
From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

Introduction to IEEE-754 floating-point
arithmetic

Nathalie Revol
INRIA – LIP - ENS de Lyon – France

TMW VII, 14-17 December 2011, Key West

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

From R to F

Representing real numbers of a computer using a finite number
of bits to approximate them.
For efficiency issues, a finite and fixed number of bits is preferred
(32 or 64).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

From R to F

IEEE-754 representation:

I symmetry around 0, being able to represent a number and its
opposite: 1 bit for the sign

I dynamics: floating-point representation (ie m× 10e or m× 2e)

I symmetry wrt multiplication, being able to represent a
number and its inverse (roughly speaking): the exponent
range is symmetric around 0

I hidden bit: the first bit of the mantissa is a “1” (for normal
representations) and does not need to be stored

I other considerations (precision). . .

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation for floating-point numbers

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: underflow and subnormals

When the exponent is minimal, the rule for the hidden bit does not
apply any more: the first bit is explicitely represented. Such
numbers are called subnormals.
Roundoff error is no more relative but absolute for subnormals.
Specific (and delicate) handling of subnormals in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: underflow and subnormals

When the exponent is minimal, the rule for the hidden bit does not
apply any more: the first bit is explicitely represented. Such
numbers are called subnormals.
Roundoff error is no more relative but absolute for subnormals.
Specific (and delicate) handling of subnormals in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: specification of the arithmetic operations
To get

I the best possible accuracy
I reproducible results
I well-specified results
I . . .

a � b should return the result as if it were computed exactly and
then rounded: this is called correct rounding. The operation � can
be +, −, ∗, / or

√
.

Four rounding modes:
I rounding upwards,
I rounding downwards,
I rounding to zero,
I rounding to nearest (tie to even).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: specification of the arithmetic operations

Implementation issue: 3 bits suffice to get correct rounding.

Exact result: if the result is representable using floating-point
arithmetic, then this exact result will be returned.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: other issues

Elementary functions (exp, log, sin, atan, cosh, . . .): correct
rounding is recommended (but not required).

Radix can be 2 or 10.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

With rounding to nearest.
If we compute using FP arithmetic

z :=
x√

x2 + y2
,

can we prove that −1 ≤ z ≤ 1?
Can we compute t =

√
1− z2 without getting a NaN?

The answer is yes.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

With rounding to nearest.
If we compute using FP arithmetic

z :=
x√

x2 + y2
,

can we prove that −1 ≤ z ≤ 1?
Can we compute t =

√
1− z2 without getting a NaN?

The answer is yes.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Relative error ≤ 1 ulp or 1/2 ulp.
ulp (unit in the last place): it corresponds to the weight of the
last bit of the mantissa.
In IEEE-754 double precision,

I with rounding to nearest, the relative error of one operation is
≤ 1/2 ulp,

I with other rounding modes, the relative error of one operation
is ≤ 1 ulp,

provided no overflow nor underflow occurs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Strictly between x and x(1− ulp(x)), there can be 0 or 1
floating-point number,
there is 1 if x is a power of 2.

Changes of binades must be handled with care in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Strictly between x and x(1− ulp(x)), there can be 0 or 1
floating-point number,
there is 1 if x is a power of 2.

Changes of binades must be handled with care in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Sterbenz lemma:
Let a and b be two positive floating-point numbers. If

a

2
≤ b ≤ 2a

then a− b = a	 b.
In other words, a− b is exactly representable in floating-point
arithmetic.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Theorem:
for any pair (x , y) of FP numbers and for rounding to nearest,
there exists FP numbers r+ and r− such that

r+ = (x + y)− (x ⊕ y)
r− = (x − y)− (x 	 y)

Furthermore, r+ and r− can be computed using FP operations.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Why with ”rounding to nearest” only?
Counterexample for directed rounding
with basis 2 and at least p > 4 bits of mantissa, let’s take

x = −(22p + 2p+1)
y = 2p − 3

then we have

x + y = −22p − 2p − 3
x ⊕ y = −22p

(x + y)− (x ⊕ y) = −2p − 3 = −(2p + 3) not representable.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: computing the roundoff error

Let x and y be two normal FP numbers such that |x | ≥ |y | and
the rounding mode be to nearest. Let also assume that x ⊕ y does
not overflow.

Algo Fast2Sum: s = x ⊕ y
z = s 	 x
r = y 	 z

The mathematical equality holds:

s + r = x + y

i.e. r is the roundoff error on the addition of x and y .
Beware of the optimizations done by your compiler. . .

