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∆V

Taylor Model Methods VII

Motivations and Goal

‣ Geostationary satellites move from their nominal path due to 
• Non-spherical gravitational field
• Third-body perturbations
• Solar radiation pressure 

‣ Continuous SK maneuvers are designed by solving an Optimal 
Feedback Control Problem

Station keeping 
manoeuvres

‣ Operative life strictly depends on         for station keeping (SK)
• Recent interest in low-thrust electric propulsion

Impulsive maneuvers Continuous thrust

‣ Classical methods are based on linear techniques
• Pros: fast and easier implementation onboard
• Cons: inaccurate for large deviations
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Taylor Model Methods VII

Motivations and Goal

‣ Interest in nonlinear control techniques
• Accurate optimal feedback
• Tend to be computationally expensive

‣ Available nonlinear optimal feedback control methods
• State-dependent (SDRE) or approximating sequence (ASRE) of 

Riccati equations methods (Cimen and Banks)
• High order expansion of the generating functions (Scheeres, Park)

‣ Goal: Alternative approach based on Differential Algebra 
• Fast computation of high order optimal feedback control laws
• High order expansion of ODE flow
• High order expansion of the solution of the Optimal Control 

Problem
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Outline

‣ Station keeping problem and dynamical models

‣ Notes on Differential Algebra

‣ High order expansion of ODE flow

‣ Optimal station keeping problem

‣ High order expansion of the optimal station keeping problem

Non-spherical 
gravitational field

3rd-body 
perturbation

Solar radiation 
pressure

✔

✔ ✔ ✔

✔ ✔ ✔

‣ Conclusions and future work

Fast correction
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λn

ϕ

ε

λn = 60 deg

ε = λ− λn

−εmax ≤ ε ≤ εmax

−ϕmax ≤ ϕ ≤ ϕmax

εmax = 0.05 deg
ϕmax = 0.05 deg

Taylor Model Methods VII

Station Keeping Problem

Nominal orbit

2εmax

2ϕmax

‣ Given   

: nominal longitude  

: latitude  

‣     

‣     

‣     : longitude error  

λn Keep the spacecraft inside the admissible box:

,
,
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Taylor Model Methods VII

Station Keeping Dynamical Model

‣ ECEF reference frame   

‣ Spherical coordinates

‣ Keplerʼs dynamics + ϕ
r

λ

{r, ε,ϕ}

• Non-spherical gravitational field
• Third-body perturbations
• Solar radiation pressure 
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Taylor Model Methods VII

Station Keeping Dynamical Model

‣ ECEF reference frame   

‣ Spherical coordinates

‣ Keplerʼs dynamics + ϕ
r

λ

perturbations

{r, ε,ϕ}

• Non-spherical gravitational field
• Third-body perturbations
• Solar radiation pressure 
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ϕ
r

λ

Taylor Model Methods VII

Station Keeping Dynamical Model

‣ ECEF reference frame   

‣ Spherical coordinates {r, ε,ϕ}

‣ Keplerʼs dynamics +
• Non-spherical gravitational field
• Third-body perturbations
• Solar radiation pressure 

control
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l = m = 3

k = 2

agg(x)

Taylor Model Methods VII

Station Keeping Dynamical Model

‣ Non-spherical gravitational field   

• Gravitational potential model

• Truncation:

• Gravitational potential model

• Truncation:

‣ 3-rd body perturbation   

a3b(x, t)
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‣ Kepler +         +          + 

A ⊥

asp

agg

a3b

Taylor Model Methods VII

Station Keeping Dynamical Model

‣ Solar radiation pressure
• acceleration:

Solar radiation Sun

Earth • where:

:  surface      to radiation  

Observation

‣ An ephemeris model is used for Earth, Moon, and Sun positions
‣ Kepler +

= asp(x, t)

agg

autonomous dynamics
non-autonomous dynamics
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Notes on Differential Algebra

