

Taylor Model Methods VII

Casa Marina Hotel Key West, Florida, December 14-17, 2011

High-Order Optimal Station Keeping of Geostationary Satellites

P. Di Lizia, R. Armellin, F. Bernelli Zazzera *Department of Aerospace Engineering, Politecnico di Milano, Milano, Italy*M. Berz *Department of Physics and Astronomy, East Lansing, Michigan, USA*

Motivations and Goal

- Geostationary satellites move from their nominal path due to
 - Non-spherical gravitational field

Impulsive maneuvers

- Third-body perturbations
- Solar radiation pressure
- Operative life strictly depends on ΔV for station keeping (SK)
 - Recent interest in low-thrust electric propulsion

- Continuous SK maneuvers are designed by solving an Optimal Feedback Control Problem
- Classical methods are based on linear techniques
 - Pros: fast and easier implementation onboard
 - Cons: inaccurate for large deviations

Continuous thrust

POLITECNICO DI MILANO

- Interest in nonlinear control techniques
 - Accurate optimal feedback
 - Tend to be computationally expensive
- Available nonlinear optimal feedback control methods
 - State-dependent (SDRE) or approximating sequence (ASRE) of Riccati equations methods (Cimen and Banks)
 - High order expansion of the generating functions (Scheeres, Park)
- **Goal**: Alternative approach based on Differential Algebra
 - Fast computation of high order optimal feedback control laws
 - High order expansion of ODE flow
 - High order expansion of the solution of the Optimal Control Problem

- Station keeping problem and dynamical models
- Notes on Differential Algebra
- High order expansion of ODE flow
- Optimal station keeping problem
- High order expansion of the optimal station keeping problem

Conclusions and future work

Station Keeping Problem

► Given λ_n → Keep the spacecraft inside the admissible box: $-\varepsilon_{max} \leq \varepsilon \leq \varepsilon_{max},$ $\varepsilon_{max} = 0.05 \text{ deg}$ $-\varphi_{max} \leq \varphi \leq \varphi_{max},$ $\varphi_{max} = 0.05 \text{ deg}$

- ECEF reference frame
- Spherical coordinates $\{r, \varepsilon, \varphi\}$
- Kepler's dynamics +
 - Non-spherical gravitational field
 - Third-body perturbations
 - Solar radiation pressure

$$\begin{split} \dot{\varepsilon} &= \xi \\ \dot{\varphi} &= \eta \\ \dot{v} &= -\frac{\mu}{r^2} + r\eta^2 + r(\xi + \omega)\cos^2\varphi + a_{p_r}(r,\varepsilon,\varphi) + u_r(t) \\ \dot{\xi} &= 2\eta(\xi + \omega)\tan\varphi - 2\frac{v}{r}(\xi + \omega) + \frac{1}{r\cos\varphi}a_{p\varphi}(r,\varepsilon,\varphi) + \frac{1}{r\cos\varphi}u_{\varepsilon}(t) \\ \dot{\eta} &= -2\frac{v}{r}\eta - (\xi + \omega)^2\sin\varphi\cos\varphi + \frac{1}{r}a_{p_{\varepsilon}}(r,\varepsilon,\varphi) + \frac{1}{r}u_{\varphi}(t) \end{split}$$

 $\dot{r} = v$

- ECEF reference frame
- Spherical coordinates $\{r, \varepsilon, \varphi\}$
- Kepler's dynamics +
 - Non-spherical gravitational field
 - Third-body perturbations
 - Solar radiation pressure