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: computing the roundoff error

The roundoff error can be computed without test (to compare x
and y) at the expense of more arithmetic operations.
The roundoff error of a multiplication can also be computed (either
using Dekker’s algorithm or an FMA).

This means that it is possible to compute using FP arithmetic and
twice the computing precision: in double-double arithmetic, each
number is represented as the sum of two FP numbers (but the FP
addition is not performed).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

To conclude

IEEE-754 standard for floating-point arithmetic

I specifies the formats and the behaviour of the operations,

I makes it possible to bound roundoff errors, to track them
during computations (cf. N. Higham: Accuracy and Stability
of Numerical Algorithms, SIAM 2002),

I makes it possible to compute the roundoff error,

I makes it possible to compute in higher precision,

I makes it possible to establish proofs on the quality of the
results. . .
but this is tedious and error-prone (many cases to handle:
possibility of overflow, underflow, change of binade. . .).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Formal Proofs of Polynomial Models

Nathalie Revol
INRIA – LIP - ENS de Lyon – France

Joint work with Pieter Collins and Milad Niqui

14 December 2011

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: definition

Notations: xα = xα1
1 · xα2

2 · · · xαv
v .

All variables belong to [−1, 1].

Polynomial model: it is a pair < p, I > where p is a polynomial
and I is an interval.

< p, I > represents the function f : Rv → R if ∀x ∈ [−1, 1]v ,
f (x)− p(x) ∈ I.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: arithmetic

Operations can be defined between polynomial models: addition,
subtraction, multiplication by a scalar, multiplication,
composition. . .

They use the corresponding operations on polynomials and on
intervals.
(Beware: the degree of the resulting polynomial may vary.)

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: sweeping

To get a simpler representation, ie. a polynomial with less
coefficients: sweeping operation.

The “lost” coefficients are accounted for in the interval remainder:
I becomes I +

∑
[−|ai |, |ai |] where the sum is over swept terms.

Thus manipulated polynomials can keep constant degrees: higher
degree terms are swept.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: implementation

To implement polynomial models and arithmetic on a computer:
use of floating-point arithmetic to represent the coefficients and to
perform arithmetic operations on them.

Floating-point operations are not exact
thus rounding errors have to be accounted for in the interval
remainder.
How?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: implementation

Bounding the error of one operation:
if the operation is performed using rounding to nearest, then the
error between the exact operation and the rounded-to-nearest
operation verifies

a � b − RN(a � b) ≤ (RU(a � b)− RD(a � b))/2

where RN, RU, RD stand for rounding to nearest, upward,
downward.

(Again, the division by 2 should be performed using RU.)

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: implementation

Example of the addition of two polynomial models
< p, I > + < q, J >
where p =

∑m
i=0 aix

αi and q =
∑n

j=0 bjx
βj . Then

< p, I > + < q, J >

= <
∑max(m,n)

k=0 RN(ak + bk)xαk),

I + J+∑max(m,n)
k=0 (RU(ak + bk)− RD(ak + bk))/2 > .

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of lemma used in COSY

Let a and b be two floating-point numbers. Then

|(a + b)− RN(a + b)| ≤ RN((ulp(1)/2) ∗max(|a|, |b|))

provided no overflow nor underflow occurs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of lemma: proof

Case distinction:

I a and b have opposite signs;

I a = b;

I a and b are wide apart (assume |b| < |a| and
ulp(1)/2 ≤ β ≤ 1);

I b = (1− β)a with 0 < β < ulp(1)/2 (assume |b| < |a|),
case distinction again, with 2-3 possible values for b in each
case:

I rounding mode to nearest or not?
I a is a power of 2 or not?
I a− (the floating-point immediately closer to 0 than a) is a

power or 2 or not?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of proof

rounding to nearest (even) other rounding modes
εm = u εm = 2u

b error b error

a− ua/2 ≤ εm ⊗ a a− ua/2 ≤ εm ⊗ a
a = 2t a−− 0 ≤ εm ⊗ a a−− 0 ≤ εm ⊗ a

a−−− ua/2 ≤ εm ⊗ a

a− ua− ≤ εm ⊗ a
a− = 2t a−− 3ua−/2 ≤ εm ⊗ a

a−−− 0 ≤ εm ⊗ a
2t < a < 2t+1 a− ua ≤ εm ⊗ a

a− u2t ≤ εm ⊗ a
2t < a− a−− 0 ≤ εm ⊗ a

Do you trust this proof?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of proof

