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First example: the shock tube problem

We consider the shock tube problem as a standard example of a hyperbolic
system developing shock waves.
1d Euler’s system  ρ

ρv
ρe
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+

 ρv
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ρ(t, x) is the mass density

v(t, x) is the velocity

e(t, x) is the energy density

p(t, x) is the pressure

γ = cp/cv is the ratio of specific heats.
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Initial and boundary conditions

(ρ(0, x), v(0, x), p(0, x)) =

{
(1, 0, 1) if x ∈ [0, 1/2]

(1/8, 0, 1/10) if x ∈ (1/2, 1] .

The boundary conditions correspond to an open pipe and are enforced by
a zeroth order extrapolation.
This setting generates three distinct waves, travelling at speed equal to the
eigenvalues of the linearized system:

A rarefaction wave: (λ1 = v − c(γ))

A shock wave: (λ2 = v)

A contact wave: (λ3 = v + c(γ))

The sound speed is c(γ) =
√
γp/ρ.
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A variable parameter

The parameter γ is assumed to take values in the interval

[γa, γb] = [7/5, 5/3] ;

this interval covers both monoatomic and biatomic gases.

We look (at first) for the Taylor expansion with respect to the parameter γ
of the solutions of Euler’s system, using our version of Taylor Model
algorithms.

We use Roe’s algorithm for integrating the equation, which is the most
standard for this kind of hyperbolic problem. The algorithm is
implemented as is, except for the fact that we use Taylor objects.
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Taylor results

Plot of ρ, v and p with respect to x and t, computed with a Taylor
expansion of order 5. We use a grid of 100 points.

ρ(7/5)− ρ(5/3) v(7/5)− v(5/3) p(7/5)− p(5/3).

Plot of ρ, v and p with respect to x and t = 0.15,

ρ(7/5) and ρ(5/3) v(7/5) and v(5/3) p(7/5) and p(5/3).
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Estimate of the error

Error on density reconstruction with a grid N = 300 for different orders.
Only the region close to the shock wave is represented.

Gianni Arioli (PoliMi) Parameter dependence December 15, 2011 6 / 18



Finer grid

In order to test the effectiveness of the method to work with
discontinuities, we refine the grid. The pictures represent the density
computed with N = 400 and the corresponding error, in the region close
to the shock wave. It is quite clear that the method fails due to the fact
that the radius of convergence of the Taylor expansion drops, when the
grid is refined.

Density Error at γ = 7/5.
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Chebyshev expansion

We need to change the representation. We chose Chebyshev series instead
of Taylor’s. Note that it is very simple to adapt the algoritms for the
automatic computation of the expansion. Provided the order of the
expansion is high enough, the errors can be kept very low, even with a very
fine grid (N = 1000).

Density Errors
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Chebyshev vs. Taylor (or....)

The numerical complexity of the Taylor and Chebyshev approaches is very
similar, with a slight advantage for the Taylor expansion, due to a simpler
formula for the multiplication of a Taylor series. Also, the Taylor series has
the advantage of providing directly the values of the derivatives of the
functions under consideration, and for this reason it looks more useful e.g.
for sensitivity analyses. On the other hand, the Chebyshev expansion is
much more powerful when one wishes to be able to represent sharp
discontinuities (which will nonetheless appear smoothed by the numerical
discretization), or when one need to compose the expansion with a less
than smooth function (such as the spectral projection used in Roe’s
algorithm). In these cases, by choosing a sufficiently high order, it is
possible to obtain an approximation as good as required.
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Second example: an airfoil of variable geometry

Now we consider a standard problem with an elliptic equation in a 2d
domain, solved with a standard finite element algorithm. The main novelty
is due to the fact that the domain is parametrized.

The Joukowski map

J(z) = z +
12

z

is conformal in C \ {0,±1}, while at ±1 is doubles the angles.

When J is applied to a circle Cz0 centered in z0 = a + i b and passing
through z = 1, it gives the typical shape of an airfoil.
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An airfoil of variable geometry

a is related to the witdh of the airfoil
b is related to the curvature of the airfoil

a = 0.05, b = 0.05

a = 0.05, b = 0.1

a = 0.1, b = 0.1

Gianni Arioli (PoliMi) Parameter dependence December 15, 2011 11 / 18



The mesh

We build a mesh in the annulus r0 ≤ ρ ≤ 1 and we transform it by the
Joukowski map:
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A potential flow

We consider a flow which is:

irrotational: ∇× v = 0

incompressible: ∇ · v = 0

non viscous.

We can define the stream function ψ(x , y):

v1 =
∂ψ

∂y
v2 = −∂ψ

∂x

and then we have
∆ψ = 0 .
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Boundary conditions

at infinity the flow is constant.

u = V∞, x v = V∞, y =⇒ ψ = (V∞, x) y − (V∞, y ) x = y − tan(α ) x

at the airfoil Γ2 the flow is tangent.

〈v , n〉 = 0 =⇒ ∂ψ

∂x
nx −

∂ψ

∂y
ny = 0

=⇒ ∂ψ

∂s
= 0 su Γ2 =⇒ ψ = c

We have a bounded, regular domain Ωt depending on parameters. The
system is:

∆ψt = 0 in Ωt

ψt = y − tan(α ) x on Γt
1

ψt = ct on Γt
2

Where ct must be computed in order to
satisfy the Kutta-Joukowski condition.
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Kutta-Joukowski condition

The Kutta-Joukowski condition can be stated as follows:
The streamlines leave smoothly the trailing edge.

it comes from experimental considerations

it is related to the circulation of th flow around the airfoil

it allows the assumption of non viscous fluid.

ψt = ψ0, t + ct ψ1, t

=⇒ ct ∈ T t.c.

[
∂ψ0, t

∂n
+ ct

∂ψ1, t

∂n

]TE+

TE−
= 0

The normal derivaties are discretized as finite differences.
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Effect of the Kutta-Joukowski condition:
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Airfoils:
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Lift as a function of the parameter, with Taylor of order 6.

The relative error is less than 10−6.
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