‣ Differential Algebra (DA) is an automatic differentiation technique

Algebra of 
real numbers

Algebra of 
Taylor polynomials

‣ DA can be easily implemented in a computer environment 
(COSY-Infinity, Berz and Makino, 1998)

‣ Unlike standard automatic differentiation tools, the analytic 
operations of differentiation and antiderivation are introduced

f v
n

‣ Given any sufficiently regular function      of     , DA enables the 
computation of its Taylor expansion up to an arbitrary order    
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‣ Initialize       as a DA      

‣ Operate in the DA framework 
xf =Mxf (δx0)

xk+1 = xk + f(xk) · h

Taylor Model Methods VII

High Order Expansion of ODE Flow

‣ Consider the ODE initial value problem:

‣ Example: explicit Eulerʼs scheme

ẋ = f(x), x(0) = x0

‣ Any integration scheme is based on algebraic operations, 
involving the evaluation of      at several integration pointsf

x0 Taylor expansion 
of the ODE flow 

[x0]=x0+δx0
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[x]k+1 = [x]k + f([x]k) · h

‣ Initialize       as a DA      

‣ Operate in the DA framework 
xf =Mxf (δx0)

Taylor Model Methods VII

High Order Expansion of ODE Flow

‣ Consider the ODE initial value problem:

‣ Example: explicit Eulerʼs scheme

ẋ = f(x), x(0) = x0

‣ Any integration scheme is based on algebraic operations, 
involving the evaluation of      at several integration pointsf

x0 Taylor expansion 
of the ODE flow 

[x0]=x0+δx0

              is the    -th order Taylor expansion of the ODE flow[x]k+1 n
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High Order Sensitivity Analysis
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‣ Example: 2-Body Problem
• Eccentricity: 0.5 - Starting point: pericenter
• Integration scheme: Runge-Kutta (variable step, order 8)
• DA-based ODE flow expansion order: 5

‣ Uncertainty box on the initial position of 0.01 AU

• Any sample in the uncertainty 
box can be propagated using the 
5th order polynomial

Fast Monte Carlo simulations
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x(t0) = x0

λ(tf ) = Q (x(tf )− xf )

J =
1
2

(x(tf )− xf )T Q (x(tf )− xf ) +
� tf

t0

1
2

uT u

ẋ = f(x,u, t) = f̃(x, t) + B(x)u

u + B(x)T λ = 0

Taylor Model Methods VII

‣ Consider the dynamics:

‣ Minimizes:

‣ Initial condition:                   

‣ Optimal control theory reduces the OCP to the BVP:

• differential:
λ̇ = −

�
∂f
∂x

�T

λ

• algebraic:

• subject to:                       ,

Optimal Station Keeping Problem

x(t0) = x0

ẋ = f̃(x, t) + B(x)u
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Taylor Model Methods VII

‣ Consider the dynamics:

‣ Minimizes:

‣ Initial condition:                   

‣ Optimal control theory reduces the OCP to the BVP:

• differential:
λ̇ = −

�
∂f
∂x

�T

λ

• algebraic:

• subject to:                       ,

Optimal Station Keeping Problem

x(t0) = x0

ẋ = f̃(x, t) + B(x)u

u = −B(x)T λ
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Taylor Model Methods VII

‣ The BVP is reduced to a TPBVP on the ODE system:

• subject to:

High Order Optimal Station Keeping

λ̇ = −
�

∂f
∂x

�T

λ

x(t0) = x0

λ(tf ) = Q (x(tf )− xf )

ẋ = f̃(x, t)−B BT λ
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x0

[x0] = x0 + δx0

λ0 = 0 u0 = 0

[λ0] = λ0 + δλ0

δx0

Taylor Model Methods VII

‣ The BVP is reduced to a TPBVP on the ODE system:

• subject to:

‣ Differential Algebra is applied to expand the solution of the 
TPBVP up to an arbitrary order w.r.t.        :