 φ

4 Z

λ Z

Satellite

- ECEF reference frame
- Spherical coordinates $\{r, \varepsilon, \varphi\}$
- Kepler's dynamics +
 - Non-spherical gravitational field
 - Third-body perturbations
 - Solar radiation pressure

$$\begin{aligned} \dot{r} &= v \\ \dot{\varepsilon} &= \xi \\ \dot{\varphi} &= \eta \\ \dot{v} &= -\frac{\mu}{r^2} + r\eta^2 + r(\xi + \omega)\cos^2\varphi + a_{p_r}(r,\varepsilon,\varphi) + u_r(t) \\ \dot{\xi} &= 2\eta(\xi + \omega)\tan\varphi - 2\frac{v}{r}(\xi + \omega) + \frac{1}{r\cos\varphi}a_{p\varphi}(r,\varepsilon,\varphi) + \frac{1}{r\cos\varphi}u_{\varepsilon}(t) \end{aligned} \qquad control \\ \dot{\eta} &= -2\frac{v}{r}\eta - (\xi + \omega)^2\sin\varphi\cos\varphi + \frac{1}{r}a_{p_{\varepsilon}}(r,\varepsilon,\varphi) + \frac{1}{r}u_{\varphi}(t) \end{aligned}$$

Non-spherical gravitational field

Gravitational potential model

$$U = \frac{\mu}{r} \sum_{l=2}^{\infty} \sum_{m=0}^{l} \left(\frac{R_T}{r}\right)^l P_{l,m}[\sin\varphi] \Big\{ C_{l,m} \cos m\lambda + S_{l,m} \sin m\lambda \Big\}$$

- Truncation: l = m = 3 $\Box > (\mathbf{a}_{gg}(\mathbf{x}))$
- 3-rd body perturbation

Gravitational potential model

$$U_3 = \frac{\mu_3}{r_3} \left[1 + \sum_{k=2}^{\infty} \left(\frac{r}{r_3} \right)^k P_k(\cos \psi) \right]$$

• Truncation: k = 2 $\square (\mathbf{a}_{3b}(\mathbf{x}, t))$

- Solar radiation pressure
 - acceleration:

$$\mathbf{a}_{sp} = P_{sr}(1+\beta)\frac{A}{m}\hat{\mathbf{u}}_{Ssat} = \mathbf{a}_{sp}(\mathbf{x},t)$$

• where:

$$P_{sr} = \frac{C_S}{c} = \frac{1353[W/m^2]}{299792458[m/s]}$$

A: surface \perp to radiation

Observation

- An ephemeris model is used for Earth, Moon, and Sun positions
- Kepler + \mathbf{a}_{gg}
- Kepler + \mathbf{a}_{gg} + \mathbf{a}_{3b} + \mathbf{a}_{sp}

• autonomous dynamics

non-autonomous dynamics

Differential Algebra (DA) is an automatic differentiation technique

- Unlike standard automatic differentiation tools, the analytic operations of differentiation and antiderivation are introduced
- DA can be easily implemented in a computer environment (COSY-Infinity, Berz and Makino, 1998)
- Given any sufficiently regular function f of v, DA enables the computation of its Taylor expansion up to an arbitrary order n

Consider the ODE initial value problem:

$$\dot{x} = f(x), \ x(0) = x_0$$

- Any integration scheme is based on algebraic operations, involving the evaluation of *f* at several integration points
- Initialize x_0 as a DA $[x_0] = x_0 + \delta x_0$
- Operate in the DA framework
- Example: explicit Euler's scheme

 $x_{k+1} = x_k + f(x_k) \cdot h$

Taylor expansion

of the ODE flow $x_f = \mathcal{M}_{x_f}(\delta x_0)$

Consider the ODE initial value problem:

$$\dot{x} = f(x), \ x(0) = x_0$$

- Any integration scheme is based on algebraic operations, involving the evaluation of f at several integration points
- Initialize x_0 as a DA $[x_0] = x_0 + \delta x_0$
- Operate in the DA framework
- Example: explicit Euler's scheme

 $[x]_{k+1} = [x]_k + f([x]_k) \cdot h$

 $[x]_{k+1}$ is the *n*-th order Taylor expansion of the ODE flow

- Example: 2-Body Problem
 - Eccentricity: 0.5 Starting point: pericenter
 - Integration scheme: Runge-Kutta (variable step, order 8)
 - DA-based ODE flow expansion order: 5
- Uncertainty box on the initial position of 0.01 AU

 Any sample in the uncertainty box can be propagated using the 5th order polynomial

