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Introduction

Muon Collider

Muon Collider I

Muon Accelerator Program
(MAP) strives to design and
build the next-generation
accelerator facility for
fundamental research: a
Muon Collider (MC).
Muons have certain
advantages over electrons
and protons.
MC is very compact
compared to other proposal
such as CLIC or VLHC.
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Introduction

Muon Collider

Muon Collider II

On the other hand, there is a clear challenge: muons are
unstable (decay after τ = 2.2 µs at rest), so particle capture and
acceleration should be rapid.
Muon Collider is a tertiary beam machine: protons⇒ pions⇒
muons.
The initial muon beam has a phase space that is too large to fit
in the downstream components; need to reduce the size of the
beam.
As a result of the beam size reduction the particles deviate less
from the reference particle, this is somewhat similar to reducing
the thermodynamical temperature; hence, the term “muon
cooling”.
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Introduction

Ionization cooling

Ionization cooling

Ionization cooling is the only efficient
technique to cool within a muon lifetime.
Passing through material reduces all three
components of momentum, only the
longitudinal is restored,⇒ net transverse
cooling (=size reduction).
Need emittance exchange to cool in 6D.

Incident Muon Beam

Δp/p

Dipole magnet

Wedge absorber
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Introduction

MICE experiment

MICE: the ionization cooling experiment

MICE is an experiment at Rutherford Appleton Laboratory, UK that
will demonstrate muon cooling.
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Introduction

MICE experiment

Wedge absorber in MICE Step IV

Top: MICE Step IV with a
liquid hydrogen absorber.
MICE is a 4D cooling
experiment: transverse
emittance is reduced while
longitudinal emittance stays
the same or increases slightly
due to stochastic processes
in the energy loss.

Bottom: LH2 absorber is
replaced with a solid wedge
absorber. This way emittance
exchange can be observed if
the beam is properly matched
(dispersion is introduced).
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Introduction

MICE experiment

Cooling performance
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Cooling effect observed for
different wedge absorber
opening angles (red – 30◦,
blue – 60◦, green – 90◦)

ε6D =
c
m

√
det(cov(ct,E, x, px, y, py)),

ε‖ = c
m3

√
det(cov(ct,E)),



9

Consistent Beam Phase Space Measure for Matter-Dominated Lattices

Introduction

MICE experiment

Concern: 6D emittance change with no material

With no material in the
channel the system is
Hamiltonian.
According to the
graph, the 6D
emittance changes.
Is Liouville safe? What
is the conserved
quantity?
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Emittance

Definitions

Emittance
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Emittance

Definitions

Emittance definition I

The concept of beam emittance is a most useful one, but is often
abused in practice.
There is a number of closely related but distinct quantities all
referred to as “emittance”.
The conditions under which these quantities are conserved
should be understood, and the degree to which these conditions
are satisfied in a given application should be considered when
quoting an emittance.
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Emittance

Definitions

Emittance definition II

Consider a one-dimensional case.
The so-called normalized or invariant emittance can be defined
in terms of Γx , the area occupied by the beam in a
two-dimensional phase space (x ,px ), as εxn = Γx/πm0c.
Another definition is the geometric emittance defined in terms of
the area Ax occupied by the beam in the trace space (x , x ′) as
εx = Ax/π; εxn = γβεx .
Emittance is often approximated by

εx =
√

det Σ =

√
det
(

σxx σxx ′

σxx ′ σx ′x ′

)
,

where Σ is the matrix of the second moments of the distribution.
For a Gaussian beam this corresponds to 1/π times the area
occupied by the elliptical contour containing 39% of the particles.
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Emittance

Validity of the approximation

Validity of the approximation I

The particles do not interact with one another. Coulomb
interactions lead to “space-charge” growth of the emittance.
The beam transport does not couple the various two-dimensional
projections of the six-dimensional phase space. Certain
beamline elements such as sextupole magnets and rf kickers in
fact provide coupling between the subspaces.
Higher moments than the second are not needed to characterize
the density in phase space. This is true so long as the effects of
the beamline elements are accurately described by linear
transformations (Gaussian optics). Nonlinear elements lead to
distortions of the phase volume that do not violate Liouville’s
theorem but render a second-moment description inadequate.
(The increase in the emittance is often a good measure of the
nonlinearity of a transport system.)
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Emittance

Validity of the approximation

Validity of approximation II

There are situations in which the normalized emittance is
conserved but the geometric emittance is not, and vice versa.
x and x ′ are canonically conjugate variables (resulting in the
conservation of geometric emittance) only if

the transverse components of the vector potential, Ax and Ay , are
zero (violated in many magnetic beamline elements),
the beam energy remains constant (violated during acceleration,
while the invariant emittance remains the same).