rounding to nearest (even) other rounding modes
εm = u εm = 2u

b error b error

a− ua/2 ≤ εm ⊗ a a− ua/2 ≤ εm ⊗ a
a = 2t a−− 0 ≤ εm ⊗ a a−− 0 ≤ εm ⊗ a

a−−− ua/2 ≤ εm ⊗ a

a− ua− ≤ εm ⊗ a
a− = 2t a−− 3ua−/2 ≤ εm ⊗ a

a−−− 0 ≤ εm ⊗ a
2t < a < 2t+1 a− ua ≤ εm ⊗ a

a− u2t ≤ εm ⊗ a
2t < a− a−− 0 ≤ εm ⊗ a

Do you trust this proof?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

What is it?
It is as if a very pernickety reader checks your proof.

As it is not human, no chance that it forgets one case, nor that it
admits an implicit assumption.

But sometimes this can be tedious: you have to explain to it that
2N = 2R. . . and many such things.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

What is it?
It is as if a very pernickety reader checks your proof.

As it is not human, no chance that it forgets one case, nor that it
admits an implicit assumption.

But sometimes this can be tedious: you have to explain to it that
2N = 2R. . . and many such things.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

The proof is checked in its deep details until the computer agrees
with it.
Often, use of formal proof checkers, meaning programs that only
check a proof (they may also generate easy demonstrations).
Therefore the checker is a very short program (de Bruijn criteria :
the correctness of the system as a whole depends on the
correctness of a very small kernel).
(Courtesy Sylvie Boldo)

Why use a proof checker?
Even if polynomial models already provide validated
computations. . .
this provides one extra level of confidence.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

Which proof checker? The Coq proof assistant
(http://coq.inria.fr)

I based on the Curry-Howard isomorphism (equivalence between
proofs and λ-terms)

I few automations

I comprehensive libraries, including on Z and R
I Coq kernel mechanically checks each step of each proof

I the method is to apply successively tactics (theorem
application, rewriting, simplifications. . .) to transform or
reduce the goal down to the hypotheses.

I the proof is handled starting from the conclusion.

(Courtesy Sylvie Boldo)

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models in Coq

Some simplifications compared to the algorithms in COSY:

I bounds on roundoff errors only use
|(a � b| − RN(a � b)| ≤ (RU(a � b)− RD(a � b)/2 and not
|(a � b| − RN(a � b)| ≤ ulp(1)/2 ∗max(|a|, |b|)

I polynomial multiplications are performed exactly (with high
degrees) and then swept: simpler proofs but less efficient
algorithms

I no threshold to avoid underflow, to keep sparse polynomials,
no automated sweeping

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Floating-point arithmetic in Coq

Simplified model for F:

I no bounds on the exponents (ie. no overflow nor underflow),

I no ∞, no NaN.

Quarrels of experts: should R be classical, intuitionistic, . . .
Main difference: whether a program can be extracted or not from
the proof: not an issue here.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Conclusion
Personally, I am proud that the proofs I made for COSY were
accepted reasonably easily by Coq (and by Milad Niqui, ie. they
were also understandable by a human).
No error detected.

Future extensions

I model of floating-point numbers: why not use a more realistic
model? why not use the library for interval arithmetic based
on FP arithmetic? Cf. Flocq
(http://flocq.gforge.inria.fr/).

I algorithms implemented in Ariadne: more operations (weak
differentiation, anti-differentiation) and more elaborated
algorithms (Newton, integration of ODEs, simulation of
hybrid systems).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Conclusion
Personally, I am proud that the proofs I made for COSY were
accepted reasonably easily by Coq (and by Milad Niqui, ie. they
were also understandable by a human).
No error detected.

Future extensions

I model of floating-point numbers: why not use a more realistic
model? why not use the library for interval arithmetic based
on FP arithmetic? Cf. Flocq
(http://flocq.gforge.inria.fr/).

I algorithms implemented in Ariadne: more operations (weak
differentiation, anti-differentiation) and more elaborated
algorithms (Newton, integration of ODEs, simulation of
hybrid systems).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Joint work with Pieter Collins and Milad NiquiFormal Proofs of Polynomial Models

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

Introduction to IEEE-754 floating-point
arithmetic

Nathalie Revol
INRIA – LIP - ENS de Lyon – France

TMW VII, 14-17 December 2011, Key West

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

From R to F

Representing real numbers of a computer using a finite number
of bits to approximate them.
For efficiency issues, a finite and fixed number of bits is preferred
(32 or 64).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

From R to F

IEEE-754 representation:

I symmetry around 0, being able to represent a number and its
opposite: 1 bit for the sign

I dynamics: floating-point representation (ie m× 10e or m× 2e)

I symmetry wrt multiplication, being able to represent a
number and its inverse (roughly speaking): the exponent
range is symmetric around 0

I hidden bit: the first bit of the mantissa is a “1” (for normal
representations) and does not need to be stored

I other considerations (precision). . .

