

Taylor Model Methods VII

Casa Marina Hotel Key West, Florida, December 14-17, 2011

Collision risk assessment for perturbed orbits via rigorous global optimization

A. Morselli, R. Armellin, P. Di Lizia, F. Bernelli-Zazzera Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy

《曰》 《聞》 《문》 《문》 문[법

- High number of threatening objects orbit the Earth
- In-orbit collisions increase debris amount
- Goal: identify intersecting orbits
- Intersection criteria: Minimum Orbit Intersection Distance (MOID)
- MOID computation methods: analytical, geometrical, d^2 minimization
- State of the art: MOID is computed only for Keplerian orbits
- Problem: perturbations acts on debris and satellites
 - Atmospheric drag
 - Gravitational field zonal harmonics
 - Luni-solar perturbations
- Objective: include perturbation effects into MOID computation
 - Method: global minimization of d²
 - Optimizer: COSY-GO, based on Taylor Models and Differential Algebra

Taylor Model Methods VII

POLITECNICO DI MILANO

1 Keplerian orbits and distance computation

- 2 MOID of perturbed orbits
- 3 Test cases
- 4 Computational time analysis
- 5 Conclusions

Taylor Model Methods VII

POLITECNICO DI MILANO

Nerifocal reference frame

$$r=\frac{a\left(1-e^2\right)}{1+e\cos(\nu)}$$

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 - Collision risk assessment for perturbed orbits via rigorous global optimization

= nar

🔰 Earth Centered Intertial (ECI) frame

$$\mathbf{r}_{i} = \begin{cases} r_{l_{i}} \\ r_{J_{i}} \\ r_{K_{i}} \end{cases} = r_{i} \begin{cases} \cos(\Omega)\cos(\ell) - \sin(\Omega)\cos(I)\sin(\ell) \\ \sin(\Omega)\cos(\ell) + \cos(\Omega)\cos(I)\sin(\ell) \\ \sin(I)\sin(\ell) \end{cases}, \qquad \ell = \omega + \nu$$

Taylor Model Methods VII

POLITECNICO DI MILANO

Square distance computation

Keplerian orbits distance computation:

- Two sets of five fixed keplerian elements $\mathcal{K}_i = \{a_i, e_i, l_i, \Omega_i, \omega_i\}, i = 1, 2$
- Position of body *i* depends on true anomaly ν_i
- True anomaly domain: $\nu_i \in [-\pi, \pi]$ rad

Square distance: $d^2 = f(\nu_1, \nu_2) = (r_{l_1} - r_{l_2})^2 + (r_{J_1} - r_{J_2})^2 + (r_{K_1} - r_{K_2})^2$

Taylor Model Methods VII

POLITECNICO DI MILANO

Branch & Bound algorithm

- Branch: based on 1st e 2nd order information of the objective function
- Bound: objective function computed as TM and appropriate bounder used (Interval bounder, Linear Dominated Bounder (LDB), Quadratic Fast Bounder (QFB))

Taylor Model Methods VII

POLITECNICO DI MILANO

Branch & Bound algorithm

- Branch: based on 1st e 2nd order information of the objective function
- Bound: objective function computed as TM and appropriate bounder used (Interval bounder, Linear Dominated Bounder (LDB), Quadratic Fast Bounder (QFB))

Taylor Model Methods VII

POLITECNICO DI MILANO

Branch & Bound algorithm

- Branch: based on 1st e 2nd order information of the objective function
- Bound: objective function computed as TM and appropriate bounder used (Interval bounder, Linear Dominated Bounder (LDB), Quadratic Fast Bounder (QFB))

Taylor Model Methods VII

POLITECNICO DI MILANO

Branch & Bound algorithm

- Branch: based on 1st e 2nd order information of the objective function
- Bound: objective function computed as TM and appropriate bounder used (Interval bounder, Linear Dominated Bounder (LDB), Quadratic Fast Bounder (QFB))

Taylor Model Methods VII

POLITECNICO DI MILANO

 $\nu_1 \in [\ 99.8444266, \ 99.8444279]; \quad \nu_2 \in [\ -126.554010, \ -126.554007]$

COSY-GO characteristics

- Returns validated bounds of the global minimum
- Computes all the global minima

Taylor Model Methods VII

POLITECNICO DI MILANO

🔰 Orbital perturbations

Main sources of perturbation

- Earth's gravitational fields harmonics
 - Modify orbital plane and orbit orientation (Ω, ω)
- Atmospheric drag
 - Reduces orbit altitude (a, e)
- Solar radiation pressure
 - Affects mainly e and other orbital parameters in complicate way
- Third body attraction (Moon, Sun)
 - Acts mainly on Ω , ω , I, M

Taylor Model Methods VII

POLITECNICO DI MILANO

Orbital perturbations (2)

Acceleration [km/s²]

