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S3 device at SPIRAL2 
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SHE / VHE - Fusion-evaporation in direct 

kinematics  

SHE / VHE 
48Ca+248Cm  
292116 + 4n 

Synthesis and delayed 

spectroscopy 

Chemistry 

Ground state properties (half-

lives, masses, spectroscopy) 

The 100Sn factory 

 

N = Z 
58Ni + 46Ti  

100Sn + 4n 

Ground state properties (half-lives, 

masses, spectroscopy) 

Technical challenges for S3: 

Separation of very rare events from intense backgrounds 

Large beam acceptance and high selectivity for weak reaction channels are required 

 

Interesting Experiments 

SPIRAL2 is a project to expand the capabilities of the GANIL, France facility in nuclear physics research with 

exotic beams  

One of the new instruments is the Super Separator Spectrometer (S3) for high intensity stable heavy ion beams.  

 



MAMS Layout for S3 

 36m x 16m room layout 

 Baseline MAMS configuration uses 8 quadruplets of mutipoles with quadrupole, sextupole, & 

octupole coils 
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Momentum Achromat followed by Mass Separator design (MAMS) 



S3 Device Description 

 Excellent primary beam suppression (1013 ) at 0° 

 Total transmission better than 50% for the two selected experiments 


48Ca + 248Cm  →   292116 +4n 


58Ni + 48Ti  → 100Sn + 4n 

 This corresponds to:  

 charge state acceptance of ± 10%, 5 charge states with <Q> = +20 

 momentum acceptance for each charge state of ± 10%  

 large angular acceptance in both planes of +/- 50 mrad  

  Maximum magnetic rigidity Brmax = 1.8 Tm (momentum achromat) 

  Maximum electric rigidity Ermax = 12 MV  

  Resolving power  > 300 (FWHM) for physical separation in m/q 

  Beam spot on the production target of S3 of either:  

 σx = 0.5 mm (Gaussian) × σy = 2.5 mm (Gaussian) or 

 σx = 0.5 mm (Gaussian) × Δy = 10 mm (uniform)  



 Final focal plane size depending on the experiment 

 200 x 100 mm (maximum for high resolution mode, e.g. SHE synthesis)  

 100 x 100 mm (delayed gamma spectroscopy) 

 50 x 50 mm (low-energy branch gas catcher, GS properties)   

   Mass Achromat followed by Mass Separator (MAMS) layout choosen for S3 

  Momentum achromat to suppress primary beam by at least 1:1000. 

  Further beam suppression and mass channel selection by a mass separator stage which is 

fully achromatic in momentum for each m/q value. 

   Different operating modes are envisioned for performing experiments 

 

 

S3 Device Description (Continued) 



Layout in S3 room 
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First order optics 
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Primary beam (Showing 11% offset in Bρ) 

•Double mirror symmetric layout with 12mm per % of Bρ dispersion at the center  

•Mirror symmetric layout with 6.7mm per % of m/q dispersion at the mass focal plane  

Momentum achromat 

Mass separator 
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First Order Second Order 

X-Y plot at the mass focal plane: SHE 

Mass-energy aberrations corrected 

5 charge states selected by slits into  

a 7-cm x 3-cm catcher or detector 

48Ca + 248Cm  292116 + 4n  
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X-Y plot at the mass focal plane: NEZ 

First Order Second Order 

Mass-energy aberrations corrected 

5 charge states selected by slits into  

a 7-cm x 3-cm catcher or detector 

58Ni + 46Ti  100Sn + 4n 
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Histogram at mass focal Plane 

Plot showing position of mass line  

48Ca + 248Cm  292116 + 4n  δQ=±2, δm=±1, ∆Bρ =4.6% 

Mass energy aberrations corrected 
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δQ=±2, δm=±1, ∆Bρ=±7.5% 

58Ni + 46Ti  100Sn + 4n  

Plot showing position of mass line  



Magnet requirements for S3 

 8 SC quadruplets or triplets  

 3 dipoles and 1 electrostatic sector magnet  

 Each singlet has quadrupole, sextupole, & octupole coils, with 30-cm warm bore diameter & 

40-cm effective length (octupoles maay not be required) 

 Fields required at 15-cm radius for 2 T-m rigidity (higher rigidity is easy): 

