Enclosures

Unstable
Stable

-1.5 -1 -0.5  0  0.5  1  1.5-2.5 -1.5 -0.5
 0.5 1.5

 2.5

-20
-15
-10
-5
 0
 5

 10
 15
 20

η1 = η2 = 1, η3 = 20
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Initial Stable Manifold

η2\η3 1 5 10 15 20

1 5 · 10−14 1 · 10−13 1 · 10−12 1 · 10−9 1 · 10−7

0.5 1 · 10−14 5 · 10−14 1 · 10−13 5 · 10−11 5 · 10−8

0.2 5 · 10−15 1 · 10−14 5 · 10−14 1 · 10−11 6 · 10−9

Table: Thickening of the manifold enclosure (in diagonalized coordinates)
for which verification is successful for various values of η2 and η3.
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Unstable Manifold

Time t = 1
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Unstable Manifold

Time t = 5
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Unstable Manifold

Time t = 10
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Unstable Manifold

Time t = 15
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Unstable Manifold

Time t = 20
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Unstable Manifold

Time t = 28
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Unstable Manifold

t 1 2 3 4 5

Approximate Length 126 144 166 189 214

Maximum Error 2 · 10−11 3 · 10−11 5 · 10−11 1 · 10−10 2 · 10−10

# of Taylor Models 44 72 106 140 175

t 10 15 20 25 28

Approximate Length 390 710 1156 1592 1879

Maximum Error 2 · 10−9 7 · 10−8 5 · 10−5 7 · 10−4 2 · 10−2

# of Taylor Models 353 537 718 1091 9196

Table: Approximate length, maximum error, and number of Taylor
Models covering the unstable manifold after propagating for the given
time t.

Alexander Wittig Invariant Manifold Enclosures



Invariant Manifolds
Lorenz System

Manifold Generation
Manifold Iteration

Stable Manifold

Time t = 0.2
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Stable Manifold

Time t = 0.3
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Stable Manifold

Time t = 0.4
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Stable Manifold

Time t = 0.5
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Stable Manifold

Time t = 0.6
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Stable Manifold

t 0.2 0.3 0.4 0.5 0.6

Approximate Area A 2360 6307 8112 10192 14862

Maximum Error emax 3.7 · 10−7 3.7 · 10−7 3.7 · 10−7 1.5 · 10−6 7.9 · 10−6

Volume V 8.7 · 10−4 2.3 · 10−3 3.0 · 10−3 1.5 · 10−2 1.2 · 10−1

# of Taylor Models 70 145 233 473 2469

# of Intervals 1.7 · 1016 4.6 · 1016 5.9 · 1016 4.5 · 1015 2.4 · 1014

Table: Approximate area, maximum error, volume, and number of Taylor
Models covering the integrated half of the stable manifold within the box
B = [−50, 50]× [−50, 50]× [−20, 90] after propagating for the given
time t backwards through the Lorenz.
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Both Manifolds

Accuracy: 5 · 10−5

Alexander Wittig Invariant Manifold Enclosures



Invariant Manifolds
Lorenz System

Manifold Generation
Manifold Iteration

Both Manifolds

Accuracy: 5 · 10−5
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Thank You.

Thank you for your attention.

Questions?
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