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• Increase of interplanetary/deep space/sample and return exploration missions

- Long duration
- Large heliocentric/geocentric distances
- Unknown and hostile environments
- Complex dynamics

➡ Strong need to study the navigation problem in space

A navigation system is a state estimation filter that, starting from sensors 
measurements, can estimate the spacecraft state variables

- The state of a space vehicle can include a large number of parameters, first of 
  all satellite orbital position and velocity 
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yk = h(xk, tk) + vk

xk+1 = f(xk, tk) + wk

• The orbit model can be written in the following general equation form:
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• The on-board navigation system is made up by two main steps:

1. PREDICTION STEP
Use of the dynamics equation to predict the state of the vehicle in a future time

2. CORRECTION STEP
Use the measurements from the on-board sensors (autonomous navigation) or from the 
ground station (ground-based navigation) to correct the predicted state

yk = h(xk, tk) + vk

xk+1 = f(xk, tk) + wk

• The orbit model can be written in the following general equation form:
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• Autonomous navigation system requirements
- Real time estimation
- High accuracy
- Need to fully account for nonlinearities in the system
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• Present day orbit uncertainty propagation and filtering
- Linearized models
- Full nonlinear Monte Carlo simulations
- Higher order Taylor series approaches

➡ Differential Algebra can provide powerful tools to face the problem

- Possibility to consider nonlinearities
- Strong reduction of computational costs
- Opportunity to directly evaluate the impact of changes in some physical 
   variables on the estimated state 

‣ Impact on the estimated state of errors in the initial state

‣ Impact on the estimated state of measurement noises
   (sensors architecture definition)

LOW ACCURACY

CONSISTENT 
COMPUTATIONAL COST



[xk] = xk +M(δx0, δα, δβ, δγ, . . .)

Differential Algebra
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- Any integration scheme is based on algebraic operations, involving the 
  evaluation of    at several integration points

• Given any function    of    variables, DA delivers its Taylor expansion up to the 
   arbitrary order

f v
n

f

x0 [x0] = x0 + δx0➡ Replacing      with                             and carrying out all the operations 
     within the DA framework  à  Taylor expansion of the ODE flow

 à Pointwise integration can be replaced by fast evaluation of polynomials 

 à The derivatives of the function up to the order of the Taylor expansions 
     are available
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 Nonlinear uncertainty propagation 

 Nonlinear filtering
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• Consider the spacecraft dynamics governed by the equations of motion:
�

ẋi = fi[t,x(t)]
xi(t0) = x0

i

Park R. and Scheeres D., “Nonlinear mapping of Gaussian state covariance and orbit uncertainties”, AAS Paper 05-170, January, 2005. 
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• Consider the spacecraft dynamics governed by the equations of motion:
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ẋi = fi[t,x(t)]
xi(t0) = x0
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δxi(t) =
m�

p=1

Φi,k1...kpδx0
k1

. . . δx0
kp

• Performing a Taylor series expansion of the deviation of the current state from the 
nominal trajectory in terms of the initial deviation:
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ẋi = fi[t,x(t)]
xi(t0) = x0

i

δxi(t) =
m�

p=1

Φi,k1...kpδx0
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. . . δx0
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• Performing a Taylor series expansion of the deviation of the current state from the 
nominal trajectory in terms of the initial deviation:

δmi(t) =
m�

p=1

1
p!

Φi,k1...kpE[δx0
k1

. . . δx0
kp

]

Pij(t) =
m�

p=1

m�

q=1

1
p!q!

