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The Lorenz Equations

The equations describe a simplified model of unpre-
dictable turbulent flows in fluid dynamics.

Exhibits sensitive dependence on initial conditions and
chaoticity.

T=o(y—x)
y=z(p—2z)—y
z=xy — Pz
The standard parameter values are
8

0=10,f=75.p="28

and p is often varied. The fixed points are

(0,0,0), (:I:\/ﬁ(p—l),ﬂ:\/ﬁ<p—1),p—l).




Study Trajectories of the Lorenz System

Using conventional Runge Kutta integrators, study tra-
jectories of an initial point

(ZC, Y, Z)|O — <157 157 36)
Integration from ¢t =0 to t =1 = 20.

RK4: the 4th order RK
RK4S: 4th order RK with automatic step size control
COSY-RKS: 8th order RK implemented in COSY
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Study Trajectories of the Lorenz System

Using conventional Runge Kutta integrators, study tra-
jectories of an initial point

(ZC, Y, Z)|O — <157 157 36)
Integration from ¢t =0 to t =1 = 20.

x(T)| y(T)| =z(T)|single step error| CPU
RK4 2.20511.030 | 22.282 0.689
RK45 -3.38810.796 | 27.582 | 1.27e-2 0.904
COSY-RKS8|14.30919.591|39.039 | 1.21e-7 1

RKA4S: 4th order RK with automatic step size control
COSY-RKS: 8th order RK implemented in COSY



Study Trajectories of the Lorenz System

Using COSY-RKS, study trajectories of initial points
(z,y, 2)|o = (15, 15, 36)
and
(x,y, 2)|o = (15,15, 36) 4+ (£0.01, £0.01, £0.01)
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Rigorous Integrations of the Lorenz System

As a test case, transport an area of initial condition
(x,y, 2)|o = (15,15, 36) 4+ (£0.01, £0.01, £0.01)

using rigorous ODE integrators.

AWA: An interval based ODE integrator by R. Lohner

COSY-VI: Taylor model based ODE integrator in COSY
— Computed in 2001, using COSY-VI version 1



Taylor Model based Integrator COSY-VI
version 1 (1997-)

e High order expansion not only in time ¢ but also in transversal
variables .

e One time step integration via Picard iterations based on the
Shauder fixed point theorem.

e Shrink wrapping algorithm, a simplified version



The Wrapping Effect in Linear ODEs

. Initial Condition Interval Box / Solution Set

Solution Set In the Optimal Interval Box

Solution Set in Rotated Rectangles
( Here, the Right One is Optimal. )

Solution Set by Taylor Models



The Wrapping Effect in Nonlinear ODEs

. Initial Condition Interval Box ’ Solution Set

] Solution Set in the Optimal Interval Box

Solution Set in an Optimal Rotated Rectangle

O Solution Set in an Optimal Eight-Corner Polygon

Solution Set by Taylor Models



The Henon Map

Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

Tpal =1 — Ozx% + Un
Yn+1 — ﬁxn

It can easily be seen that the motion is area preserving for |G| = 1.We

consider
a=24and f = —1,

and concentrate on initial boxes of the from (xg, yy) € (0.4, —0.4)+[—d, d]*.



Error Size

Henon (Area Preserving). Performance Comparison. TM order 13, IC width 4e-3, no domain split
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Flow Enclosures of the Lorenz System
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Taylor Model based Integrator COSY-VI
version 2 (2002-)

e Shrink wrapping algorithm including blunting to control ill-
conditioned cases.

e Pre-conditioning algorithms based on the Curvilinear, QR de-
composition, and blunting pre-conditioners.

e Capability of weighted order computation, allowing to suppress
the expansion order in transversal variables .



Error Size
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Taylor Model based Integrator COSY-VI
version 3 (2007-)

e More economical one time step integration using the reference
trajectory and the Lie derivative based flow operator on the
deviation equations.

e Non aborting mechanism when prohibited arithmetic happens
such as 1/f for 0 € f.

e Improvement of step size control.
e Error parametrization of Taylor models.

e Dynamic domain decomposition.



Error Parametrization of Taylor models

Motivation: Is it possible to absorb the remainder error bound
intervals of Taylor models into the polynomial parts using addi-
tional parameters?

Phrase the question as the following problem:

1. Have Taylor models with 0 remainder error interval, which de-
pend on the independent variables # and the parameters a.

Ty = By(# @) + [0,0].
2. Perform Taylor model arithmetic on Tj), namely F(T})
F(Ty) = P(Z,@) + Iy, where I m
3. Try to absorb I into the polynomial part that depends on &
B(&,d) + Ir C P'(Z,&) +]0,0). (A)



Error Absorption

We limit the explicitly a-dependent part ﬁa(f, @) to be only
linearly dependent on &, and express I by the matrix form.
Bo#,d) + I € (M+ M(@) -+ (Tr+1p(@)) - 5

where (]AF)ZZ = |Ir;|, Ir(Z) = 0. The problem is now to find a set
sum of two paralleleplpeds Choose a favoured collection of

v column vectors L + L(Z) using the Psum algorithm.
Po(&, @)+ Iy C (L + i(:ﬁ’)) LA+ (E + E(f)) ¥
CLo [<T+E‘1of(£’)) -62+§-§]

>

where B is diagonal, (B);; = \bound((L Lo (E + E(f)) - B))].