10

Type of perturbations

- ► Secular perturbations
- Long period perturbation ($T > T_{rev}$) ►
- Short period perturbations ($T < T_{rev}$)

Taylor Model Methods VII

POLITECNICO DI MILANO

MOID of perturbed orbits

- · Orbital perturbations act on debris and satellites
- Orbital parameters (a, e, I, Ω , ω) become functions of time t

 $r_i = \frac{a_i \left(1 - e_i^2\right)}{1 + e_i \cos(\nu_i)}, \qquad \ell_i = \omega_i + \nu_i$ $\mathbf{r}_i = \left\{ \begin{array}{c} r_{I_i} \\ r_{J_i} \\ r_{I_i} \end{array} \right\} =$ **r**_{1.2} MOII $= r_i \begin{cases} \cos(\Omega_i) \cos(\ell_i) - \sin(\Omega_i) \cos(l_i) \sin(\ell_i) \\ \sin(\Omega_i) \cos(\ell_i) + \cos(\Omega_i) \cos(l_i) \sin(\ell_i) \\ \sin(I_i) \sin(\ell_i) \end{cases}$ $d^{2} = (r_{l_{1}} - r_{l_{2}})^{2} + (r_{l_{1}} - r_{l_{2}})^{2} + (r_{K_{1}} - r_{K_{2}})^{2}$ **Objective function:** $d^2 = f(\nu_1, \nu_2, t)$ Search domain: $\nu_1, \nu_2 \in [-\pi, \pi]$ rad; $t \in [0, 365]$ days Taylor Model Methods VII POLITECNICO DI MILANO

Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization

Analytical models

HANDE (LEO)

- ▶ Zonal harmonics J₂, J₃, and J₄
- Atmospheric drag (arbitrary density model)
- Canonical variables: no singularities when I = 0 and/or e = 0

Aksnes' solution

- Zonal harmonics J_2 , J_3 , J_4 , and J_5
- Hill's variables: no singularities for I = 0 and e = 0

SGP4 (GEO)

- Zonal harmonics J₂, J₃, and J₄
- Luni-solar perturbations (secular, long period)
- Resonance 1:1 ($\lambda_{2,2}$, $\lambda_{3,1}$ and $\lambda_{3,3}$)

Taylor Model Methods VII

POLITECNICO DI MILANO

11/19

1988

1987

1972

	Initial osculating elements						
Orbit #	Orbit type	Dynamical Model	а	е	1	Ω	ω
			km	-	deg	deg	deg
1	Sun-syncr.	Aksnes	6878.136	0.0	97.0	110.0	70.0
2	MEO	Kepler	11130.227	0.4	6.5	300.0	73.0

- At initial time MOID is 1880.083 km
- **NB**: this correspond to the MOID with ► keplerian approximation
- J_2 perturbations rotates orbital plane of orbit 1 (red)
- Orbit 2 (black) is Keplerian (satellite)
- 4 intersections are possible in 1 year

Computed minimum enclosure: $d^2 = [-0.22250739E - 307, 0.68795338E - 014]$

Taylor Model Methods VII

POLITECNICO DI MILANO

\mathbf{Y} Test case #1: intersections

ν_1	ν_2	Δt	
[deg]	[deg]	[days]	
[-40.9823329, -40.9823327]	[-26.0738536, -26.0738534]	[61.7190874, 61.7190876]	
[155.990229, 155.990231]	[26.0738534, 26.0738536]	$[119.068571, \ 119.068573]$	

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization

\mathbf{Y} Test case #1: intersections

ν_1	ν_2	Δt	
[deg]	[deg]	[days]	
[118.290326, 118.290328]	[-26.0738536, -26.0738534]	[260.826736, 260.826738]	
[-39.7805915, -39.7805913]	[26.0738534, 26.0738536]	[318.632662, 318.632664]	

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization

Initial osculating elements								
Orbit #	Orbit type	Dynamical Model	а	е	1	Ω	ω	В
			km	-	deg	deg	deg	
1	Molnyia-like	Aksnes/HANDE	9825.909	0.3	63.43	276.6	168.7	0.04
2	MEO	Aksnes	12559.681	0.0	10.0	0.0	0.0	-

- Atmospheric drag effects on MOID
- Orbit 1 (red) has low perigee
- Test case #2, orbit 1 modelled with zonal harmonics
- Test case #3, orbit 1 modelled with zonal harmonics and atmospheric drag
- Orbit 2 (black) is modelled with zonal harmonics in test cases #2 and #3

Taylor Model Methods VII

POLITECNICO DI MILANO

Initial osculating elements								
Orbit #	Orbit type	Dynamical Model	а	е	1	Ω	ω	В
			km	-	deg	deg	deg	
1	Molnyia-like	Aksnes/HANDE	9825.909	0.3	63.43	276.6	168.7	0.04
2	MEO	Aksnes	12559.681	0.0	10.0	0.0	0.0	-

