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Introduction

General Idea

Plan: Generate a High Order Map for an arbitrary field
Restrictions: Beam Element

o Surface Field Method
o Cylindrical Symmetry
o In Free Space

Focus on Quadrupole fields since we have data from RIKEN.
Need a few DA and TM based tools to do this properly to high order.
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Poincaré Section

Poincaré Section

(I

o Transversal to the flow
o Generally thought of for Periodic Dynamical Systems
o Differs from Recurrance Map - Spatial relation and not Time

o To generate a section for a whole flow instead of just a point

MICHICAN STATE
UNIVERSITY

Ravi Jagasia (bt.pa.msu.edu) Map Making 4 /24



Poincaré Section

Inverse Mapping

To find the inverse of a function, we decompose it into it's linear and
non-linear parts.

o f=m+ n Assuming f~1 exists

o fofl=I=mofl=]—-nof!

o So we have f~1 = m~to (I — no f~1) where the right hand side can
be shown to be contracting.

Constraint Satisfaction.

@ Given a function F(x,y,z), and constraint equation g(x,y,z) =0,
and wishing to find the subsurface of F where g is true, we do the
following:

o Setup F(x,y,z) = (g(x,y,2),y,2)

o Find x = FY(g(x,y,2),y,2)

: ; MICHIGAN STATE
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Poincaré Section

Poincaré Algorithm

o Obtain ODE flow including time expansion f(xp, t)

@ Choose a suitable Poincaré section o = 0 - Transverse to the flow to
provide invertibility

o Create an Auxiliary Function 1, = x, for v variables and
i1 = o(f(xo, t))

o Invert to perform our constraint satisfaction to obtain an expansion
Y ~Y(x0) so that o(f(xo, t(x0))) =0

o t(x0) =1, 11(x0,0)

o Evaluate f(xp, t(xp)) for our Poincaré Section
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Integration

The ODEs we wish to integrate through are the suitably scaled familiar
ones developed for stable numerical integration by He Zhang and Martin
Berz:

o % = ﬂ = __p ___ P

mf1+8 T
m
dp

° F:qEJrqc\/%xé:q(E—i—cﬁxé)

2
P
+m2

Currently we use a simple Picard-Lindelof flow expansion operator:
X=A(X) =%+ [ f(%,t)dt
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Integration

Particle Optical Coordinates

n= x= X

n= a= Px/ Po

= y= y

n= b= Py/Po

= I= —vy(t—to)/(1+7)
re = Ok = (K — Ko)/(Ko)

r7 = 6m = (m — mo)/mo

rgR= 0,= (z—20)/20
In which p is the momentum, K is the kinetic energy, v is the velocity, t is
the time of flight, v is the total energy over mgc?, m is the mass, and z is
the charge. The subscript zero denotes that we are referring to the

reference particle.
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Fields

Helmholtz Theorem

We use Helmholtz's theorem (Fundamental Theorem of Vector Calculus)
to obtain: B(X) =V x A(X) + V - ¢(X)

— nstxs VBX
° ¢(X) = é fBQ (|x) Xs| ) fQ |X (Xv|
2 A(Xs) x B(Xs VXxB(x)v
° A(X) = faQ (|)2><x? A el ds +ﬁfﬂ |>X< >(<|) dv
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Fields

Helmholtz Theorem cont.

Reduction in Free Space: V - B=0and VxB= Moj+ ,uoeo%—’f =0
Xs)-B(Xs
° ¢( ) 4r ff)Q |x) x5(| )d
o AR) = — L [, BELxBE) g

ENESAN
Caveats:
o Expansions near the surface diverge
o Requires surface field interpolation
o Endcaps are not measured

"Solutions”
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Fields

Helmholtz Theorem cont.

Reduction in Free Space: V - B=0and VxB= Moj+ ,uoeo%—’f =0

° (%) = 2= fon ﬁd
o AR) = — L [, BELxBE) g

TOR=R
Caveats:
o Expansions near the surface diverge
o Requires surface field interpolation
o Endcaps are not measured
"Solutions”
@ Only concerned with Beam Axis

o Interpolation provides some smoothing of Data - Fourier
"Interpolation”

o Generally can be considered zero
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Tests and Examples

RIKEN Data for Q500

Quadrupole Element - 500mm long
o Given as 9° increments every 10mm
o Data taken well outside of element for field to decay along beam line
o Taken at 3 different radii - approximately at 10cm radius

