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Motivation

» High number of threatening objects orbit the Earth

» In-orbit collisions increase debris amount

» Goal: identify intersecting orbits

» Intersection criteria: Minimum Orbit Intersection Distance (MOID)

» MOID computation methods: analytical, geometrical, d?> minimization
» State of the art: MOID is computed only for Keplerian orbits

> perturbations acts on debris and satellites
m Atmospheric drag
m Gravitational field zonal harmonics
m Luni-solar perturbations
» Objective: include perturbation effects into MOID computation

m Method: global minimization of d?
m Optimizer: COSY-GO, based on Taylor Models and Differential Algebra
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Earth Centered Intertial (ECI) frame

{ r; } {COS(Q) cos(€) — sin(Q2) cos(/) sin(@)}
ti =< ry ¢ = ri{sin(Q)cos(£) + cos(2) cos(/)sin(¥) » , l=w+v
rK; sin(/) sin(¢)
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| i
Keplerian orbits distance computation:

» Two sets of five fixed keplerian elements K; = {a;, e;, [;, Q;,w;i}, 1 =1,2
» Position of body i/ depends on true anomaly v;

» True anomaly domain: v; € [—m, 7] rad

Square distance: d>=f (1/1, 1/2) = (r,l — r/2)2 + (rJ1 — rJ2)2 + (rKl — rK2)2

Landscape plot of d?
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Global optimizer COSY-GO (1)

Branch & Bound algorithm

> Branch: based on 1st e 2nd order
information of the objective
function

> Bound: objective function
computed as TM and appropriate
bounder used (Interval bounder,
Linear Dominated Bounder (LDB),
Quadratic Fast Bounder (QFB))
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Keplerian orbits MOID

Objective function: square distance | d? = f (11, v2)

Search domain: vy, v, € [—7, 7]

COSY-GO optimization example
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vy €] -126.554010, -126.554007]

50 100 150

vy €[ 99.8444266, 99.8444279);

COSY-GO characteristics

» Returns validated bounds of the global minimum

» Computes all the global minima

Taylor Model Methods VII POLITECNICO DI MILANO

Wednesday. December 14th. 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization 7/19



Orbital perturbations

Main sources of perturbation

» Earth's gravitational fields harmonics

m Modify orbital plane and orbit orientation (£2, w)
> Atmospheric drag

m Reduces orbit altitude (a, e)
» Solar radiation pressure

m Affects mainly e and other orbital parameters in complicate way
» Third body attraction (Moon, Sun)

®m Acts mainlyon Q, w, I, M
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Orbital perturbations (2)
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Type of perturbations

> Secular perturbations
» Long period perturbation (T > Tey)
» Short period perturbations (T < Trev)
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2 MOID of perturbed orbits

» Orbital perturbations act on debris and satellites

» Orbital parameters (a, e, /, 2, w) become functions of time t

aj (1 — e?
I’,'Zil( e') s b = wj + v
1+ e cos(v;)

sin(€2;) cos(¢;) + cos(82;) cos(1;) sin(¢;)

cos(R2;) cos(£;) — sin(2;) cos(/;) sin(¥;)
- { sin(l;) sin(¢;) }

d* = ('71 - '72)2 + (rJl - rJ2)2 + (rK1 - er)Z

Objective function: ‘ d? = f (11, v, t) ‘

Search domain: vy, v, € [—m, 7| rad; ‘ t € [0, 365] days‘
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Analytlcal models

HANDE (LEO)

» Zonal harmonics J», J3, and Jy
» Atmospheric drag (arbitrary density model)

» Canonical variables: no singularities when / = 0 and/or e = 0

Aksnes’ solution

» Zonal harmonics J, J3, Js, and Js

» Hill's variables: no singularities for / =0 and e =0

SGP4 (GEO)

» Zonal harmonics J», J3, and Jy
» Luni-solar perturbations (secular, long period)

» Resonance 1:1 (A2, Az 1 and A3 3)

Taylor Model Methods VII POLITECNICO DI MILANO

Wednesday. December 14th. 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization 11/19



Test case #1: zonal harmonics perturbation

Initial osculating elements

Orbit # Orbit type Dynamical Model a e ] Q w
km - deg deg deg
1 Sun-syncr. Aksnes 6878.136 0.0 97.0 110.0 70.0
2 MEO Kepler 11130.227 0.4 6.5 300.0 73.0

> At initial time MOID is 1880.083 km

> NB: this correspond to the MOID with
keplerian approximation

> J, perturbations rotates orbital plane of
orbit 1 (red)

> Orbit 2 (black) is Keplerian (satellite)

> 4 intersections are possible in 1 year

Computed minimum enclosure: ‘ d? = [—0.22250739E — 307, 0.68795338E — 014] ‘
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M| Test case #1: intersections

v vy At
[deg] [deg] [days]
[-40.9823329, -40.9823327]  [-26.0738536, -26.0738534]  [61.7100874, 61.7190876]
[155.990229, 155.990231] [26.0738534, 26.0738536] [119.068571, 119.068573]
Day 61.7191 Day 61.7191
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M| Test case #1: intersections

v vy At

[deg] [deg] [days]
[118.290326, 118.200328] [-26.0738536, -26.0738534]  [260.826736, 260.826738]
[-39.7805915, -39.7805913] [26.0738534, 26.0738536] [318.632662, 318.632664]
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Test case #2 and #3: atmospheric drag