– Quadrupole:                    1.0 T 

– Sextupole:  0.3 T 

– Octupole:  0.3 T 

 Total power required for cryo-coolers of 8 quadruplets ~160 kW  

– Warm iron used to speed up cool down (~1 ton per multipole) 

 Options for Multipole Magnet Design 

 Race track Coils 

 Double Helix Model by AML 

 3D Cosine theta magnets 
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Type of Magnets 

The electric and magnetic field will depend on the type of magnets we choose. 
Some examples:  

 Bending magnets (Dipole)  

 Focusing magnets (Quadrupole) 

 Steering magnets 

 Kicker magnets (thin Quadrupole) 

 Accelerating (Electric element) 

 Corrector magnets ( Hexapole, Octupole etc)  

Accelerator lattice consists of array of magnets setup to attain certain goal. Complexity 

comes from the fact that there are many undetermined parameters. To arrive at a final 

(fully optimized) beam optic layout requires several iterations between beam optic design 

studies, magnet design studies and other practical constraints.    
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Magnets for Accelerator Physics Applications 

 Bρ and Eρ of the beam/recoil 

– High Energy Physics: Only magnetic elements can be used 

– Low Energy Nuclear Physics (<10 Mev/nucleon): Both Electric and Magnetic 
elements can be used 

 Field quality requirement 

 Operating environment: Radiation Hardened magnets   

 Super conducting or conventional: Depends on field strength requirements 

 Tolerances to errors, misalignments, stress and strain in the support structures, 
heating  

 Practical constrains like positioning of beam dumps, detectors, slits, monitors 
etc. 

 Other factors: Reuse of existing magnets 

Some factors influencing the choice of magnets and the design of magnets 
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 During the design phase:  

– Is the magnet practically feasible to build ? 

• Field quality requirement 

• Cost estimate  

– Beam optic properties (Transfer Maps) 

– Fringe Fields  

– Misalignment study  

 After construction  

– Transfer maps with realistic fields  
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Some magnet Modelling codes/tools 

 TOSCA module OPERA package 

– 3D code, uses Finite Element Method (FEM) 

 ROXIE code from CERN  

– 3D code, uses many modes including hybrid Boundary Element Method & Finite 
Element Method  

 POISSON  

– 2D Magnetostatic code, uses FEM 

 SIMON 

– 3D code, uses Finite Difference method (FDM) 

 RADIA (Free) 

– 3D Magnetostatic code, uses Boundary Element Method (BEM) 

Pre-processor –> Field Solver –> Post-processor 



 Magnetic field due to arbitrary current distribution 





Taylor model Integration  

This method has following advantages:  

 No need to derive quadrature formulas with weights, support points xi and an explicit error 
formula 

 High order can be employed directly by just increasing the order of the Taylor model, limited only 
by the computational resources 

 Rather large dimensions are amenable by just increasing the dimensionality of the Taylor models, 
limited only by computational resources 

 

 



Tools 

Due to their frequent use in the accelerator magnet applications, a dedicated set of tools has been written in 

the code COSY INFINITY for 

– Infinitely long rectangular cross section current wire(2D design) 

– Finite length rectangular cross section current wire 

• Current coil of rectangular cross section (3D design) 

– Double Helix Model 

– Cosine-theta type Magnet model 

In addition to extracting the transfer maps these tools can be used to do conceptual design of 

magnets 
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S3 Multipole magnet : using racetrack coils 

3D coil configuration model using ROXIE Code 

Cross section layout and vector plot of the field 

3D coil configuration model using OPERA3D Code 



S3 Multipole magnet : using racetrack coils 

“Manikonda, S.; Nolen, J.; Berz, M. & Makino, K. (2009), 'Conceptual design of a 

superconducting quadrupole with elliptical acceptance and tunable higher order multipoles', Int. 

J. Mod. Phys. A24, 923-940.”  



Field Plots 

Field plot on the transverse "X" axis vs "By"  

Field plot along "Z“ axis vs "By" at x=15cm 

and y=0cm 



Double helix magnet design by Advanced Magnet Lab 

Inc. 