The reverse case occurs when the beam has a nonzero energy
spread. Even in the absence of magnetic fields or acceleration,
the achromaticity of a beam will cause the normalized emittance
to increase during a simple drift (propagation through free
space), while the geometric emittance is unaffected.
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Emittance

Invariant emittance growth

Invariant emittance growth
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Emittance

Invariant emittance growth

Emittance growth with nonlinearity order
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COSY allows to increase the
order of nonlinearities
gradually and see how the
emittance growth rate change.
The result is compared with a
simulation carried out using
another beamline code,
g4beamline.
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Emittance

Alternative measures of phase space volume

Alternative measures of the phase space volume
change

In addition to the commonly used
ε6D = c

m

√
det(cov(ct,E, x, px, y, py)), which is a generalization of

the two-dimensional normalized emittance introduced above,
there are other quantities invariant under certain conditions.
For symplectic systems Jac(M) = 1, and when the particles
pass through matter Jac(M) is a good measure of the phase
space volume change.
The experiment MICE described above is a single-particle
experiment, so a “single-particle emittance” can be introduced to
estimate the amount of cooling (=beam size reduction).
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Emittance

Phase space volume conservation

Phase volume conservation

Hamiltonian system: det(Jac(M)) = 1, where Jac(M) is the
Jacobian of the transformation of phase space:
M(~q, ~p) = (~Q, ~P), (q,p) are phase space coordinates before the
transformation, (Q,P)—after the transformation.
Let S1 be a subset of phase space, S2 =M(S1).
Then,
V2 =

∫
S2

dn~Qdn~P =
∫

S1
det(Jac(M))dn~qdn~p =

∫
S1

dn~qdn~p = V1.
V2 = V1 = const.
Need to check that the determinant in question is indeed equal
to 1.



19

Consistent Beam Phase Space Measure for Matter-Dominated Lattices

Emittance

Phase space volume conservation

COSY Infinity analysis I

COSY Infinity DA tools allow to conveniently obtain det(Jac(M))
for the whole phase space volume of interest:
Start with a high-order transfer mapM.
Use DA operations on the map to obtain the components of

Jac(M) =


∂M1(~z)

∂z1
· · · ∂M1(~z)

∂z6
...

. . .
...

∂M6(~z)
∂z1

· · · ∂M6(~z)
∂z6


as polynomials of order n − 1.
Use DA vector operations to obtain det(Jac(M)).
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Emittance

Phase space volume conservation

COSY Infinity analysis II

Implemented MICE magnets
in COSY, compared to
g4beamline, very good
agreement.
Calculated a high-order
transformation map.
Obtained the determinant of
the Jacobian as a high-order
polynomial of particle optical
coordinates.
det(Jac(M)) = 1, deviation
from 1 in (x ,y ) is shown on
right.
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Emittance

Phase space volume conservation

COSY analysis summary

6D phase space volume is conserved when there is no material
in the way of the beam, as it should be.
Change in emittance observed is due to approximation:
ε6D = c

m

√
det(cov(ct,E, x, px, y, py)),

When particles pass through matter det(Jac(M)) always gives
consistent results while ε6D = c

m

√
det(cov(ct,E, x, px, y, py)) often

shows artificial growth.
det(Jac(M)) is clearly a better 6D phase space volume change
measure.
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Conclusions

Conclusions

ε6D = c
m

√
det(cov(ct,E, x, px, y, py)) is not applicable for strongly

nonlinear systems and for beams with large energy/angular
spread.
det(Jac(M)) is a consistent phase space volume measure, both
with and without material in the beamline.
Issue: in the presence of a magnetic field one has to take into
account that the mechanical momentum is not the canonical
momentum anymore, magnetic vector potential has to be
accounted for.
Issue: practicality/applicability. While the second moment matrix
can be obtained relatively easily from measurements, this is not
the case for det(Jac(M)).
Issue: hard to explain the concept to the peers.
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