- Atmospheric drag effects on MOID
- Orbit 1 (red) has low perigee
- Test case #2, orbit 1 modelled with zonal harmonics
- Test case #3, orbit 1 modelled with zonal harmonics and atmospheric drag
- Orbit 2 (black) is modelled with zonal harmonics in test cases #2 and #3

Test case#2 minimum enclosure: $d^2 = [294.108777, 294.111215]$ Test case#3 minimum enclosure: $d^2 = [-0.22250739E - 307, 0.25157065E - 018]$

Semi-major axis a reduction due to atmospheric drag causes orbits intersection

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization

Course We

Test case $\#$	ν_1	[deg]	ν_2	[deg]	t [days]
2	[-164.464846,	-164.460773]	[-104.832006,	-104.824949]	[359.995569, 360.000001]
3	[-163.805136,	-163.805134]	[-52.4528862,	-52.4528823]	[336.907751, 336.907755]

Obs. Similar contour plots between test cases #2 and #3

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization

= 200

Ν	Test	case	#4
---	------	------	----

	Initial osculating elements								
	Orbit #	Orbit type	Dynamical Model	а	е	Ι	Ω	ω	В
				km	-	deg	deg	deg	
1	1	Molnyia-like	HANDE	9825.909	0.3	63.4	276.6	171.5	0.04
	2	MEO	Aksnes	11278.136	0.0	25.0	110.0	200.0	-

- Atmospheric drag and zonal harmonics act on orbit 1 (red)
- Orbit 2 (black) is perturbed by zonal harmonics
- $d^2 = [1566860.77, 1566861.40] \text{ km}^2$
- No intersections occur in 1 year
- MOID: [1251.7431, 1251.7433] km

Taylor Model Methods VII

POLITECNICO DI MILANO

Computational time analysis

Cut-off and expansion order

- Cut-off value definition reduces computational time
- Optimization time increases with expansion order

Test case #3 computational time

Cut-off [km ²]	Box size	Exp. order	Elapsed Time [s]
-	0.1	6	57.60
100	0.1	6	49.58
-	0.1	4	31.74
100	0.1	4	27.38
-	0.1	2	31.39
100	0.1	2	26.79

Box size and expansion order

- Expansion order more effective than box size
- Large initial d² ⇒ significant time saving with cut-off

Test case #4 computational time

Cut-off [km ²]	Box size	Exp. order	Elapsed Time [s]
-	0.01	6	216.07
100	0.01	6	15.88
100	0.1	6	15.55
100	0.1	4	10.74
100	0.1	2	8.02

*Processor: Intel[®] Pentium[®] M 1.73GHz; RAM: 1.0 GB; OS: Linux 2.6.34-Sabayon

Taylor Model Methods VII

POLITECNICO DI MILANO

- A method for the computation of minimum distance between two perturbed orbits is presented
- The method is based on Taylor differential algebra and COSY-GO global optimizer
- Test cases that account for zonal harmonics and atmospheric drag are presented
- Analysis of expansion order and minimum box size effects are considered

Future developments

- Analyze the impact of uncertainties on MOID
- From minimum distance between orbits to minimum distance between trajectories $\Rightarrow d^2 = f(t)$
- Implementation of alternative analytical solutions

Taylor Model Methods VII

POLITECNICO DI MILANO

Taylor Model Methods VII

Casa Marina Hotel Key West, Florida, December 14-17, 2011

Collision risk assessment for perturbed orbits via rigorous global optimization

A. Morselli, R. Armellin, P. Di Lizia, F. Bernelli-Zazzera Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy

《曰》 《聞》 《문》 《문》 문[법

Differential Algebra (DA)

- ► Algebra of real numbers ⇒ Algebra of Taylor polynomials
- Automatic differentiation techniques
- Taylor expansions up to arbitrary order *n* for sufficiently regular functions

I	COEFFICIENT	ORDER	EXP t
1	1.197915993004572	0	0
2	3084298151229335E-03	1	1
3	9164915499374143E-06	2	2
4	0.7094672077674502E-09	3	3
5	0.5387967374899166E-12	4	4
6	2166159111274373E-14	5	5
7	0.1221617698455060E-17	6	6

DA map of $\nu(t)$ of Kepler's equation solution

Accuracy of expansion varying polynomial order

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 - Collision risk assessment for perturbed orbits via rigorous global optimization

Interval arithmetics

Interval arithmetics (IA)

- Extended domains of real numbers represented trough rigorous enclosures of intervals
- Evaluation of functions through interval arithmetics provides rigorous upper and lower bounds of a function inside an interval Disadvantage: overestimation of the result

Taylor Model Methods VII

POLITECNICO DI MILANO

Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization