

Spin Tracking For Polarized Beam Experiments At The JüLich Cooler Synchrotron COSY (Juelich Electric Dipole Moment Invesigations JEDI)

December 17, 2011

Bernd Lorentz (for the JEDI collaboration, Forschungszentrum Juelich) Taylor Model Methods VII, Key West, USA

Topics

Polarized beams at COSY

- Future Project srEDM
 - Motivation for EDM measurement
 - Concept of Storage Ring EDM measurements
- The Juelich EDM Investigation (JEDI)
 - SC studies (ongoing)
 - Precursor experiments (next two years)
 - JEDI magnetic/electrostatic storage ring (longterm)

Summary

The Accelerator Facility

b.lorentz@fz-juelich.de

COoler **SY**nchrotron **COSY** accelerates (polarized) protons/ deuterons between 300/600 and 3700 MeV/c

4 internal and 3 external experimental areas

Electron cooling at low momenta Stochastic cooling at high momenta

Why is COSY interesting for EDM

lons: (pol. & unpol.): p and d

Momentum: 300/600 to 3700 MeV/c for p/d, respectively

Electron Cooling at injection Stochastic Cooling above 1.5 GeV/c

EDDA

Jump Quadrupole

Polarized Source

RF Solenoid

Spin Motion

Thomas-BMT equation (Thomas [1927], Bargmann, Michel, Telegdi [1959]):

$$rac{dS}{dt} = rac{e}{\gamma m} \, ec{S} \, x \, \left[(1 + \gamma G) ec{B}_{\perp} + (1 + G) ec{B}_{\parallel} \,
ight]_{
m Precession \, Equation \, in \, Laboratory \, Frame}$$

Number of spin rotation per turn: $_{V_p} = \gamma G$

$$G = \frac{g-2}{2}, G_p = 1.7928473, G_{\overline{p}} = 1.800, G_d = -0.142987$$

Imperfection resonance:

$$G = k$$
 k: integer

$$\gamma G = (kP \pm Q_y)$$

Field and positioning errors of magnets Resonance strength ~ y_{rms}

→ vertical orbit correction
→ adiabatic spin flip (partial snake)

Vertical focusing fields Resonance strength $\sim \sqrt{\varepsilon_y}$ *P*: superperiodicity *Q_y*: vertical tune

→ vertical tune jumps
→ vertical coherent betatron oscillations

Spin Resonances

b.lorentz@fz-juelich.de

Polarized Proton Beam

Methods to preserve polarization

→ tune jumps
 → vertical orbit excitation

Polarization during acceleration

b.lorentz@fz-juelich.de Spin Tracking For Polarized Beam Experiments at COSY-Juelich

EDDA Polarimeter

- two-layered cylindrical scintillator structure
 - Outer Layer (→ trigger!)
 - **D**: 32 overlapping slabs of triangular cross-section $(\Delta \phi = 11.25^{\circ})$
 - **F,R:** 2x29 semirings ($\Delta \theta_{\text{lab}} = 2.5^{\circ}$) left semirings $\phi \in [-90^{\circ}, 90^{\circ}]$ right semirings $\phi \in [90^{\circ}, 270^{\circ}]$

Proton Polarimetry: Kinematic and Coplanar Coincidences (pp elastic). Left-Right Asymetries by selection on Halfrings => P_V . Deuteron Polarimetry for dEDM: Coincidence Halfrings and groups of bars: Left/Right/Top/Bottom Asymetries => P_V , P_T

Highlight from recent polarized beam experiments

P.Goslawski et al., High precision beam momentum determination in a synchrotronusing a spin-resonance method Physical Review Special Topics - Accelerators and Beams (Vol.13, No.2) Feb. 2010

 η -mass determination in d p -> ³He η at Anke Use depolarizing resonance for accurate determination of beam momentum $f_{res} = (1+\gamma G) f_0$ f_{res} from depolarization f_o from Schottky Spectra (measured with EDDA) 0.07 intensity [arb. units] relative polarization 0.06 0.55 0.05 0.5 0.04 0.45 0.03 0.4 0.02 0.35 0.01 0.3 n 1.0117 1.0118 1.012 1.4036 1.4038 1.4039 1.0116 1.0119

Result: $\Delta p/p < 6 \ 10^{-5}$ at 13 momenta between 3100 and 3200 MeV/c

b.lorentz@fz-juelich.de

1.4037

revolution frequency f [MHz]

Spin Tracking For Polarized Beam Experiments at COSY-Juelich

solenoid frequency [MHz]

Conclusion from COSY experience

Polarized Proton and Deuteron Operation well under control (no spin tracking needed for this so far)

All tools needed for detailed experimental studies of polarized beam behaviour are available at COSY-Juelich

THE spin-physics machine for hadron physics

THE ideal test facility for the future srEDM measurements

The polarimetry group of the BNL srEDM collaboration is running tests at COSY in close collaboration with COSY staff since 2008 (LOI 2004) (E.Stevenson)

Recently, at COSY the potential for a dedicated srEDM Experiment is pursued by the just forming JEDI collaboration

Electric Dipole Moments (EDMs)

EDMs are candidates to solve mystery of matter-antimatter asymmetry \rightarrow may explain why we are here!

b.lorentz@fz-juelich.de

History of neutron EDM limits

 Smith, Purcell, Ramsey PR 108, 120 (1957)
 RAL-Sussex-ILL (d_n < 2.9 ×10⁻²⁶ e⋅cm) PRL 97,131801 (2006)

Adopted from K. Kirch

EDM searches - only upper limits up to now (in e.cm):

Particle/Atom	Current EDM Limit	Future Goal	~ d _n equivalent
Neutron	< 3 ×10 ⁻²⁶	~ 10 ⁻²⁸	10 ⁻²⁸
¹⁹⁹ Hg	< 3.1 ×10 ⁻²⁹	~10 ⁻²⁹	10 ⁻²⁶
¹²⁹ Xe	< 6 ×10 ⁻²⁷	~10 ⁻³⁰ – 10 ⁻³³	~10 ⁻²⁶ – 10 ⁻²⁹
Proton	< 7.9 ×10 ⁻²⁵	~10 ⁻²⁹	10 ⁻²⁹
Deuteron	?	~10 ⁻²⁹	3 ×10 ⁻²⁹ – 5 ×10 ⁻³³

Huge efforts underway to improve limits / find EDMs

Sensitivity to **NEW PHYSICS** beyond the Standard Model

485. WE-Heraeus-Seminar (July 04–06, 2011)

Search for Electric Dipole Moments (EDMs) at Storage Rings http://www2.fz-juelich.de/ikp/edm/en/

Search for Electric Dipole Moments

NEW: EDM search in time development of spin in a storage ring:

"Freeze" horizontal spin precession; watch for development of a vertical component !

The frozen spin Method

For transverse electric and magnetic fields in a ring $(\vec{\beta} \cdot \vec{B} = \vec{\beta} \cdot \vec{E} = 0)$, anomalous spin precession is described by

$$\vec{\omega}_{G} = -\frac{q}{m} \left\{ \vec{G} \times \vec{B} + \left[G - \left(\frac{m}{p} \right)^{2} \right] \frac{\vec{\beta} \times \vec{E}}{c} \right\} \qquad \left(G = \frac{g - 2}{2} \right)$$

Magic condition: Spin along momentum vector

1. For any sign of G, in a combined electric and magnetic machine

$$E = \frac{GBc\beta\gamma^2}{1 - G\beta^2\gamma^2} \approx GBc\beta\gamma^2$$

2. For G>0 (protons) in an all electric ring

$$G - \left(\frac{m}{p}\right)^2 = 0 \rightarrow p = \frac{m}{\sqrt{G}} = 700.74 \frac{\text{MeV}}{\text{c}}$$
 (magic)

b.lorentz@fz-juelich.de

Magic condition: Protons

E-field only

Magic condition: Deuterons

E and B fields

Deuteron EDM Deuteron EDM 20 radial E-field (MV/m) - 5 radius (m) 10 - 10 B=0.1 T B=0.1 T 200 300 400 500 kinetic energy (MeV)

Magic condition: Helions

E and B fields

Search for Electric Dipole Moments

NEW: EDM search in time development of spin in a storage ring:

"Freeze" horizontal spin precession; watch for development of a vertical component !