Initial osculating elements

Orbit # Orbit type Dynamical Model a e ] Q w B
km - deg deg deg
1 Molnyia-like Aksnes/HANDE 9825.909 0.3 63.43 276.6 168.7 0.04
2 MEO Aksnes 12559.681 0.0 10.0 0.0 0.0 -

> Atmospheric drag effects on MOID
> Orbit 1 (red) has low perigee

~ 50001 > Test case #2, orbit 1 modelled with
§ 0 zonal harmonics
| > Test case #3, orbit 1 modelled with
) J zonal harmonics and atmospheric drag
b > Orbit 2 (black) is modelled with zonal

harmonics in test cases #2 and #3

Rl
J[km] I [km]
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Test case #2 and #3: atmospheric drag

Initial osculating elements

Orbit # Orbit type Dynamical Model a e ] Q w B
km - deg deg deg
1 Molnyia-like Aksnes/HANDE 9825.909 0.3 63.43 276.6 168.7 0.04
2 MEO Aksnes 12559.681 0.0 10.0 0.0 0.0 -

> Atmospheric drag effects on MOID

> Orbit 1 (red) has low perigee

> Test case #2, orbit 1 modelled with
zonal harmonics

> Test case #3, orbit 1 modelled with
zonal harmonics and atmospheric drag

. > Orbit 2 (black) is modelled with zonal
x10 . .
T e harmonics in test cases #2 and #3

K [km]

Test case#2 minimum enclosure: | d?> = [294.108777, 294.111215] ‘

Test case#3 minimum enclosure: | d?> = [—0.22250739EF — 307, 0.25157065E — 018] ‘

Semi-major axis a reduction due to atmospheric drag causes orbits intersection
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M| Test case #2 and #3

Test case # vy [deg] vy [deg] t [days]
2 [ -164.464846, -164.460773 ] [ -104.832006, -104.824949 | [ 359.995569, 360.000001 ]
3 [ -163.805136, -163.805134 ] [ -52.4528862, -52.4528823 | [ 336.907751, 336.907755 |
No atmospheric drag Atmospheric drag

Day 359.9978 «1d Day «1¢

v, ldeg)
o
v, [deg]

-150 -100  -50 50 150 o [k -150 -100  -50 50 100 150 d[km)
]  Cea k']

v, fleg

Obs. Similar contour plots between test cases #2 and #3
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Test case #4

Initial osculating elements

Orbit # Orbit type Dynamical Model a e ] Q w B
km - deg deg deg
1 Molnyia-like HANDE 9825.909 0.3 63.4 276.6 171.5 0.04
2 MEO Aksnes 11278.136 0.0 25.0 110.0 200.0 -
>

Atmospheric drag and zonal harmonics
act on orbit 1 (red)

> Orbit 2 (black) is perturbed by zonal

K [km]

) harmonics
' > d? = [1566860.77, 1566861.40] km?2
”km}x " o > No intersections occur in 1 year
e e T » MOID: [1251.7431, 1251.7433] km
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Computational time analysis

Cut-off and expa nsion order Test case #3 computational time

Cut-off [km?] Box size Exp. order Elapsed Time [s]

> Cut-off value definition reduces

. . - 0.1 6 57.60
computational time 100 01 6 49,58
» Optimization time increases with - 0.1 4 s1.74
. 1 1 4 27.
expansion order o g 1 N 31 gg
100 0.1 2 26.79
Box size and expansion order Test case #4 computational time

Cut-off [km?] Box size Exp. order Elapsed Time [s]

> Expansion order more effective than

box size - 0.01 6 216.07
100 0.01 6 15.88

» Large initial d*> = significant time 100 0.1 6 15.55
saving with cut-off 100 0.1 4 10.74
100 01 2 8.02

*Processor: Intel® Pentium® M 1.73GHz; RAM: 1.0 GB; OS: Linux 2.6.34-Sabayon
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Conc|u5|ons

» A method for the computation of minimum distance between two
perturbed orbits is presented

» The method is based on Taylor differential algebra and COSY-GO
global optimizer

» Test cases that account for zonal harmonics and atmospheric drag are
presented

» Analysis of expansion order and minimum box size effects are
considered
Future developments
» Analyze the impact of uncertainties on MOID

» From minimum distance between orbits to minimum distance between
trajectories = d? = f(t)

» Implementation of alternative analytical solutions
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Differential Algebra

Differential Algebra (DA)

» Algebra of real numbers = Algebra of Taylor polynomials

» Automatic differentiation techniques

» Taylor expansions up to arbitrary order n for sufficiently regular
functions

Accuracy of exy ion varying poly ial order

DA map of v(t) of Kepler's equation solution 10°
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Interval arithmetics

Interval arithmetics (1A)

» Extended domains of real numbers represented trough rigorous
enclosures of intervals

» Evaluation of functions through interval arithmetics provides rigorous

upper and lower bounds of a function inside an interval
Disadvantage: overestimation of the result

A
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Taylor models (TM)

Objective: combine advantages of DA and IA

Differential Algebra Interval arithmetics

Tay|or p0|yn0mia|s contains Intervals bound function deviation
functional dependance from polynomial approximation

L, ‘Taylor mode| P

f(x) € Paxo,f (X = X0) + Inxo.[a,b],F Vxo, x € [a, b]

Tn7X07[avb]7f = (Pn7X07f’ /’77X07[avb]7f)

a b a b
1A ™
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