Dipole Example 

“Superconducting Double-Helix Accelerator Magnets, IEEE Proceedings of the 2003 Particle Accelerator 

Conference, 2003, Vol.3, pages 1996-1998. R.B. Meinke, M.J. Ball, C.L. Goodzeit” 



S3 Quadrupole Magnet: Double Helix Model 

 Effective Length = 0.197 m  

 Field Gradient Used = 2.29 T/m 

 Has negative field gradient outside magnet  
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3-D cos mφ Magnets 

 Proposed by P. L. Walstrom 

 Based on using a shape function 

 Produces pure cos mφ magnetic field in 3D 

“P. L. Walstrom, Soft-edged magnet models for higher-order beam-optics map codes, Nuclear Instruments 

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 

Equipment, Volume 519, Issues 1-2, Pages 216-221” 

F x

k x k 0.75` x k

1 1.25` k x 2 k 1.25` x k 0.75`

1 k 1.25` x k 1.25`

1 1.25` k x 2 k 0.75` x k 1.25`

k x k x k 0.75`

Winding that produces pure quadrupole field 

(m=2 and K=2.7, N=50)  



3D-Cos theta Quadrupole magnet 

 

Winding Radius (m) = 0.17085 

Total Number of turns =  50 

Tip-to-tip total Coil Z Length (m) = 0.5 

 



Harmonics for Quadrupole Magnet 



Allowed Higher order Harmonics for Quadrupole Magnet  



Quadrupole analysis 

Magnetic length on the axis : 396 mm Harmonic analysis 

Gradient integral (from -1500 to +1500 mm) homogeneities 

(red x, blue y) 

Gx(0)ds = 2.187 T Gy(0)ds = 2.187 T 

 J. Payet 

 CEA/DSM/Irfu/SACM 

 



 3D cos-theta Sextupole magnet 

 

Winding Radius (m) = 0.20085 

Total Number of turns =  36 

Tip-to-tip total Coil Z Length (m) = 0.5 

 



Harmonics for Sextupole Magnet 



Allowed Higher order Harmonics for Sextupole Magnet  



Sextupole analysis 

Magnetic length on the axis : 427 mm Harmonic analysis 

Sextupolar integral (from -1500 to +1500 mm) homogeneities 

(red x, blue y) 

Hx(0)ds = 14.9 T/m Hy(0)ds = 14.9 T/m 



3D cost-theta octupole magnet 

Winding Radius (m) = 0.1725 

Total Number of turns =  23 

Tip-to-tip total Coil Z Length (m) = 0.5 



Octupole analysis 

Magnetic length on the axis : 452 mm Harmonic analysis 

Octupolar integral (from -1500 to +1500 mm) homogeneities 

(red x, blue y) 

Ox(0)ds = 193.1 T/m2 Oy(0)ds = 193.1 T/m2 



Conclusion 

 Simulation studies were done to look at the feasibility of Superconducting 

option for S3 multipole magnets 

 3D cos-theta magnets were chosen as the basis for magnet bids 

 New coil models have been implemented in COSY-Infinity code  

 

 



BigRIPS superconducting quad triplets 

Roxie model to study the effect of end plates 

ROXIE9.0

07/05/31   10:263D aircore quadrupole magnet (NO end plates)
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Design of quadrupole magnet with an elliptic cross 

section 

• 18 superconducting racetrack coils (±108A/m2) 

• Rhombic prism support structure (elliptic aperture 

1:2) 

• "+" produces a positive multipole term 

• Inner wires produce quadrupole and octupole fields 

• Outer wires produce hexapole and decapole fields 

• 2D case: two Infinitely long current wires 

• 3D case: Current Coil 

Using DA we can make the currents as parameters and find the functional dependence  

Of the multipole components on the coil currents. 



3D Design: Fringe field 

The plot of the magnetic field on the midplane, y = 0 m. Only the magnetic field in 

the first quadrant is shown. 
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Operational Plot 

Quadrupole and the octupole terms Hexapole and the Decapole terms 

•The coefficients are computed at the horizontal half aperture 

•The current density was varied between ±108A/m2 

“Manikonda, S.; Nolen, J.; Berz, M. & Makino, K. (2009), 'Conceptual design of a 

superconducting quadrupole with elliptical acceptance and tunable higher order multipoles', Int. 

J. Mod. Phys. A24, 923-940.”  
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Double Doublet System 

Negative Unit Transfer Map at First Order 





Comparison of double-helix with hardedge model  
48Ca + 248Cm  292116 + 4n  