High Order Optimal Station Keeping

λ̇ = −
�

∂f
∂x

�T

λ

x(t0) = x0

λ(tf ) = Q (x(tf )− xf )

• Consider a reference       = nominal geostationary satellite state 

• Initialize the initial state and costate as a DA variable:

• Consider the reference  

ẋ = f̃(x, t)−B BT λ

,
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δλ0δx0

�
[xf ]
[λf ]

�
=

�
Mxf

Mλf

��
δx0

δλ0

�

xf

[Cf ] = Q ([xf ]− xf )− [λf ] =MCf (δx0, δλ0)

�
[Cf ]
δx0

�
=

�
MCf

Ix0

��
δx0

δλ0

� �
δx0

δλ0

�
=

�
MCf

Ix0

�−1�
[Cf ]
δx0

�

[Cf ] = 0 δλ0 =MCf =0(δx0)

Taylor Model Methods VII

High Order Optimal Station Keeping

• Expand the ODE flow 
w.r.t.          and      

• Build the map of defects on the final boundary condition:

where        is the desired final state

• Build the following map and invert it:

• Impose                  
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δλ0 =MCf =0(δx0)

δλ0

Taylor Model Methods VII

High Order Optimal Station Keeping

• Given any        , the evaluation of map (1) delivers the 
corresponding                     optimal station keeping control law

δx0

(1)
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• Compute the (n+1)-st order expansion of    :

• Initialize        as an (n+1)-st order DA number:

• Suppose the n-th order solution of the TPBVP is of interest

δλ0 =MCf =0(δx0)

δλ0

λ̇ = − (∂f/∂x)T λ

(∂f/∂x)

x [x] = x + δx

f [f ] = f([x]) =Mn+1
f (δx)

[∂f/∂x] = ∂Mn+1
f /∂x =Mn

∂f/∂x(δx)

Taylor Model Methods VII

High Order Optimal Station Keeping

• Given any        , the evaluation of map (1) delivers the 
corresponding                     optimal station keeping control law

δx0

(1)

‣ Consider the costate dynamics:

Observation

‣ DA is used to avoid the analytical computation of                 :

• Use the differentiation:

20



TC = 0.5 day

−0.05 deg ≤ {ε, ϕ} ≤ 0.05 deg

TFD = 2.5 day

m = 3000 kg A = 100 m2

x0 = {RGEO, 0, 0, 0, 0, 0}

xf ≡

Taylor Model Methods VII

Application: Geostationary Satellite

Nominal orbit

2εmax

2ϕmax

λn = 60 deg‣ Nominal longitude:

‣ Admissible box:

‣ Satellite properties:

‣ SK strategy:
• Free drift:

TSK

TFD TC

Free drift Manoeuvre
• SK manoeuvre:

‣  

‣ Initial longitude error: -0.04 deg

,

•             initial condition
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Application: Kepler + agg

Free drift: 1 year
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Taylor Model Methods VII

Application: Kepler + agg

Free drift: 2.5 day

ϕ

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time:  8.4 s      (Mac OS X, 2 GHz Intel Core Duo)

δx0
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Application: Kepler + agg

SK manoeuvre  (                  )

ϕ

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time:  8.4 s      (Mac OS X, 2 GHz Intel Core Duo)

2.5 2.6 2.7 2.8 2.9 3
1

0.5

0

0.5

1

1.5

2

2.5 x 10 7

time [day]
u 

[m
/s

2 ]

 

 
ur
u

u

Control history

24

Q = 1000



0.05 0 0.05
4

3

2

1

0

1 x 10 6

 [deg]

 [d
eg

]

 

 
Free drift
SK manoeuvre

Taylor Model Methods VII

Application: Kepler + agg

SK manoeuvre  (                  )

ϕ

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time:  8.4 s      (Mac OS X, 2 GHz Intel Core Duo)
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Q = 1000

The same polynomial is used 
for any         and δx0 t

‣ Autonomous dynamics
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Application: Kepler +         +        +agg a3b asp

