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Safety Verification of Hybrid Systems

Continuous variables evolve according to differential equations
Computing of rigorous enclosures of continuous behavior required

Initial condition in a form of Taylor model

Implementation in tool HSOLVER [Ratschan and She, 2007]
http://hsolver.sourceforge.net
Uses degree one Taylor expansions of continuous evolution
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Evolution Enclusure in Hybrid Systems Verification

We want to use better than degree one Taylor expansions

= Use of rigorous Taylor model-based integrator

We want to handle highly non-linear input models

= We propose new method for long-term wrapping effect
suppresion

We want to handle high dimensional examples with small models

= Use of close to optimal Chebyshev basis approximations
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Verified Taylor Model-Based Integrator

Given:
> ODE: x = f(x) + h
» Initial condition g(a) + h

» Time bound tax

Compute evolution e(t, a) + /3 such that:
> e(t,a) + h3 is the solution to the given ODE and
> g(a) + b e e(O, a) + I

Problem: In case /> is non-empty:
» I3 is always wider than /,

» wrapping effect applies over multiple integration steps

Solution: Make interval /> empty or very small
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Long-Term Stabilization of Integrator

Known methods:

» Shrink wrapping - Include error interval into the polynomial
part of Taylor model

» Preconditioning - Use composition of two Taylor models
where the outer Taylor model is error free

Methods use linear part of initial condition g(a) to:
» Either absorb the error

» Or construct the composition of models

Problem: Non-linear initial condition
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New Long-Term Stabilization Method

We propose a new method based on affine arithmetic

In each integration step:

» Use affine combination of new variables b to create Taylor
model g’(b) of interval I

» Use g(a) + g’(b) as a new initial condition

» Compute evolution enclosure e(t, a, b) + I3
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New Long-Term Stabilization Method

We propose a new method based on affine arithmetic

In each integration step:

» Use affine combination of new variables b to create Taylor
model g’(b) of interval I

» Use g(a) + g’(b) as a new initial condition

» Compute evolution enclosure e(t, a, b) + I3

Observation:
» Taylor model g(a) + g’(b) is error free
» Coefficients in terms containing b are small in magnitude

» Method independent on the structure of g(a)

Problem: In each step we add new set of additional variables b
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» Split initial condition gj(a, bj—1) + k into g*(a) and
g (a,bi—1) + b
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Multi-Step Integration

In i — th integration step:
» Split initial condition gj(a, bj—1) + k into g7*(a) and
gf(a, b,;l) + /2
» Use new variables b; to create a new Taylor model g/(b;) such
that g;"(a, bi_1) + h € g/(b;)
» Use initial condition g7*(a) + g/(b;) to compute evolution
enclosure e;(t,a, b))+ ks

> Use €j(tmax, a, bi) + I3 as the initial condition in (i + 1)-th step
In every step variables b;_; are replaced with variables b;
Only one set of additional variables is present in any step

We can estimate the error through back-substitution, since the
dependency between b;_1 and b; is known
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New Method Properties

Method independent of the structure of initial condition
Method able to suppress the error wrapping effect

Additional variables that represent the unknown error required
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Chebyshev Polynomials

To(X) =1
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Chebyshev Polynomials

To(x) =
Ti(x) =
To(x) = 2xT,, 1(x) = Th—2(x)

From approximation theory:
Expanding function in Chebyshev polynomials:

f(x) =220 ai Ti(x)

Cutting off the series after the Ty term is close to optimal
approximation of f(x)

Approximation is orders of accuracy more accurate than expansions
in Taylor series [Kaucher and Miranker, 1988]

10/15



Chebyshev Polynomial Operations

Multiplication: T;(x) Tj(x) = (Tiy;(x) + Tji—j|(x))/2

11/15



Chebyshev Polynomial Operations

Multiplication: T;(x) Tj(x) = (Tiy;(x) + Tji—j|(x))/2

Substitution: Clenshaw algorithm [Clenshaw, 1955]

11/15



Chebyshev Polynomial Operations

Multiplication: T;(x) Tj(x) = (Tiy;(x) + Tji—j|(x))/2
Substitution: Clenshaw algorithm [Clenshaw, 1955]

Integration:
>[5 To(x)dx = Ti(y)
> J§ Ta(x)dx = (To(y) + Ta(y))/4
» for even j > 1:
Jo Tilx)dx = (=Tica(y)/(i = 1) + Tia(y)/(i + 1)) /2

» analogous for odd / > 1

11/15



Chebyshev Polynomial Operations

Multiplication: T;(x) Tj(x) = (Tiy;(x) + Tji—j|(x))/2
Substitution: Clenshaw algorithm [Clenshaw, 1955]

Integration:
>[5 To(x)dx = Ti(y)
> J§ Ta(x)dx = (To(y) + Ta(y))/4
» for even j > 1:
Jo Tilx)dx = (=Tica(y)/(i = 1) + Tia(y)/(i + 1)) /2

» analogous for odd / > 1

Possibility to extend all operations with rigorous error estimation

11/15



Computational Experiments

We have an implementation of the verified integrator using our
wrapping effect suppression method

12/15



Computational Experiments

We have an implementation of the verified integrator using our
wrapping effect suppression method

Tested example:

x=2x(1-y) y=yx-1)

xo € [0.95,1.05] yp € [2.95,3.05]
tmax = 5.488138468035

12 /15



Computational Experiments

We have an implementation of the verified integrator using our
wrapping effect suppression method

Tested example:

x=2x(1-y) y=yx-1)

xo € [0.95,1.05] yp € [2.95,3.05]
tmax = 5.488138468035

COSY computes resulting Taylor model in time ty,x with error
interval of width 3 x 1079 (degree 12 Taylor model)
[Makino and Berz, 2006]
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Computational Experiments

Table of error interval width:

Our Implementation COSsy
Order | Taylor series | Chebyshev poly.
4 4 4E-2 7.4E-3
6 1.1E-3 6.6E-5
8 3.4E-5 6.2E-7
10 1.1E-6 5.7E-9
12 3.4E-8 5.2E-11 3E-9
14 1.1E-9 9.8E-13

Computation of our tool used fixed time step
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Conclusion

New method for long-term stabilization of the Taylor model-based
verified integrator

Based on adding additional variables that hold the error

Implementation with both:
» Taylor series

» Chebyshev approximations

Computational experiments demonstrate the usefulness of the
method
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| want to thank Stefan Ratschan for his comments
that helped me to prepare this presentation
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