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation for floating-point numbers

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: underflow and subnormals

When the exponent is minimal, the rule for the hidden bit does not
apply any more: the first bit is explicitely represented. Such
numbers are called subnormals.
Roundoff error is no more relative but absolute for subnormals.
Specific (and delicate) handling of subnormals in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: underflow and subnormals

When the exponent is minimal, the rule for the hidden bit does not
apply any more: the first bit is explicitely represented. Such
numbers are called subnormals.
Roundoff error is no more relative but absolute for subnormals.
Specific (and delicate) handling of subnormals in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754 representation: special values
∞ and NaN

Remark: 0 has two representations in F: +0 and −0.

What happens for MAXFLOAT + MAXFLOAT?
Answer: +∞ and −∞ belong to F.
And thus 1/(+0) = +∞ whereas 1/(−0) = −∞.

What happens for 0/0?
Answer: this is an invalid operation, the result is NaN (Not a
Number).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: specification of the arithmetic operations
To get

I the best possible accuracy
I reproducible results
I well-specified results
I . . .

a � b should return the result as if it were computed exactly and
then rounded: this is called correct rounding. The operation � can
be +, −, ∗, / or

√
.

Four rounding modes:
I rounding upwards,
I rounding downwards,
I rounding to zero,
I rounding to nearest (tie to even).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: specification of the arithmetic operations

Implementation issue: 3 bits suffice to get correct rounding.

Exact result: if the result is representable using floating-point
arithmetic, then this exact result will be returned.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: other issues

Elementary functions (exp, log, sin, atan, cosh, . . .): correct
rounding is recommended (but not required).

Radix can be 2 or 10.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

With rounding to nearest.
If we compute using FP arithmetic

z :=
x√

x2 + y2
,

can we prove that −1 ≤ z ≤ 1?
Can we compute t =

√
1− z2 without getting a NaN?

The answer is yes.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

With rounding to nearest.
If we compute using FP arithmetic

z :=
x√

x2 + y2
,

can we prove that −1 ≤ z ≤ 1?
Can we compute t =

√
1− z2 without getting a NaN?

The answer is yes.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Relative error ≤ 1 ulp or 1/2 ulp.
ulp (unit in the last place): it corresponds to the weight of the
last bit of the mantissa.
In IEEE-754 double precision,

I with rounding to nearest, the relative error of one operation is
≤ 1/2 ulp,

I with other rounding modes, the relative error of one operation
is ≤ 1 ulp,

provided no overflow nor underflow occurs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Strictly between x and x(1− ulp(x)), there can be 0 or 1
floating-point number,
there is 1 if x is a power of 2.

Changes of binades must be handled with care in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Strictly between x and x(1− ulp(x)), there can be 0 or 1
floating-point number,
there is 1 if x is a power of 2.

Changes of binades must be handled with care in proofs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Sterbenz lemma:
Let a and b be two positive floating-point numbers. If

a

2
≤ b ≤ 2a

then a− b = a	 b.
In other words, a− b is exactly representable in floating-point
arithmetic.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Theorem:
for any pair (x , y) of FP numbers and for rounding to nearest,
there exists FP numbers r+ and r− such that

r+ = (x + y)− (x ⊕ y)
r− = (x − y)− (x 	 y)

Furthermore, r+ and r− can be computed using FP operations.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: properties on the error

Why with ”rounding to nearest” only?
Counterexample for directed rounding
with basis 2 and at least p > 4 bits of mantissa, let’s take

x = −(22p + 2p+1)
y = 2p − 3

then we have

x + y = −22p − 2p − 3
x ⊕ y = −22p

(x + y)− (x ⊕ y) = −2p − 3 = −(2p + 3) not representable.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: computing the roundoff error

Let x and y be two normal FP numbers such that |x | ≥ |y | and
the rounding mode be to nearest. Let also assume that x ⊕ y does
not overflow.

Algo Fast2Sum: s = x ⊕ y
z = s 	 x
r = y 	 z

The mathematical equality holds:

s + r = x + y

i.e. r is the roundoff error on the addition of x and y .
Beware of the optimizations done by your compiler. . .