Test Quadrupole

o Have need for a theoretical model of a finite field Quadrupole with
fringe fields.

o Made of 4 superimposed Bar Magnets
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Tests and Examples

Test Quadrupole Zoomed
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Tests and Examples

Field Profile - RIKEN Q500

‘reformatQ500.dat’ using 1:2:3 ———

1500
1000
500

-500
-1000
-1500
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Tests and Examples

Field Profile - Test Quadrupole

'TestQuadGnuplot.dat’ using 1:2:3 ———

1000
800
1000 ! igg
288 % ///////////////////////////// 200
400 ] 0
200 : ] 200
-400
400 600
- -800
"800 -1000

-800
-1000
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Tests and Examples

Field Profile - Test Quadrupole Longer

"TestQuadGnuplot.dat’ using 1:2:3

/////////////////7/’/”””,”,/,}/} 0
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Tests and Examples

Fourier Analysis Method

Solving Laplace’s equation V2V = 0 in Free Space

o Ansatz: V=5, > My(s )cos(/qS + 0k /) k

@ Discrete Fourier Transform: Xj = Zn 0 Xn* g i2mnk/N
o Vi, =2 ,ancos(ng + ¢n)

°a, =), I\/Ik,,,rk
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Tests and Examples

Fourier Analysis Method

o Solving Laplace's equation V2V = 0 in Free Space

o Ansatz: V=5, > My(s )cos(/qS + 0k /) k

@ Discrete Fourier Transform: Xj = Zn 0 Xn*
Vip = 2_n ancos(ng + ¢n)

°a, =), I\/Ik,,,rk

2 4
° 2 \_ (1 N % M:
- 2 4 M.
a2n n n 4,2

e—i2mnk/N
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Tests and Examples

Fourier Analysis Method

o Solving Laplace's equation V2V = 0 in Free Space
o Ansatz: V=3, >, My (s )cos(/qS + 0y /) k

@ Discrete Fourier Transform: Xj = Zn 0 Xn g—i2mnk/N
Vi, =, ancos(ng + ¢n)
k
° ap =1, Mynr
2 4
2n \_ [ 11 n Mz,
° = I R Y
a2, R n 4,2
an 2!‘1 4I’f’ 6I‘iL3 82’2
o For Magnetic Field: ar, =1 2n 4r§’ 6r25 X Bs
a2 2!‘3 4r§’ 6[’3? 86’2
RS
UNIVERSITY

Ravi Jagasia (bt.pa.msu.edu) Map Making 17 / 24



Tests and Examples

Fourier Analysis from Recurrence

Another possible method from Laplace equation recurrence relation:
(2n)(s)
M

Mi2.1(5) = m o -tav
For the Quadrupole My »(s) = —12Mj »(s)
Like a finite difference method for a PDE, we can discretize along the

beam axis to obtain: y o y h
a2,,(s) = Mo 2(5)r1 + (=1 1 b.2(s—h)— 22(5)+ b2(s+ )) r

Giving the system of equatlons.
4

2 i
= 6h2 R, (1 0
1;1h2 - # 1;}12 0 Ma2(s1)
0 ? 2 Maopo(s2) |
1282 M —%w 1 : =
0 0
az2,n(s1) MICHIGAN STATE
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Tests and Examples

Test Quadrupole Results
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Tests and Examples

RIKEN Q500 Results
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Summary

Summary of Method

@ Obtain Smooth Interpolated Data using Fourier Expansion

o Generate Local Field Expansions via Helmholtz Decomposition around
any point we desire to perform a Flow Integration

o Perform a flow integrations until we straddle the proposed Poincaré
Section

o Obtain Crossing time of flow with Section
o Evaluate Flow at the Crossing time for the Poincaré Section

o Convert to Particle Optical Coordinates
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Summary

Verification

o Taylor Models instead of Differential Algebraic objects
o Requires Verified Inversion to obtain Verified Crossing Time

o Alternatively, Can take Heuristic bound on non-verified crossing time
o Range bound constraint over the the complement of the space away
from zero

o COSY-VI for integration

o Helmholtz decomposition integrals can be done with Taylor Models
(Alternate implementation of normal vectors may need to be used.)

MICHICAN STATE
UNIVERSITY

Ravi Jagasia (bt.pa.msu.edu) Map Making 22 /24



Summary

Possible Endeavor - Poincaré Integrator

Integration and Poincaré section for reducing size of phase space.
Long Term integrations. MICHIGAN STATE
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Summary

o Thanks for your time!
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