Fast Monte Carlo simulations

Optimal Station Keeping Problem

- Consider the dynamics: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) = \tilde{\mathbf{f}}(\mathbf{x}, t) + B(\mathbf{x}) \mathbf{u}$
- Minimizes: $J = \frac{1}{2} \left(\mathbf{x}(t_f) \mathbf{x}_f \right)^T Q \left(\mathbf{x}(t_f) \mathbf{x}_f \right) + \int_{t_0}^{t_f} \frac{1}{2} \mathbf{u}^T \mathbf{u}$
- Initial condition: $\mathbf{x}(t_0) = \mathbf{x}_0$
- Optimal control theory reduces the OCP to the BVP:

• differential:
$$\begin{cases} \dot{\mathbf{x}} = \tilde{\mathbf{f}}(\mathbf{x}, t) + B(\mathbf{x}) \mathbf{u} \\ \dot{\boldsymbol{\lambda}} = -\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^T \boldsymbol{\lambda} \end{cases}$$

- algebraic: $\mathbf{u} + B(\mathbf{x})^T \boldsymbol{\lambda} = 0$
- subject to: $\mathbf{x}(t_0) = \mathbf{x}_0$, $\boldsymbol{\lambda}(t_f) = Q(\mathbf{x}(t_f) \mathbf{x}_f)$

Optimal Station Keeping Problem

- Consider the dynamics: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) = \tilde{\mathbf{f}}(\mathbf{x}, t) + B(\mathbf{x}) \mathbf{u}$
- Minimizes: $J = \frac{1}{2} \left(\mathbf{x}(t_f) \mathbf{x}_f \right)^T Q \left(\mathbf{x}(t_f) \mathbf{x}_f \right) + \int_{t_0}^{t_f} \frac{1}{2} \mathbf{u}^T \mathbf{u}$
- Initial condition: $\mathbf{x}(t_0) = \mathbf{x}_0$
- Optimal control theory reduces the OCP to the BVP:
 - differential: $\begin{cases} \dot{\mathbf{x}} = \tilde{\mathbf{f}}(\mathbf{x}, t) + B(\mathbf{x}) \mathbf{u} \\ \dot{\boldsymbol{\lambda}} = -\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^T \boldsymbol{\lambda} \end{cases}$
 - algebraic: $\mathbf{u} + B(\mathbf{x})^T \boldsymbol{\lambda} = 0$ $\Box > (\mathbf{u} = -B(\mathbf{x})^T \boldsymbol{\lambda})$
 - subject to: $\mathbf{x}(t_0) = \mathbf{x}_0$, $\boldsymbol{\lambda}(t_f) = Q\left(\mathbf{x}(t_f) \mathbf{x}_f\right)$

▶ The BVP is reduced to a TPBVP on the ODE system:

$$\begin{cases} \dot{\mathbf{x}} = \tilde{\mathbf{f}}(\mathbf{x}, t) - B B^T \boldsymbol{\lambda} & \bullet \text{ subject to: } \mathbf{x}(t_0) = \mathbf{x}_0 \\ \dot{\boldsymbol{\lambda}} = -\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^T \boldsymbol{\lambda} & \boldsymbol{\lambda}(t_f) = Q \left(\mathbf{x}(t_f) - \mathbf{x}_f\right) \end{cases}$$

The BVP is reduced to a TPBVP on the ODE system:

$$\dot{\mathbf{x}} = \tilde{\mathbf{f}}(\mathbf{x}, t) - B B^T \boldsymbol{\lambda} \quad \bullet \text{ subject to: } \mathbf{x}(t_0) = \mathbf{x}_0$$
$$\dot{\boldsymbol{\lambda}} = -\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^T \boldsymbol{\lambda} \quad \boldsymbol{\lambda}(t_f) = Q \left(\mathbf{x}(t_f) - \mathbf{x}_f\right)$$

