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Motivation

§ High number of threatening objects orbit the Earth

§ In-orbit collisions increase debris amount

§ Goal: identify intersecting orbits

§ Intersection criteria: Minimum Orbit Intersection Distance (MOID)

§ MOID computation methods: analytical, geometrical, d2 minimization

§ State of the art: MOID is computed only for Keplerian orbits

§ Problem: perturbations acts on debris and satellites
� Atmospheric drag
� Gravitational field zonal harmonics
� Luni-solar perturbations

§ Objective: include perturbation effects into MOID computation
� Method: global minimization of d2

� Optimizer: COSY-GO, based on Taylor Models and Differential Algebra
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Earth Centered Intertial (ECI) frame
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Square distance computation
Keplerian orbits distance computation:

§ Two sets of five fixed keplerian elements Ki “ tai , ei , Ii ,Ωi , ωiu, i “ 1, 2

§ Position of body i depends on true anomaly νi

§ True anomaly domain: νi P r´π, πs rad

Square distance: d
2 “ f pν1, ν2q “ prI1 ´ rI2q
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Global optimizer COSY-GO (1)

Branch & Bound algorithm

§ Branch: based on 1st e 2nd order
information of the objective
function

§ Bound: objective function
computed as TM and appropriate
bounder used (Interval bounder,
Linear Dominated Bounder (LDB),
Quadratic Fast Bounder (QFB))

x

f pxq
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Keplerian orbits MOID

Objective function: square distance d2 “ f pν1, ν2q

Search domain: ν1, ν2 P r´π, πs

ν1

ν2

r1,2

MOID

COSY-GO optimization example

ν1 P[ 99.8444266, 99.8444279]; ν2 P[ -126.554010, -126.554007]

COSY-GO characteristics

§ Returns validated bounds of the global minimum

§ Computes all the global minima
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Orbital perturbations

Main sources of perturbation

§ Earth’s gravitational fields harmonics

� Modify orbital plane and orbit orientation (Ω, ω)

§ Atmospheric drag

� Reduces orbit altitude (a, e)

§ Solar radiation pressure

� Affects mainly e and other orbital parameters in complicate way

§ Third body attraction (Moon, Sun)

� Acts mainly on Ω, ω, I , M
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Orbital perturbations (2)
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Type of perturbations

§ Secular perturbations

§ Long period perturbation (T ą Trev)

§ Short period perturbations (T ă Trev)
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MOID of perturbed orbits

§ Orbital perturbations act on debris and satellites

§ Orbital parameters (a, e, I , Ω, ω) become functions of time t
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Analytical models

HANDE (LEO) 1987

§ Zonal harmonics J2, J3, and J4

§ Atmospheric drag (arbitrary density model)

§ Canonical variables: no singularities when I “ 0 and/or e “ 0

Aksnes’ solution 1972

§ Zonal harmonics J2, J3, J4, and J5

§ Hill’s variables: no singularities for I “ 0 and e “ 0

SGP4 (GEO) 1988

§ Zonal harmonics J2, J3, and J4

§ Luni-solar perturbations (secular, long period)

§ Resonance 1:1 (λ2,2, λ3,1 and λ3,3)
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Test case #1: zonal harmonics perturbations

Initial osculating elements
Orbit # Orbit type Dynamical Model a e I Ω ω

km – deg deg deg

1 Sun-syncr. Aksnes 6878.136 0.0 97.0 110.0 70.0
2 MEO Kepler 11130.227 0.4 6.5 300.0 73.0

§ At initial time MOID is 1880.083 km

§ NB: this correspond to the MOID with
keplerian approximation

§ J2 perturbations rotates orbital plane of
orbit 1 (red)

§ Orbit 2 (black) is Keplerian (satellite)

§ 4 intersections are possible in 1 year

Computed minimum enclosure: d2 “ r´0.22250739E ´ 307, 0.68795338E ´ 014s
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Test case #1: intersections
ν1 ν2 ∆t

[deg] [deg] [days]
r-40.9823329, -40.9823327s r-26.0738536, -26.0738534s r61.7190874, 61.7190876s
r155.990229, 155.990231s r26.0738534, 26.0738536s r119.068571, 119.068573s
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Test case #1: intersections
ν1 ν2 ∆t

[deg] [deg] [days]
r118.290326, 118.290328s r-26.0738536, -26.0738534s r260.826736, 260.826738s

r-39.7805915, -39.7805913s r26.0738534, 26.0738536s r318.632662, 318.632664s
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Test case #2 and #3: atmospheric drag

Initial osculating elements
Orbit # Orbit type Dynamical Model a e I Ω ω B

km – deg deg deg

1 Molnyia-like Aksnes/HANDE 9825.909 0.3 63.43 276.6 168.7 0.04
2 MEO Aksnes 12559.681 0.0 10.0 0.0 0.0 -

§ Atmospheric drag effects on MOID

§ Orbit 1 (red) has low perigee

§ Test case #2, orbit 1 modelled with
zonal harmonics

§ Test case #3, orbit 1 modelled with
zonal harmonics and atmospheric drag

§ Orbit 2 (black) is modelled with zonal
harmonics in test cases #2 and #3
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Test case #2 and #3: atmospheric drag

