
Self-consistent transfer maps 
for high intensity beams

Self-consistent transfer maps 
for high intensity beams

Bela Erdelyi
Department of Physics, Northern Illinois University,
and Physics Division, Argonne National Laboratory

Taylor Model Methods VII, Key West, December 14-17, 2011

Bela Erdelyi
Department of Physics, Northern Illinois University,
and Physics Division, Argonne National Laboratory

Taylor Model Methods VII, Key West, December 14-17, 2011



December 14-17, 2011 Space Charge Maps 2

Outline

• Transfer maps in general
– Single-particle maps
– Space charge maps

• The 3 pillars of potential computation:
– Differential Algebra
– Duffy transformation
– Distribution reconstruction from moments

• Kick map
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Free Space Solutions

3D free space solution:
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• Singular integrals
• Theory says that the potential should be analytic in V if the charge 

density distribution is analytic in V
• Evaluation of integrals by standard methods is problematic
• Even if some clever integration method is used that avoids the 

singularity problem, the convergence radius of the resulting 
Taylor expansion of the potential tends to zero

• Need to perform integrations in DA
• Need straightforward method to control accuracy
• Must have large convergence region
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Recasting the Integrals

• The multiple integrals are considered as iterated integrals
• Each integral is rewritten as an initial value problem
• Example:

• Solve initial value problem using DA integrators (we use 8th order 
RK with 7th order automatic step size control)

• Gives not just the value of the integral, but also the Taylor 
expansion of the integral around an arbitrary parameter value p 
of the function f

• Accuracy can be controlled not just for the integrals’ values, but 
also their derivatives w.r.t. parameters (in RK8 can be set a priori)

To evaluate I (a, b; p) =

Z b

a

f (y; p) dy

Define g (x; p) =

Z x

a

f (y; p) dy

It follows that
dg (x; p)

dx
= f (x; p) , g (a; p) = 0

Hence I (a, b; p) = g (b; p)
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Duffy transformation

• A coordinate transformation that removes the singularity 
through the Jacobian of the transformation; works in both 
2D and 3D

• The following steps are performed:
– Split the integral over the whole domain into sum of integrals 

over boxes such that the singularity is at the lower left corner
of each box

– Then, split each box into 2 triangles (2D) or 3 pyramids (3D)
– Apply the special coordinate transformation to each 

triangle/pyramid that removes the singularity
– This is done by remapping each triangle/pyramid into a 

(different) square/cube)
• Resulting integrals can be done by standard methods 

(Runge-Kutta for example)
• Sum up all boxes
• Do everything in DA; result is the Taylor expansion of the 

potential around a point (typically the reference particle)
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Duffy Transformation

• Start with a box large 
enough (of course this also 
includes the support of the 
charge distribution function)

• The cross corresponds to the 
location of the reference 
particle

• Then, this is the integration 
region, and the result should 
be the Taylor expansion of the 
potential around the cross

• Ideally, the convergence 
region should be at least as 
large as the box
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Duffy Transformation for 
Uniform Square
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Duffy Transformation
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Duffy Transformation
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Duffy Transformation
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Duffy Transformation

• After performing each integration in 
DA and summing up the values (8 in 2D 
and 24 in 3D) the Taylor expansion is 
obtained

• It goes through exactly the same way 
if the uniform distribution is replaced 
with any analytic distribution function

• Hence, if the distribution is given 
analytically, the method produces the 
Taylor expansion of the potential 
around the reference orbit

• The reference particle’s orbit may or 
may not coincide with the beam 
centroid
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3D Example 1: Uniform Sphere (KV)
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3D Example 2: Uniform Box
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3D Example 3: Gaussian
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Convergence Region

• It can be shown that the region of 
convergence of the multiple Taylor series 
of the potential is a box with sides equal 
to the closest boundaries in each spatial 
direction

• Therefore, it is advantageous to pick the 
computational box symmetric w.r.t. the 
expansion point

• According to theory, by rearranging the 
Taylor series into a sequence of 
homogeneous polynomials, the 
convergence region becomes a star-
shaped region that cannot be smaller than 
the original convergence region
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Potential Convergence
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Moments of the distribution

• If the distribution is not known 
analytically, can it be reconstructed 
from something?

• Yes, from the moments of the 
distribution

• Theorem: smooth distribution 
functions with compact support (and 
some with non-compact support, 
such as the Gaussian) are uniquely 
determined by their moments
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Moments of the distribution

• What can be said in the case of a 
finite set of common moments?

• The distributions sharing a finite set 
of common moments will resemble 
each other

• What is the convergence like in the 
limit of large number of same 
moments?

• Interestingly, the tail probabilities 
converge faster!
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Convergence of the Moment Method

Theorem 1 Let any two arbitrary distributions F (·) and G (·) have the same
first 2p moments: mi (F ) = mi (G) = mi, i = 0, 1, 2, . . . , 2p with m0 = 1. Then,
for all values of x,

|F (x)−G (x)| ≤ 1

VT
p (x)M

−1
p Vp (x)

,

where Vp (x) =
¡
1, x, x2, . . . , xp

¢
and

Mp =

⎛⎜⎜⎜⎜⎜⎝
1 m1 m2 · · · mp

m1 m2 m3 · · · mp+1

m2 m3 m4 · · · mp+2

...
...