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

IEEE-754: computing the roundoff error

The roundoff error can be computed without test (to compare x
and y) at the expense of more arithmetic operations.
The roundoff error of a multiplication can also be computed (either
using Dekker’s algorithm or an FMA).

This means that it is possible to compute using FP arithmetic and
twice the computing precision: in double-double arithmetic, each
number is represented as the sum of two FP numbers (but the FP
addition is not performed).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

From R to F
IEEE-754 representations

IEEE-754: operations, rounding modes
IEEE-754: rounding error

Conclusion

To conclude

IEEE-754 standard for floating-point arithmetic

I specifies the formats and the behaviour of the operations,

I makes it possible to bound roundoff errors, to track them
during computations (cf. N. Higham: Accuracy and Stability
of Numerical Algorithms, SIAM 2002),

I makes it possible to compute the roundoff error,

I makes it possible to compute in higher precision,

I makes it possible to establish proofs on the quality of the
results. . .
but this is tedious and error-prone (many cases to handle:
possibility of overflow, underflow, change of binade. . .).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Introduction to IEEE-754 floating-point arithmetic

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Formal Proofs of Polynomial Models

Nathalie Revol
INRIA – LIP - ENS de Lyon – France

14 December 2011

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: definition

Notations: xα = xα1
1 · xα2

2 · · · xαv
v .

All variables belong to [−1, 1].

Polynomial model: it is a pair < p, I > where p is a polynomial
and I is an interval.

< p, I > represents the function f : Rv → R if ∀x ∈ [−1, 1]v ,
f (x)− p(x) ∈ I.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: arithmetic

Operations can be defined between polynomial models: addition,
subtraction, multiplication by a scalar, multiplication,
composition. . .

They use the corresponding operations on polynomials and on
intervals.
(Beware: the degree of the resulting polynomial may vary.)

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: sweeping

To get a simpler representation, ie. a polynomial with less
coefficients: sweeping operation.

The “lost” coefficients are accounted for in the interval remainder:
I becomes I +

∑
[−|ai |, |ai |] where the sum is over swept terms.

Thus manipulated polynomials can keep constant degrees: higher
degree terms are swept.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: implementation

To implement polynomial models and arithmetic on a computer:
use of floating-point arithmetic to represent the coefficients and to
perform arithmetic operations on them.

Floating-point operations are not exact
thus rounding errors have to be accounted for in the interval
remainder.
How?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: implementation

Bounding the error of one operation:
if the operation is performed using rounding to nearest, then the
error between the exact operation and the rounded-to-nearest
operation verifies

a � b − RN(a � b) ≤ (RU(a � b)− RD(a � b))/2

where RN, RU, RD stand for rounding to nearest, upward,
downward.

(Again, the division by 2 should be performed using RU.)

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models: implementation

Example of the addition of two polynomial models
< p, I > + < q, J >
where p =

∑m
i=0 aix

αi and q =
∑n

j=0 bjx
βj . Then

< p, I > + < q, J >

= <
∑max(m,n)

k=0 RN(ak + bk)xαk),

I + J+∑max(m,n)
k=0 (RU(ak + bk)− RD(ak + bk))/2 > .

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of lemma used in COSY

Let a and b be two floating-point numbers. Then

|(a + b)− RN(a + b)| ≤ RN((ulp(1)/2) ∗max(|a|, |b|))

provided no overflow nor underflow occurs.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of lemma: proof

Case distinction:

I a and b have opposite signs;

I a = b;

I a and b are wide apart (assume |b| < |a| and
ulp(1)/2 ≤ β ≤ 1);

I b = (1− β)a with 0 < β < ulp(1)/2 (assume |b| < |a|),
case distinction again, with 2-3 possible values for b in each
case:

I rounding mode to nearest or not?
I a is a power of 2 or not?
I a− (the floating-point immediately closer to 0 than a) is a

power or 2 or not?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of proof

rounding to nearest (even) other rounding modes
εm = u εm = 2u

b error b error

a− ua/2 ≤ εm ⊗ a a− ua/2 ≤ εm ⊗ a
a = 2t a−− 0 ≤ εm ⊗ a a−− 0 ≤ εm ⊗ a

a−−− ua/2 ≤ εm ⊗ a

a− ua− ≤ εm ⊗ a
a− = 2t a−− 3ua−/2 ≤ εm ⊗ a

a−−− 0 ≤ εm ⊗ a
2t < a < 2t+1 a− ua ≤ εm ⊗ a

a− u2t ≤ εm ⊗ a
2t < a− a−− 0 ≤ εm ⊗ a

Do you trust this proof?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Example of proof

rounding to nearest (even) other rounding modes
εm = u εm = 2u

b error b error

a− ua/2 ≤ εm ⊗ a a− ua/2 ≤ εm ⊗ a
a = 2t a−− 0 ≤ εm ⊗ a a−− 0 ≤ εm ⊗ a

a−−− ua/2 ≤ εm ⊗ a

a− ua− ≤ εm ⊗ a
a− = 2t a−− 3ua−/2 ≤ εm ⊗ a

a−−− 0 ≤ εm ⊗ a
2t < a < 2t+1 a− ua ≤ εm ⊗ a

a− u2t ≤ εm ⊗ a
2t < a− a−− 0 ≤ εm ⊗ a

Do you trust this proof?

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

What is it?
It is as if a very pernickety reader checks your proof.

As it is not human, no chance that it forgets one case, nor that it
admits an implicit assumption.

But sometimes this can be tedious: you have to explain to it that
2N = 2R. . . and many such things.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

What is it?
It is as if a very pernickety reader checks your proof.

As it is not human, no chance that it forgets one case, nor that it
admits an implicit assumption.

But sometimes this can be tedious: you have to explain to it that
2N = 2R. . . and many such things.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

The proof is checked in its deep details until the computer agrees
with it.
Often, use of formal proof checkers, meaning programs that only
check a proof (they may also generate easy demonstrations).
Therefore the checker is a very short program (de Bruijn criteria :
the correctness of the system as a whole depends on the
correctness of a very small kernel).

Why use a proof checker?
Even if polynomial models already provide validated
computations. . .
this provides one extra level of confidence.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Proof checker

Which proof checker? The Coq proof assistant
(http://coq.inria.fr)

I based on the Curry-Howard isomorphism (equivalence between
proofs and λ-terms)

I few automations

I comprehensive libraries, including on Z and R
I Coq kernel mechanically checks each step of each proof

I the method is to apply successively tactics (theorem
application, rewriting, simplifications. . .) to transform or
reduce the goal down to the hypotheses.

I the proof is handled starting from the conclusion.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Polynomial models in Coq

Some simplifications compared to the algorithms in COSY:

I bounds on roundoff errors only use
|(a � b| − RN(a � b)| ≤ (RU(a � b)− RD(a � b)/2 and not
|(a � b| − RN(a � b)| ≤ ulp(1)/2 ∗max(|a|, |b|)

I polynomial multiplications are performed exactly (with high
degrees) and then swept: simpler proofs but less efficient
algorithms

I no threshold to avoid underflow, to keep sparse polynomials,
no automated sweeping

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Floating-point arithmetic in Coq

Simplified model for F:

I no bounds on the exponents (ie. no overflow nor underflow),

I no ∞, no NaN.

Quarrels of experts: should R be classical, intuitionistic, . . .
Main difference: whether a program can be extracted or not from
the proof: not an issue here.

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Conclusion
Personally, I am proud that the proofs I made for COSY were
accepted reasonably easily by Coq (and by Milad Niqui, ie. they
were also understandable by a human).
No error detected.

Future extensions

I model of floating-point numbers: why not use a more realistic
model? why not use the library for interval arithmetic based
on FP arithmetic? Cf. Flocq
(http://flocq.gforge.inria.fr/).

I algorithms implemented in Ariadne: more operations (weak
differentiation, anti-differentiation) and more elaborated
algorithms (Newton, integration of ODEs, simulation of
hybrid systems).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

Polynomial models: definition and implementation
Proving the implementation based on FP arithmetic

Formal proof checking
Conclusion

Conclusion
Personally, I am proud that the proofs I made for COSY were
accepted reasonably easily by Coq (and by Milad Niqui, ie. they
were also understandable by a human).
No error detected.

Future extensions

I model of floating-point numbers: why not use a more realistic
model? why not use the library for interval arithmetic based
on FP arithmetic? Cf. Flocq
(http://flocq.gforge.inria.fr/).

I algorithms implemented in Ariadne: more operations (weak
differentiation, anti-differentiation) and more elaborated
algorithms (Newton, integration of ODEs, simulation of
hybrid systems).

Nathalie Revol INRIA – LIP - ENS de Lyon – France Formal Proofs of Polynomial Models