Initial osculating elements
Orbit # Orbit type Dynamical Model a e I Ω ω B

km – deg deg deg

1 Molnyia-like Aksnes/HANDE 9825.909 0.3 63.43 276.6 168.7 0.04
2 MEO Aksnes 12559.681 0.0 10.0 0.0 0.0 -

§ Atmospheric drag effects on MOID

§ Orbit 1 (red) has low perigee

§ Test case #2, orbit 1 modelled with
zonal harmonics

§ Test case #3, orbit 1 modelled with
zonal harmonics and atmospheric drag

§ Orbit 2 (black) is modelled with zonal
harmonics in test cases #2 and #3

Test case#2 minimum enclosure: d2 “ r294.108777, 294.111215s

Test case#3 minimum enclosure: d2 “ r´0.22250739E ´ 307, 0.25157065E ´ 018s

Semi-major axis a reduction due to atmospheric drag causes orbits intersection
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Test case #2 and #3

Test case # ν1 rdegs ν2 rdegs t rdayss

2 r -164.464846, -164.460773 s r -104.832006, -104.824949 s r 359.995569, 360.000001 s

3 r -163.805136, -163.805134 s r -52.4528862, -52.4528823 s r 336.907751, 336.907755 s

No atmospheric drag
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Obs. Similar contour plots between test cases #2 and #3
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Test case #4

Initial osculating elements
Orbit # Orbit type Dynamical Model a e I Ω ω B

km – deg deg deg

1 Molnyia-like HANDE 9825.909 0.3 63.4 276.6 171.5 0.04
2 MEO Aksnes 11278.136 0.0 25.0 110.0 200.0 -

§ Atmospheric drag and zonal harmonics
act on orbit 1 (red)

§ Orbit 2 (black) is perturbed by zonal
harmonics

§ d2 “ r1566860.77, 1566861.40s km2

§ No intersections occur in 1 year

§ MOID: r1251.7431, 1251.7433s km
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Computational time analysis

Cut-off and expansion order

§ Cut-off value definition reduces
computational time

§ Optimization time increases with
expansion order

Test case #3 computational time

Cut-off
“

km2
‰

Box size Exp. order Elapsed Time rss

- 0.1 6 57.60

100 0.1 6 49.58

- 0.1 4 31.74

100 0.1 4 27.38

- 0.1 2 31.39

100 0.1 2 26.79

Box size and expansion order

§ Expansion order more effective than
box size

§ Large initial d2
ñ significant time

saving with cut-off

Test case #4 computational time

Cut-off
“

km2
‰

Box size Exp. order Elapsed Time rss

- 0.01 6 216.07

100 0.01 6 15.88

100 0.1 6 15.55

100 0.1 4 10.74

100 0.1 2 8.02

˚Processor: Intel® Pentium® M 1.73GHz; RAM: 1.0 GB; OS: Linux 2.6.34-Sabayon
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Conclusions

§ A method for the computation of minimum distance between two
perturbed orbits is presented

§ The method is based on Taylor differential algebra and COSY-GO
global optimizer

§ Test cases that account for zonal harmonics and atmospheric drag are
presented

§ Analysis of expansion order and minimum box size effects are
considered

Future developments

§ Analyze the impact of uncertainties on MOID

§ From minimum distance between orbits to minimum distance between
trajectories ñ d2 “ f ptq

§ Implementation of alternative analytical solutions
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Differential Algebra

Differential Algebra (DA)

§ Algebra of real numbers ñ Algebra of Taylor polynomials

§ Automatic differentiation techniques

§ Taylor expansions up to arbitrary order n for sufficiently regular
functions

DA map of νptq of Kepler’s equation solution

I COEFFICIENT ORDER
EXP
t

1 1.197915993004572 0 0
2 -.3084298151229335E-03 1 1
3 -.9164915499374143E-06 2 2
4 0.7094672077674502E-09 3 3
5 0.5387967374899166E-12 4 4
6 -.2166159111274373E-14 5 5
7 0.1221617698455060E-17 6 6

Accuracy of expansion varying polynomial order

−2000 −1500 −1000 −500 0 500 1000 1500 2000
10

−10

10
−5

10
0

10
5

Time [s]

P
os

iti
on

 e
rr

or
 [k

m
]

 

 

Order 2

Order 4

Order 6

Order 8

Taylor Model Methods VII
Wednesday, December 14th, 2011 — Collision risk assessment for perturbed orbits via rigorous global optimization 20/19



Interval arithmetics

Interval arithmetics (IA)

§ Extended domains of real numbers represented trough rigorous
enclosures of intervals

§ Evaluation of functions through interval arithmetics provides rigorous
upper and lower bounds of a function inside an interval
Disadvantage: overestimation of the result

a b
IA

fmin

fmax
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Taylor models (TM)
Objective: combine advantages of DA and IA

Differential Algebra

Taylor polynomials contains
functional dependance

Interval arithmetics

Intervals bound function deviation
from polynomial approximation

Taylor model

f pxq P Pn,x0,f px ´ x0q ` In,x0,ra,bs,f @x0, x P ra, bs

Tn,x0,ra,bs,f “
`

Pn,x0,f , In,x0,ra,bs,f

˘

a b a b
IA TM
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