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Motivation

Hybrid System: A dynamic system with both discrete and
continuous behavior

Example: Thermostat

onoff

x ≤ 18

x ≥ 22

ẋ = −x ẋ = −x + 40

0 ≤ x ≤ 30
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Safety Verification of Hybrid Systems

Continuous variables evolve according to differential equations

Computing of rigorous enclosures of continuous behavior required

Initial condition in a form of Taylor model

Implementation in tool HSOLVER [Ratschan and She, 2007]
http://hsolver.sourceforge.net
Uses degree one Taylor expansions of continuous evolution
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Evolution Enclusure in Hybrid Systems Verification

We want to use better than degree one Taylor expansions

⇒ Use of rigorous Taylor model-based integrator

We want to handle highly non-linear input models

⇒ We propose new method for long-term wrapping effect
suppresion

We want to handle high dimensional examples with small models

⇒ Use of close to optimal Chebyshev basis approximations
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Verified Taylor Model-Based Integrator

Given:

I ODE: ẋ = f (x) + I1
I Initial condition g(a) + I2
I Time bound tmax

Compute evolution e(t, a) + I3 such that:

I e(t, a) + I3 is the solution to the given ODE and

I g(a) + I2 ∈ e(0, a) + I3

Problem: In case I2 is non-empty:

I I3 is always wider than I2
I wrapping effect applies over multiple integration steps

Solution: Make interval I2 empty or very small
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Long-Term Stabilization of Integrator

Known methods:

I Shrink wrapping - Include error interval into the polynomial
part of Taylor model

I Preconditioning - Use composition of two Taylor models
where the outer Taylor model is error free

Methods use linear part of initial condition g(a) to:

I Either absorb the error

I Or construct the composition of models

Problem: Non-linear initial condition
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New Long-Term Stabilization Method

We propose a new method based on affine arithmetic

In each integration step:

I Use affine combination of new variables b to create Taylor
model g ′(b) of interval I2

I Use g(a) + g ′(b) as a new initial condition

I Compute evolution enclosure e(t, a, b) + I3

Observation:

I Taylor model g(a) + g ′(b) is error free

I Coefficients in terms containing b are small in magnitude

I Method independent on the structure of g(a)

Problem: In each step we add new set of additional variables b
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Multi-Step Integration

In i − th integration step:

I Split initial condition gi (a, bi−1) + I2 into g∗i (a) and
g +
i (a, bi−1) + I2

I Use new variables bi to create a new Taylor model g ′i (bi ) such
that g +

i (a, bi−1) + I2 ∈ g ′i (bi )

I Use initial condition g∗i (a) + g ′i (bi ) to compute evolution
enclosure ei (t, a, bi ) + I3

I Use ei (tmax , a, bi ) + I3 as the initial condition in (i + 1)-th step

In every step variables bi−1 are replaced with variables bi

Only one set of additional variables is present in any step

We can estimate the error through back-substitution, since the
dependency between bi−1 and bi is known
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New Method Properties

Method independent of the structure of initial condition

Method able to suppress the error wrapping effect

Additional variables that represent the unknown error required
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Chebyshev Polynomials

T0(x) = 1
T1(x) = x
Tn(x) = 2xTn−1(x)− Tn−2(x)

From approximation theory:
Expanding function in Chebyshev polynomials:

f (x) =
∑∞

i=0 aiTi (x)

Cutting off the series after the TN term is close to optimal
approximation of f (x)

Approximation is orders of accuracy more accurate than expansions
in Taylor series [Kaucher and Miranker, 1988]
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Chebyshev Polynomial Operations

Multiplication: Ti (x)Tj(x) = (Ti+j(x) + T|i−j |(x))/2

Substitution: Clenshaw algorithm [Clenshaw, 1955]

Integration:

I
∫ y

0 T0(x)dx = T1(y)

I
∫ y

0 T1(x)dx = (T0(y) + T2(y))/4

I for even i > 1:∫ y
0 Ti (x)dx = (−Ti−1(y)/(i − 1) + Ti+1(y)/(i + 1))/2

I analogous for odd i > 1

Possibility to extend all operations with rigorous error estimation
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Computational Experiments

We have an implementation of the verified integrator using our
wrapping effect suppression method

Tested example:
ẋ = 2x(1− y) ẏ = y(x − 1)
x0 ∈ [0.95, 1.05] y0 ∈ [2.95, 3.05]
tmax = 5.488138468035

COSY computes resulting Taylor model in time tmax with error
interval of width 3× 10−9 (degree 12 Taylor model)
[Makino and Berz, 2006]
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Computational Experiments

Table of error interval width:

Our Implementation COSY
Order Taylor series Chebyshev poly.

4 4.4E-2 7.4E-3
6 1.1E-3 6.6E-5
8 3.4E-5 6.2E-7

10 1.1E-6 5.7E-9
12 3.4E-8 5.2E-11 3E-9
14 1.1E-9 9.8E-13

Computation of our tool used fixed time step
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Conclusion

New method for long-term stabilization of the Taylor model-based
verified integrator

Based on adding additional variables that hold the error

Implementation with both:

I Taylor series

I Chebyshev approximations

Computational experiments demonstrate the usefulness of the
method
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Ongoing, Future Work

I Automatic selection of the time step length

I Automatic selection of the representation degree given the
required precision

I Using the method in the hybrid system safety verification

I want to thank Stefan Ratschan for his comments
that helped me to prepare this presentation
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