Free drift: 1 year

ϕ
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Application: Kepler +         +        +agg a3b asp

Free drift: 2.5 day

ϕ
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Application: Kepler +         +        +agg a3b asp

Free drift: 2.5 day

ϕ

‣ Kepler +          solution is 
not sufficiently accurate

agg
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Application: Kepler +         +        +agg a3b asp

Free drift: 2.5 day

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time: 9.2 s    (Mac OS X, 2 GHz Intel Core Duo)

ϕ
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Application: Kepler +         +        +agg a3b asp

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time: 9.2 s    (Mac OS X, 2 GHz Intel Core Duo)

ϕ

SK manoeuvre
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Application: Kepler +         +        +agg a3b asp

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time: 9.2 s    (Mac OS X, 2 GHz Intel Core Duo)

ϕ

SK manoeuvre

Specific polynomials must be 
computed for each SK manoeuvre

‣ Non-Autonomous 
dynamics
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Application: Kepler +         +        +agg a3b asp

‣ DA-based 4-th order expansion δλ0 =MCf =0(δx0)

• Computational time: 9.2 s    (Mac OS X, 2 GHz Intel Core Duo)

ϕ

SK: 30 day

Specific polynomials must be 
computed for each SK manoeuvre

‣ Non-Autonomous 
dynamics
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• compute the 1-th order expansion for 
Kepler +        +        +         around     

‣ For each SK manoeuvre: 

δλgg
0 =Mgg

Cf =0(δx0)

a3b asp

δλ0 = δλgg
0 + δλ3b+sp

0

δλ3b+sp
0 = M3b+sp

Cf =0 δx0

Taylor Model Methods VII

‣ Kepler +          solution is 
close to the true solution

Application: Kepler +         +        +agg a3b asp

‣ Compute the 4-th order 
expansion for Kepler +       :

agg

agg

agg δλgg
0

• compute the complete solution: 
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• compute the 1-th order expansion for 
Kepler +        +        +         around     

‣ For each SK manoeuvre: (CPU time: 0.07 s)

δλgg
0 =Mgg

Cf =0(δx0)

a3b asp
δλ3b+sp

0 =M3b+sp
Cf =0(δx0)

δλ0 = δλgg
0 + δλ3b+sp

0
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‣ Kepler +          solution is 
close to the true solution

Application: Kepler +         +        +agg a3b asp

‣ Compute the 4-th order 
expansion for Kepler +       :

agg

agg

agg δλgg
0

• compute the complete solution: 

ϕ

δλgg
0

δλgg
0 + δλ3b+sp

0
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‣ Conclusions

Taylor Model Methods VII

Conclusions and Future Work

• An nonlinear optimal control method was introduced with 
application to the station keeping of geostationary satellites 

• The method is based on Taylor differential algebra (COSY-Infinity)

• The method enables the accurate and fast computation of 
control laws thanks to the computation of high order polynomials

‣ Future work

• Comparison between DA-based and ASRE method

• High order expansion of the solution w.r.t. uncertain parameters
Robustness analysis

• Development of optimal station keeping strategies for propellant 
mass reduction
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High Order Sensitivity Analysis
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‣ Example: 2-Body Problem
• Eccentricity: 0.5 - Starting point: pericenter
• Integration scheme: Runge-Kutta (variable step, order 8)
• DA-based ODE flow expansion order: 5

‣ Uncertainty box on the initial position of 0.01 AU

• Any sample in the uncertainty 
box can be propagated using the 
5th order polynomial

Fast Monte Carlo simulations
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High Order Sensitivity Analysis

‣ Example: 2-Body Problem
• Eccentricity: 0.5 - Starting point: pericenter
• Integration scheme: Runge-Kutta (variable step, order 8)
• DA-based ODE flow expansion order: 5

‣ Uncertainty box on the initial position of 0.01 AU

• Any sample in the uncertainty 
box can be propagated using the 
5th order polynomial

Fast Monte Carlo simulations