... · · ·
...

mp mp+1 mp+2 · · · m2p

⎞⎟⎟⎟⎟⎟⎠ .

Thus, the bound goes to zero at the rate

x−2p as x→∞.



December 14-17, 2011 Space Charge Maps 26

Distribution Reconstruction
from Moments

• Two different approaches:
– Based on generic function approximation: orthogonal 

polynomials
– Based on statistics: method of moments

• Orthogonal polynomials:
– Compact support and Cartesian coordinates: Jacobi 

polynomials, moment-based approach
– Take the simplest special case: linear combination of 

Legendre polynomials
– Minimizes the mean squared error

• Method of moments:
– Linear combination of monomials

• Both methods: solve for the coefficients by 
assuming a finite set of moments known 
– this determines the highest degree of the polynomial
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Method of Moments
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Which Method Is Better?

• The matrix to be inverted in the moment 
method is a Hilbert-like matrix; 
notoriously difficult to use in numerical 
computations

• That’s why we use truncated SVD 
inversion, which is stable to at least order 
20-25

• Legendre is stable to even higher orders, 
since there is nothing to invert

• Running times are comparable (excluding 
preprocessing), with Legendre being 
somewhat faster

• Therefore, the Legendre method seems to 
be the better choice
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Other Distributions

Ideal Potential Calculated Potential Difference (absolute)
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Sample moments vs. True Moments

• In practice, not only we don’t know 
the analytical distribution, but also 
we don’t know the true moments

• All we have is a finite number of 
particles from which we can 
compute a finite set of sample 
moments

• Replace the true moments with 
sample moments everywhere

• Does anything change significantly?
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Sample Moment Convergence
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Reconstruction Methods Revisited

• If sample moments are used instead of 
true moments, is it still true that Legendre 
is better?

• Interestingly, not always!
• The reason is that the difference between 

the true and sample moments can be 
thought of as an error in the right hand 
sides of two systems of linear equation 
that determine the distribution 
coefficients in the two methods

• It is well-known that the relative error in 
the solution of the linear systems will 
depend on the condition number of the 
system matrix
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Reconstruction with Sample moments

~cL = A~m ~cM = T−1 ~m
kδ~cLk
k~cLk

≤ κ (A)
kδ~mk
k~mk

kδ~cMk
k~cMk

≤ κ (T)
kδ~mk
k~mk

and due to the truncated SVD inversion of T: κ (T) < κ (A)

• Of course, the same SVD truncation could be 
performed on A too, but this extra effort renders the 
Legendre method somewhat slower than the moment 
method

• Hence, the moment method often is less sensitive to 
errors in the (sample) moments and it is faster

• Therefore, for many problems the moment method is 
preferred

• In some cases Legendre might still be preferable (for 
example multimodal and/or oscillatory distributions)
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Potential Coefficients as a 
Function of Number of Particles
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Fluctuations in Low Order Potential Coefficients 
as a Function of Integration  and Moment Order
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Comparison of the Potential of the 
Uniform Square, Using:

Analytical distribution
Reconstructed distribution 

from truncated true 
moments

Reconstructed distribution 
from sample moments-1Mp
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Kick Map

• Once the Taylor expansion of the potential 
is computed, take derivative to obtain the 
fields in the beam frame

• Note that this is an elementary operation 
in DA, so there are no interpolation errors

• Lorentz boost to lab frame
• Substitute into the equations of motion
• Apply splitting and composition 

techniques
• Obtain space charge kick map from DA 

integration of the EOM in the same way as 
in the single-particle case
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Flow Chart

Specify Particle Distribution
and Boundary Conditions 
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Map Comparison
Drift Map

Drift map with 1 space charge kick
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Example
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0.001 0.002 0.003 0.004
Current A

1.01

1.02

1.03

1.04

Quad Current

0.001 0.002 0.003 0.004
Current A

1.01

1.02

1.03

1.04

Quad Current

0.001 0.002 0.003 0.004
Current A

0.20

0.25

0.30

0.35

0.40

0.45
Fractional Tune

0.001 0.002 0.003 0.004
Current A

0.20

0.25

0.30

0.35

0.40

0.45
Fractional Tune

0.001 0.002 0.003 0.004 0.005
Current A

0.115

0.120

Fractional X Tune

0.001 0.002 0.003 0.004 0.005
Current A

0.115

0.120

Fractional X Tune

0.001 0.002 0.003 0.004 0.005
Current A

0.42

0.43

0.44

Fractional Y Tune

0.001 0.002 0.003 0.004 0.005
Current A

0.42

0.43

0.44

Fractional Y Tune



December 14-17, 2011 Space Charge Maps 44

Summary

• Developed a theory of transfer maps for beams 
with space charge

• Numerical experiments show excellent results for 
some standard distributions

• It is general and flexible enough to be useful for 
a wide variety of beams and accelerators, both 
current and future

• Implementation into COSY is done
• Applications to date: UMER and MEIC
• In summary: as a consequence of the new 

methods we expect significant advances in space 
charge related phenomena understanding and 
mitigation in the near future