A magic storage ring for protons (electrostatic), deuterons, ...

	В (Т)	E (MV/m)	p (GeV/c)	particle
One machine	0.000	16.789	0.701	proton
with r ~ 30 m	0.160	-3.983	1.000	deuteron
	-0.051	17.158	1.285	³ He

Two storage ring projects being pursued

Jülich, focus on deuterons, or a combined machine

b.lorentz@fz-juelich.de

Spin Tracking For Polarized Beam Experiments at COSY-Juelich

(from R. Talman)

srEDM cooperations

Why do we need longterm spintracking calculations, now

Spin closed orbit

Adopted from H.O. Meyer

Spin coherence

JÜLICH FORSCHUNGSZENTRUM

We usually don't worry about coherence of spins along \hat{n}_{CO}

Polarization not affected!

At injection all spin vectors aligned (coherent)

After some time, spin vectors get out of phase and fully populate the cone

Situation very different, when you deal with $\vec{S} \perp \hat{n}_{co}$

At injection all spin vectors aligned

After some time, the spin vectors are all out of phase and in the horizontal plane

Longitudinal polarization vanishes!

In an Edm machine with frozen spin, observation time is limited.

Estimate of spin coherence times (Kolya Nikolaev)

One source of spin coherence are random variations of the spin tune due to the momentum spread in the beam

 $\delta\theta = G\delta\gamma$ and $\delta\gamma$ is randomized by e.g., electron cooling

 $\cos(\omega t) \Longrightarrow \cos(\omega t + \delta\theta)$

$$\tau_{sc} \approx \frac{1}{f_{rev} G^2 \langle \delta \gamma^2 \rangle} \approx \frac{1}{f_{rev} G^2 \gamma^2 v^4} \left\langle \left(\frac{\delta p}{p}\right)^2 \right\rangle^{-1}$$

Estimate: $T_{kin} = 100 \text{ MeV}$ $f_{rev} = 0.5 \text{ MHz}$ $G_p = 1.79$ $G_d = -0.14$ $\tau_{sc}(p) \approx 3 \times 10^3 \text{ s}$ $\tau_{sc}(d) \approx 5 \times 10^5 \text{ s}$

Spin coherence time for deuterons may be ~100 larger than for protons

LICH

b.lorentz@fz-juelich.de

Spin Tracking For Polarized Beam Experiments at COSY-Juelich

First measurement of spin coherence time

Test measurements at COSY

Polarimetry:

Spin coherence time:

vertical

polarization

RF E-field

stored d

spin precession governed by: $\frac{d\vec{S}}{dt^*} = \vec{d} \times \vec{E}^* + \vec{\mu} \times \vec{B}^*$ (* rest frame)

Two situations:

1. $B^*=0 \implies B_y = \beta \times E_R (= 70 \text{ G for } E_R=30 \text{ kV/cm})$ 2. $E^*=0 \implies E_R = -\beta \times B_y$

Polarimeter (dp elastic) This way, the Edm signal gets **accumulated** during the cycle.

This way, the Edm signal gets **accumulated** during the cycle. . Brings us in the 10⁻²⁴ e⋅cm range for d_d

$$P_{y} drops$$

$$\sqrt{P_{x}^{2} + P_{z}^{2}} grows$$

EDM effect

no EDM effect

PE 2: Simulation of resonance Method with RF E-fields and deuterons at COSY

b.lorentz@fz-juelich.de

PE 2: Simulation of resonance Method with RF E-fields JÜLICH and deuterons at COSY

Linear extrapolation of $P = \sqrt{P_x^2 + P_z^2}$ for a time period of τ_{sc} =1000 s (=3.7.10⁸ turns)

b.lorentz@fz-juelich.de

Status of the Spin Tracking Calculations

- The shown results for explanation of measured data and for predictions for the precursor experiments use a so-called ,no lattice' model, i.e. only the precession of the spin in the bending fields is considered. (no betatron oscillation, no higher order fields, no fringe fields...)
- This obviously is not sufficient for a high precision experiment as envisioned, a long term tracking code with polarization is urgently needed, COSY-INFINITY was identified as good candidate