If the diagonal terms of ([ +L o L(:z:)) are positive,

By(#,@)+ Ip  (L+ L@+ LoB)-a
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Cost of Additional Parameters

For a v dimensional system, we need v parameters a to absorb
Taylor model remainder error bound intervals. The dependence
on « is limited to linear. So, we use weighted DA. Choose an

appropriate weight order w for a.

e The dependence on @ has to be kept linear. Namely 2 - w > n,
where n is the computational order of Taylor models. Choose

n
:It(—) 1
w n 5 -+

Maximum size necessary for DA and TM for v = 2.

n v DA TM v DA TM w v, DA TM
13 2 105 140 | 24+ 2 2380 2419 7T 2+2, 161 200
21 2 253 304 | 2+ 2 12650 12705 =11 2+ 2, 385 440
33 2 595 670 | 2+ 2 66045 66124 17 242, 901 980




Henon (Area Preserving). Performance Comparison. TM order 13, IC width 4e-3, no domain split
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Dynamic Domain Decomposition

For extended domains, this is natural equivalent to step size
control. Similarity to what’s done in global optimization.

1. Evaluate ODE for At = 0 for current flow.

2. If resulting remainder bound R greater than e, split the domain
along variable leading to longest axis.

3. Absorb R in the TM polynomial part using the error parame-
trization method. If it fails, split the domain along variable
leading to largest x dependence of the error.

4. Put one half of the box on stack for future work.
Things to consider:

e Utilize "First-in-last-out" stack; minimizes stack length. Spe-
cial adjustments for stack management in a parallel environ-
ment, including load balancing.

e Outlook: also dynamic order control for dependence on initial
conditions
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The Duffing Equation

The equation describes a damped and driven oscillator.
Exhibits sensitive dependence on initial conditions and chaoticity.

i+ 01 + ax + B’ = v cos(wt)

Example: Study

T =y
= — 0y — x° + v cos(t)
with
§=025 ~=0.3,
for

te |0, (x,y)ic €[—2,2] x|—2,2].



Duffing. IC split map. 12x12 ICs. VIRDA=0.50. 343 Objs. min_length=2.083e-2
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Duffing eq. x'=y, y'=x-delta*y-x*3+gamma*cos(t), delta=0.25, gamma=0.3, 12x12 boxes in [-2,2]"2, T=0 (IC)
3 | | | | | |

box 1-|3 _
box 27 E—




Duffing eq. x'=y, y'=x-delta*y-x"3+gamma*cos(t), delta=0.25, gamma=0.3, 12x12 boxes in [-2,2]"2, T=pi/4
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box 1-3
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Duffing eq. x'=y, y'=x-delta*y-x*3+gamma*cos(t), delta=0.25, gamma=0.3, 12x12 boxes in [-2,2]"2, T=pi/2
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Duffing eq. x’=y, y'=x-delta*y-x*3+gamma*cos(t), delta=0.25, gamma=0.3, 12x12 boxes in [-2,2]*2, T=3*pi/4
3 | | | | | |
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Duffing eq. x'=y, y'=x-delta*y-x*3+gamma*cos(t), delta=0.25, gamma=0.3, 12x12 boxes in [-2,2]"2, T=pi
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Rigorous Integrations of the Lorenz System

Rigorous flow integrations of large ranges of initial con-
ditions have been computed using Taylor model based
ODE integrators, particularly by COSY-VI version 3.

Example: Flow computations of the standard Lorenz
equations for an area of initial condition

(x,y, 2)|o = (|—40, 40}, [-50, 50|, [—25, 75])



T=0.1

IC:[-40,40]x[-50,50]X[-25,75]

Lorenz
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Rigorous Integrations of the Lorenz System

Rigorous flow integrations of large ranges of initial con-
ditions have been computed using Taylor model based
ODE integrators, particularly by COSY-VI version 3.

Example: Flow computations of the standard Lorenz
equations for an area of initial condition

(x,y, 2)|o = (|—40, 40}, [-50, 50|, [—25, 75])

Example: Rigorous mapping of the Lorenz system to
study dynamics on Poincare surfaces. Particularly com-
pute the second full return Poincare maps to the surface
2z = p — 1 with a wide range of p dependence.



Lorenz, point integrations for the 2nd return to z=27 plane from the top
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Rigorous Flows and Poincare Projections

Rigorous flow computations using COSY-VI ver 3
e Integrate until an approximate return time ¢p

e The last time step is arranged such that the initial
Taylor models T;(r) of the time step is entirely before
crossing the surface and the solution Taylor models
T(r) is entirely after crossing the surface.

e Using the explicit time dependent TM solution T'(r, t)
of the last time step, generate the position dependent
return time tg(r) as a Taylor model.

o I'(r,tr(r)) provides a projected solution up to the
computation order; finally the small TM remainder
1s projected.
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Outlook

e Conduct Poincare projections more frequently,
possibly at every time step.
e Improvement of the Taylor model arithmetic package

in COSY to allow arbitrarily high precision Taylor
model computations.

e Improvement of COSY-VI,
associated to above and else.





