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The concept of Chaos in Smooth Systems

Chaos in Smooth Systems
Usually taken to mean some sort of complicated orbit structure.

Existence of complicated invariant sets

Compact invariant sets containing uncountably many dense orbits,

Infinitely many distinct periodic orbits

How does one find such sets?
In general require some topological, analytic, or geometric information.
A useful concept is that of topological entropy.

This is an invariant associated to any Dynamical System.

When it is positive, there is some sort of chaos in the system.
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Topological Entropy h(f ) of a map f : X → X :
Let n ∈ N, x ∈ X .
An n − orbit O(x , n) is a sequence x , fx , . . . , f n−1x
For ε > 0, the n−orbits O(x , n),O(y , n) are ε−different if there is a
j ∈ [0, n − 1) such that

d(f jx , f jy) > ε

Let r(n, ε, f ) = maximum number of ε−different n−orbits. (≤ eαn ∃α)
Set

h(ε, f ) = lim sup
n→∞

1

n
log r(n, ε, f )

(entropy of size ε)
and

h(f ) = lim
n→∞

h(ε, f ) = sup
ε>0

h(ε, f )

(topological entropy of f ) [ε small =⇒ f has ∼ eh(f )n ε− different orbits]
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Properties of Topological Entropy

Dynamical Invariant: f ∼ g=⇒h(f ) = h(g)

Monotonicity of sets and maps:

Λ ⊂ X , f (Λ) ⊂ Λ,=⇒h(f,Λ) ≤ h(f )
(g ,Y ) a factor of f : ∃π : X → Y with gπ = πf =⇒h(f ) ≥ h(g)

Power property: h(f n) = nh(f ) for N ∈ N.
h(f t) = | t |h(f 1) for flows

f : M → M C∞ map =⇒
h(f ) = maximum volume growth of smooth disks in M

h : D∞(M2)→ R is continuous (in general usc for C∞ maps)

Variational Principle:

h(f ) = sup
µ∈M(f )

hµ(f )
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Examples of Calculation of Topological Entropy

Topological Markov Chains TMC (subshifts of finite type SFT)
First, the full N − shift:
Let J = {1, . . . ,N} be the first N integers, and let

ΣN = JZ = {a = (. . . , a−1a0a1 . . .), ai ∈ J}

with metric

d(a,b) =
∑
i∈Z

| ai − bi |
2| i |

This is a compact zero dimensional space (homeomorphic to a Cantor set)
Define the left shift by

σ(a)i = ai+1

This is a homeomorphism and h(σ) = log N.
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Chaos for 3 Dimensional Vector Fields

Chaos = Positive Topological Entropy

For a vector field X , with flow φ(t, x), define

htop(X ) = htop(φ1) = sup
compact invariant Λ

htop(φ1 | Λ)

Basic Facts for C∞ vector fields in dimension 3:

• X → htop(X ) is continuous (N, Katok, Yomdin)

• htop(X ) is the maximum length growth of smooth curves (N, Yomdin)

• htop(X ) is the supremum of htop on suspensions of subshifts (Katok)
implies existence of compact topologically transitive sets with
infinitely many saddle type periodic orbits

• If P : Σ→ Σ is n − th iterate of the Poincaré map to a cross-section
Σ and the return times of P are bounded above by T > 0, then

htop(X ) >
htop(P)

nT

Sheldon E.Newhouse (Mathematics MSU) The Existence of Chaos in the Lorenz System December, 2011 7 / 19



Pictures of maps f to guarantee htop(f ) > 0:
• Lorenz Markov returns
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The Lorenz Equations

Consider the Lorenz system: u̇ = Lσ,ρ,β(u), u = (x , y , z),

ẋ = σ(y − x)

ẏ = (ρ− z)x − y

ż = xy − βz

Main Reference: Colin Sparrow, The Lorenz Equations: Bifurcations,
Chaos, and Strange Attractors, 1981
Basic Properties, Detailed Numerical Study, Many Conjectures, Mostly
Unsolved
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Known Results for large ρ

Robbins (1979):
—For β = 1, σ = 5, large ρ, there is a unique stable periodic orbit

Sparrow Conjecture: For σ = 10, β = 8/3, ρ >> 1=⇒L is Morse-Smale.

X. Chen: (1996) σ, β > 0. There exists a homoclinic orbit for some
ρ ∈ (0,∞) iff σ > 2β+1

3

X. Chen: (∼ 1996 (not published) ) For every β > 0, there exist σ > 0,
and large ρ > 0 such that the corresponding Lorenz system exhibits chaos.