Φi,k1...kpΦj,γ1...γqE[δx0
k1

. . . δx0
kp

δx0
γ1

. . . δx0
γq

]

• The current mean and covariance matrix can be written as:

Park R. and Scheeres D., “Nonlinear mapping of Gaussian state covariance and orbit uncertainties”, AAS Paper 05-170, January, 2005. 
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Φ̇i,a = f∗i,αΦα,a

Φ̇i,ab = f∗i,αΦα,ab + f∗i,αβΦα,aΦβ,b

Φ̇i,abc = f∗i,αΦα,abc + f∗i,αβ(Φα,aΦβ,bc + Φα,abΦβ,c + Φα,acΦβ,b) + f∗i,αβγΦα,aΦβ,bΦγ,c

. . .
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Φ̇i,a = f∗i,αΦα,a

Φ̇i,ab = f∗i,αΦα,ab + f∗i,αβΦα,aΦβ,b

Φ̇i,abc = f∗i,αΦα,abc + f∗i,αβ(Φα,aΦβ,bc + Φα,abΦβ,c + Φα,acΦβ,b) + f∗i,αβγΦα,aΦβ,bΦγ,c

. . .

• The higher order derivatives can be directly extracted from the expansion map

➡ The integration of this system is substituted with ONE integration in DA

➡ More flexible approach

➡ Very general approach (applying nonlinear transformations to mean and 

     covariance estimates)
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δmi(t) =
m�

p=1

1
p!

Φi,k1...kpE[δx0
k1

. . .x0
kp

]

Pij(t) =
m�

p=1

m�

q=1

1
p!q!

Φi,k1...kpΦj,γ1...γqE[δx0
k1

. . .x0
kp

δx0
γ1

. . .x0
γq

]− δmi(t)mj(t)

• The second numerical operation is the higher-order moment computation
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δmi(t) =
m�

p=1

1
p!

Φi,k1...kpE[δx0
k1

. . .x0
kp

]

Pij(t) =
m�

p=1

m�

q=1

1
p!q!

Φi,k1...kpΦj,γ1...γqE[δx0
k1

. . .x0
kp

δx0
γ1

. . .x0
γq

]− δmi(t)mj(t)

E[xixjxk] = mimjmk + (miPjk + mjPik + mkPij)

E[xixj ] = mimj + Pij

E[xi] = mi

E[xixjxkxl] = mimjmkml + (mimjPkl + mimkPjl + mjmkPil +
mimlPjk + mjmlPik + mkmlPij) + PijPkl + PikPjl + PilPjk

NOTE: If the initial mean is zero à Further semplification: all the odd moment are zero

à Calculated using the Joint Characteristic Function of the initial distribution:

• The second numerical operation is the higher-order moment computation



• Consider the two-body problem of a Earth graviting satellite

• Initial state defined as DA variable 
  (lengths units scaled by the semimajor axis and time units by the factor        ) 

�
a3

µ

Nonlinear Mapping of the System Dynamics 
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x0 =
�

r0

v0

�
=





−0.68787 + δx
−0.39713 + δy
+0.28448 + δz
−0.51331 + δvx

+0.98266 + δvy

+0.37611 + δvz




P =





0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.01 0 0 0
0 0 0 10−4 0 0
0 0 0 0 10−4 0
0 0 0 0 0 10−4





• Carry out the integration of the motion in differential algebra 

• Calculate the estimation of the mean and covariance 
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DA-1st order DA-2nd order DA-3rd order DA-Monte Carlo
∆r[%] ∆r[%] ∆r[%] r

0.1 orbit 0.021 0.017 0.017 0.9273
0.5 orbit 0.559 0.111 0.111 1.1571
0.8 orbit 3.299 0.007 0.007 0.8864
1 orbit 6.197 0.092 0.092 0.7945
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 Nonlinear uncertainty propagation 

 Nonlinear filtering

Higher order Taylor series approaches
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• The application of higher order Taylor series methods to nonlinear filtering is the 
   Higher-Order Numerical Extended Kalman Filter (HNEKF) [Park&Scheeres2007]
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• The application of higher order Taylor series methods to nonlinear filtering is the 
   Higher-Order Numerical Extended Kalman Filter (HNEKF) [Park&Scheeres2007]

HNEKF PREDICTION EQUATION

(m−
k+1)

i = E[Φi(tk+1;m+
k + δxk, tk) + wi

k] = Φi(tk+1;m+
k , tk) +

m�

p=1

1
p!