We started to use COSY-INFINITY earlier this year, but we are at the very beginning

People working on this

PD Dr. A.Lehrach, Dr. B.Lorentz, A.Peece

- Modelling of Polarization in COSY
- Comparison of Model and Experiment
- Modelling Precursor Experiments

Prof. Dr. Yuri Senichev, D.Zyuzin,

- Multi Processor Installation of the code in Juelich >Talk D. Zyuzin
- Design of a pure electrostatic lattice (p-EDM)
- Fringe field effects in electrostatic ring (Cooperation with Prof. S.Andrianoz, A. Ivanov of St. Petersburg SU)

We need to work in close cooperation with M.Berz

b.lorentz@fz-juelich.de

Qualitative Check of Intrinsic Resonances

19 rays, with horizontal, vertical and momentum offsets

Py = average vertical polarization over all turns and rays

b.lorentz@fz-juelich.de

Qualitative Check of Intrinsic Resonances

9 rays, with vertical and momentum offsets

Py = average vertical polarization over all turns and rays

b.lorentz@fz-juelich.de

Qualitative Check of Imperfection Resonances

momentum offsets

Py = average vertical polarization over all turns and rays

b.lorentz@fz-juelich.de

Qualitative Check of Imperfection Resonances

horizontal offsets

Py = average vertical polarization over all turns and rays

b.lorentz@fz-juelich.de

Qualitative Check of Imperfection Resonances

vertical offsets

Py = average vertical polarization over all turns and rays

b.lorentz@fz-juelich.de

Qualitative Check of Imperfection Resonances

vertical and horizontal offsets

Py = average vertical polarization over all turns and rays

b.lorentz@fz-juelich.de

Qualitative Check of Imperfection Resonances

vertical, horizontal and momentum offsets

Py = average vertical polarization over all turns and rays

Qualitative Check of Imperfection Resonances

vertical, horizontal and momentum offsets

All that was shown is only qualitative, to learn how to use COSY Infinity with Juelich COSY lattice, I think I know what I am doing Quanitative investigations need to follow (we could even think to compare to measurements)

b.lorentz@fz-juelich.de

Next steps:

We could (and probably will) go in a more quantitative investigation of the started spin tracking calculations.

But more important:

introduce "spin flipper" element in COSY-Infinity Tracking

- spin coherence time measurements (ongoing) use rf solenoid magnet
- precursor experiment will use rf electrostatic element Both of these elements are run as "spin flipper" on the frequency of the spin precession, not on the revolution frequency f_{flipper}=f_{rev}*(k+γ G)

Therefore the OTM tracking method of COSY-Infinity needs to be extended (discussion with M. Berz are ongoing)

srEDM cooperations

EDM Workshop at ECT* (Trento)

October 1-5, 2012

Organizing committee

– Jülich

Hans Ströher h.stroeher@fz-juelich.de Frank Rathmann f.rathmann@fz-juelich.de Andreas Wirzba a.wirzba@fz-juelich.de

– Brookhaven

Mei Bai mbai@bnl.gov William Marciano marciano@bnl.gov Yannis Semertzidis yannis@bnl.gov

Summary

- Measurement of EDMs extremely difficult, but the physics is fantastic!
- COSY is a perfect test facility, spin coherence time measurements and comparison to model expectations will come soon
- Systematic error estimates for all precursor experiment require reliable spin tracking tools, e.g. COSY-INFINITY.
 Top priority to make them available ASAP!
- New collaboration "JEDI" being formed

Lower limit on electron-cooled SCT from January run

 RF-solenoid produces small polarization kicks about longitudinal direction. (Kicks vary as cosine with maximum < 4 μrad.)
 On (1–Gy) resonance, this produces continuously reversing vertical P_v.

Set process to turn RF-solenoid ON, OFF, then ON again.