Hastings, Troy (1994), There is a homoclinic orbit for (0, 0),
σ ∼ 10, β ∼ 1, ρ = 1000)

Remark All of above require very large ρ and give small positive
topological entropy
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In Sparrow, numerical calculations suggest that a homoclinic orbit (for
(0, 0) exists for σ = 10, β = 8/3 and ρ ∼ 13.94

The arrival of Computer Assisted (CA) proofs for the
Lorenz system

Hassard, Zhang (1994), There is a homoclinic orbit for (0, 0)
σ = 10, β = 8/3 and 13.9625 < ρ < 13.967. —Computer assisted using
Interval Analysis

Some current plots: Figure: ρ = 13.9265 Figure: ρ = 13.9266
In connection with the Sparrow conjecture on Morse-Smale for large ρ
partial result (Computer Assisted) by Zou and Wittig: long stable periodic
orbit for ρ = 350, σ = 10, β = 8/3

Figure: Lorenz-350-periodic

Figure: Lorenz-350-periodic-plus
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Previous CA Proofs of Chaos in the Lorenz system

Mischaikow-Mrozek-Szymczak: (1995+)For (σ, ρ, β) in small
neighborhoods of (10,28,8/3), (10,60,8/3), (10,54, 45), the Poincare maps
to the plane z = ρ− 1 have factors which are SFT with positive entropies.

Galias-Zgliczynski: (1998)For (σ, ρ, β) in a small neighborhood of
(10,28,8/3) the square of the Poincare map, P2 has an invariant set
conjugate to the full two-shift.

Tucker: (2001) For (σ, ρ, β) in a small neighborhood of (10,28,8/3), the
Poincare map to the plane z = ρ− 1 has a chaotic attractor.

These results are all computer assisted and make use of Interval Analysis
and Verified Integrators

The computer codes are very specifically created for the particular
parameter values apparently found by experimentation.
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Main Theorem. There is an open neighborhood U of the line segment

σ = 10, β = 8/3, 25 ≤ ρ ≤ 95

in parameter space such that if (σ, ρ, β) ∈ U then Lσ,ρ,β has topological
entropy greater than

log(2)

4

In fact, the square of the Poincare map to z = ρ− 1 has an invariant
subset which factors onto the full 2-shift and the return time is less than 2

• Further, there is an (non-rigorous, easy to implement, computational)
technique to suggest the existence of positive entropy (based on growth of
lengths of curves)!

• The proof is computer assisted and makes use of a verified integrator
(Berz-Makino) based on Taylor Models
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Good News: There is a proof.
Bad News: It takes a lot of computer resources
To describe the main ideas of the proof, we need some basic facts.

• Lorenz system is invariant under symmetry (x , y , z)− > (−x ,−y , z)
For σ > 0, β > 0, ρ > 1 and α =

√
β(ρ− 1)

• There are three critical points, C1,C2,C3

C1 = (α, α, ρ− 1),C1 = (−α,−α, ρ− 1),C3 = (0, 0, 0)

Change of Coordinates x = αx1, y = αy1, z = (ρ− 1)z1, α =
√
β(ρ− 1),

transforms the system to

ẋ1 = σ(y1 − x1)

ẏ1 = (ρ− (ρ− 1)z1)x1 − y1

ż1 = β(x1y1 − z1)

Moves the critical points to (1, 1, 1), (−1,−1, 1), (0, 0, 0) = C1,C2,C3

(Unit Critical Points)
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— Lorenz: Orbits are forward bounded
(there is a quadratic Lyapunov function decreasing along orbits outside an
ellipsoid)

— Eigenvalues at the critical points: C1,C2,C3:

For σ = 10, β = 8/3, ρ > 470
19 ≈ 24.74:

— Eigenvalues at C3 = (0, 0, 0) are real: λ31 < −β < 0 < λ32

two-dimensional stable manifold and one dimensional unstable manifold

— Eigenvalues at C1,C2: λ11 < 0, λ12 = a + bi , a > 0, b 6= 0, λ̄12

-unstable spirals

— unstable eigenspaces at C1,C2 are transverse to the plane z1 = 1
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Main Ideas

• Study stable and unstable manifolds of critical points
Manifolds: rho=28 rho=60 rho=95

• Get horseshoe type sets for second iterate
of the Poincare map to the z = 1 plane

In z = 1, take a line from [−1,−1, 1] to [0, 0, 0] and take its first and
second images.

line and images, rho=28 line, box and images, rho=28

• Use numerical tools to ”guess” the proper behavior
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How do we get the boxes for the returns?

Plot the return times, Non-verified Runge-Kutta 7-8
• Lorenz return times

• Take local maxima of the return times to give approximate vertical
boundaries

• Do this for ρ = 25, 25.5, 30, 30.5, . . . , 95 —- to get candidate boxes

• Squeeze vertical boundaries closer together, expand horizontally
bondaries across unstable manifolds
– gives candidate boxes for discrete set of ρ′s.

• Linearly interpolate in between to get boxes for all 25 ≤ ρ ≤ 95

• Use verified integrator to prove desired return pictures
• Some verified pictures
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Future Work

Develop tools to shorten the computation time in the proof.

Estimation of topological entropy upper and lower bounds

Higher dimensional invariant manifolds

proofs of hyperbolicity in various systems

rigorous descriptions of other 3d systems, e.g. Lorenz (for many
parameters) and Rossler

Software package (like Yorke’s Dynamics Program or Guckenheimer’s
dstool) which does rigorous calculations.
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