Φi,γ1...γp

(tk+1,tk)E[δxγ1
k . . . δx

γp

k ]

m0 ≡ x0
ref

x1
ref

m1

⇒ (δm0 = 0) δm1 �= 0
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k . . . δx
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k ]

m0 ≡ x0
ref

x1
ref

m1

⇒ (δm0 = 0) δm1 �= 0

(P−k+1)
ij = (

m�

p=1

m�

q=1

1
p!q!

Φi,γ1...γp

(tk+1,tk)Φ
j,ζ1...ζq

(tk+1,tk)E[δxγ1
k . . . x

γp

k xζ1
k . . . xζq

k ])− δmi
k+1(δxk)δmj

k+1(δxk) + Qij
k

(n−k+1)
i = E[hi(tk+1;m+

k + δxk, tk) + vi
k+1] = hi(tk+1;m+

k , tk) +
m�

p=1

1
p!

h
i,γ1...γp

tk+1,tk
E[δxγ1

k . . . δx
γp

k ]
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HNEKF UPDATE EQUATION

(P zz
k+1)

ij = Rij
k+1 +

m�

p=1

m�

q=1

1
p!q!

h
i,γ1...γp

tk+1,tk
h

i,ζ1...ζq

tk+1,tk
E[δxγ1

k . . . δx
γp

k δxζ1
k . . . δx

ζq

k ]− (δn−k+1)
i(δn−k+1)

j

(P xz
k+1)

ij =
m�

p=1

m�

q=1

1
p!q!

Φi,γ1...γp

tk+1,tk
h

i,ζ1...ζq

tk+1,tk
E[δxγ1

k . . . δx
γp

k δxζ1
k . . . δx

ζq

k ]− (δm−
k+1)

i(δn−k+1)
j

Kk+1 = Pxz
k+1(P

zz
k+1)

−1

m+
k+1 = m−

k+1 + Kk+1(zk+1 − n−k+1)

P+
k+1 = P−k+1 −Kk+1Pzz

k+1K
T
k+1
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• The state and the measurements have been defined as DA variables

[xk+1] = x̄k+1 +M(δxk)

[zk+1] = z̄k+1 +M(δxk+1) = z̄k+1 +M(δxk)
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• The state and the measurements have been defined as DA variables

[xk+1] = x̄k+1 +M(δxk)

[zk+1] = z̄k+1 +M(δxk+1) = z̄k+1 +M(δxk)

à Higher order derivatives are provided from one DA integration of the state and 
measurement computation
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•  State: position and velocity 
•  Measurement model: linear 
•  Initial guess: off by 100 km and 0.1 m/s from the true state (boundary of initial ellipsoid) 
•  No process noise: errors in the initial state and in the measurements 
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• Without using DA:
- Two system of differential equations up to the mth (order of the Taylor expansion) 
   order must be solved
- If something changes in the dynamical or measurement equations the whole 
   solving system must be rewritten

• Using DA:
- At each time step only one integration in DA is required
- More flexibility
- The same accuracy of the standard HNEKF is guaranteed
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Higher Order Taylor Series Filtering Methods

• Missions with predetermined reference trajectories 

   à compute the reference trajectory over a time span before filtering

Predetermined trajectory 
  
! integrated offline  
! DA with high accuracy 

x0

xix1

m0

x1 =M10(δx0)

mref
1 =M10(m0 − x0)

m1 = mref
1 + δm1(δx0)



HAEKF: Halo orbit about the Sun-Earth L1 point
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• DA-based HNEKF behavior in case of low frequency estimation and nonlinear 
  measurements

- Measuring the velocity from S/C to Earth, the right ascension and declination of the Earth

- Better performance of higher orders wrt first order filter

HNEKF: 2-body Problem - Nonlinear Measurements
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Conclusions and Development Axes

CONCLUSIONS

• New methods for nonlinear uncertainty propagation and filtering have 
  been presented

• The methods are based on Taylor differential algebra implemented in 
  COSY-Infinity

• The methods have good performance in terms of computational costs 
   and flexibility

FURTHER DEVELOPMENTS

• Study and development of Monte Carlo-based filters using DA

• Use of DA to define a sensors architecture that increase estimation precision 

   and reduce the computational load 
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