- Differential Algebra is applied to expand the solution of the TPBVP up to an arbitrary order w.r.t. δx_0 :
 - Consider a reference x_0 = nominal geostationary satellite state
 - Consider the reference $\lambda_0 = 0$ $\Box > \mathbf{u}_0 = 0$
 - Initialize the initial state and costate as a DA variable:

$$[\mathbf{x}_0] = \mathbf{x}_0 + \delta \mathbf{x}_0$$
 , $[oldsymbol{\lambda}_0] = oldsymbol{\lambda}_0 + \delta oldsymbol{\lambda}_0$

• Expand the ODE flow w.r.t. $\delta \mathbf{x}_0$ and $\delta \boldsymbol{\lambda}_0$

$$\begin{pmatrix} [\mathbf{x}_f] \\ [\boldsymbol{\lambda}_f] \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{\mathbf{x}_f} \\ \mathcal{M}_{\boldsymbol{\lambda}_f} \end{pmatrix} \begin{pmatrix} \delta \mathbf{x}_0 \\ \delta \boldsymbol{\lambda}_0 \end{pmatrix}$$

• Build the map of defects on the final boundary condition: $[\mathbf{C}_f] = Q\left([\mathbf{x}_f] - \mathbf{x}_f\right) - [\boldsymbol{\lambda}_f] = \mathcal{M}_{\mathbf{C}_f}(\delta \mathbf{x}_0, \delta \boldsymbol{\lambda}_0)$

where \mathbf{x}_f is the desired final state

• Build the following map and invert it:

$$\begin{pmatrix} [\mathbf{C}_f] \\ \delta \mathbf{x}_0 \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{\mathbf{C}_f} \\ \mathcal{I}_{\mathbf{x}_0} \end{pmatrix} \begin{pmatrix} \delta \mathbf{x}_0 \\ \delta \boldsymbol{\lambda}_0 \end{pmatrix} \Longrightarrow \begin{pmatrix} \delta \mathbf{x}_0 \\ \delta \boldsymbol{\lambda}_0 \end{pmatrix} \Longrightarrow \begin{pmatrix} \delta \mathbf{x}_0 \\ \delta \boldsymbol{\lambda}_0 \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{\mathbf{C}_f} \\ \mathcal{I}_{\mathbf{x}_0} \end{pmatrix}^{-1} \begin{pmatrix} [\mathbf{C}_f] \\ \delta \mathbf{x}_0 \end{pmatrix}$$

• Impose $[\mathbf{C}_f] = 0$ $\Box \supset \left(\delta \boldsymbol{\lambda}_0 = \mathcal{M}_{\mathbf{C}_f = 0}(\delta \mathbf{x}_0) \right)$

$$\delta \boldsymbol{\lambda}_0 = \mathcal{M}_{\mathbf{C}_f=0}(\delta \mathbf{x}_0) \tag{1}$$

• Given any δx_0 , the evaluation of map (1) delivers the corresponding $\delta \lambda_0 \implies$ optimal station keeping control law

$$\delta \boldsymbol{\lambda}_0 = \mathcal{M}_{\mathbf{C}_f=0}(\delta \mathbf{x}_0) \tag{1}$$

Observation

- Consider the costate dynamics: $\dot{\boldsymbol{\lambda}} = -((\partial \mathbf{f}/\partial \mathbf{x})^T)\boldsymbol{\lambda}$
- DA is used to avoid the analytical computation of $(\partial f/\partial x)$:
 - Suppose the *n*-th order solution of the TPBVP is of interest
 - Initialize ${f x}$ as an (*n*+1)-st order DA number: $[{f x}]={f x}+\delta{f x}$
 - Compute the (*n*+1)-st order expansion of $f: [f] = f([x]) = \mathcal{M}_{f}^{n+1}(\delta x)$
 - Use the differentiation: $[\partial \mathbf{f}/\partial \mathbf{x}] = \partial \mathcal{M}_{\mathbf{f}}^{n+1}/\partial \mathbf{x} = \mathcal{M}_{\partial \mathbf{f}/\partial \mathbf{x}}^{n}(\delta \mathbf{x})$

Application: Geostationary Satellite

SK strategy:

- Nominal longitude: $\lambda_n = 60 \text{ deg}$
- $\mathbf{x}_0 = \{R_{GEO}, 0, 0, 0, 0, 0\}$
- Admissible box: $-0.05 \deg \le \{\varepsilon, \varphi\} \le 0.05 \deg$
- Initial longitude error: -0.04 deg
- Satellite properties: $m = 3000 \text{ kg}, A = 100 \text{ m}^2$
 - Free drift: $T_{FD} = 2.5 \text{ day}$
 - SK manoeuvre: $T_C = 0.5 \text{ day}$

•
$$\mathbf{x}_f \equiv$$
 initial condition

• Computational time: 8.4 s (Mac OS X, 2 GHz Intel Core Duo)

OLITECNICO

DI MILANO

• Computational time: 8.4 s (Mac OS X, 2 GHz Intel Core Duo)

OUTFONICO

DI MILANO

Application: Kepler + \mathbf{a}_{gg} + \mathbf{a}_{3b} + \mathbf{a}_{sp}

Free drift: 2.5 day

Free drift: 2.5 day

Kepler + a_{gg} solution is not sufficiently accurate

Free drift: 2.5 day

► DA-based 4-th order expansion $\Box > \delta \lambda_0 = \mathcal{M}_{\mathbf{C}_f=0}(\delta \mathbf{x}_0)$

• Computational time: 9.2 s (Mac OS X, 2 GHz Intel Core Duo)

• Computational time: 9.2 s (Mac OS X, 2 GHz Intel Core Duo)

- Computational time: 9.2 s (Mac OS X, 2 GHz Intel Core Duo)
- Non-Autonomous
 dynamics

Specific polynomials must be computed for each SK manoeuvre

DA-based 4-th order expansion

- Computational time: 9.2 s (Mac OS X, 2 GHz Intel Core Duo)
- Non-Autonomous
 dynamics

Specific polynomials must be computed for each SK manoeuvre

Kepler + a_{gg} solution is close to the true solution

Compute the 4-th order expansion for Kepler + a_{gg}:

$$\delta \boldsymbol{\lambda}_0^{gg} = \mathcal{M}_{\mathbf{C}_f=0}^{gg}(\delta \mathbf{x}_0)$$

For each SK manoeuvre:

- compute the 1-th order expansion for Kepler + \mathbf{a}_{gg} + \mathbf{a}_{3b} + \mathbf{a}_{sp} around $\delta \lambda_0^{gg}$
- $\int_{0} \delta \lambda_0^{3b+sp} = \mathcal{M}_{\mathbf{C}_f=0}^{3b+sp} \, \delta \mathbf{x}$
- compute the complete solution: $\deltam{\lambda}_0=\deltam{\lambda}_0^{gg}+\deltam{\lambda}_0^{3b+sp}$

Application: Kepler + \mathbf{a}_{gg} **+** \mathbf{a}_{3b} **+** \mathbf{a}_{sp}

Kepler + a_{gg} solution is close to the true solution

• Compute the 4-th order expansion for Kepler + a_{gg} :

$$\delta \boldsymbol{\lambda}_0^{gg} = \mathcal{M}_{\mathbf{C}_f=0}^{gg}(\delta \mathbf{x}_0)$$

For each SK manoeuvre: (CPU time: 0.07 s)

- compute the 1-th order expansion for Kepler + \mathbf{a}_{gg} + \mathbf{a}_{3b} + \mathbf{a}_{sp} around $\delta \lambda_0^{gg} \searrow \delta \lambda_0^{3b+sp} = \mathcal{M}_{\mathbf{C}_f=0}^{3b+sp} (\delta \mathbf{x}_0)$
- compute the complete solution: $\delta \lambda_0 = \delta \lambda_0^{gg} + \delta \lambda_0^{3b+sp}$

Conclusions

- An nonlinear optimal control method was introduced with application to the station keeping of geostationary satellites
- The method is based on Taylor differential algebra (COSY-Infinity)
- The method enables the accurate and fast computation of control laws thanks to the computation of high order polynomials

Future work

- Comparison between DA-based and ASRE method
- High order expansion of the solution w.r.t. uncertain parameters
 Robustness analysis
- Development of optimal station keeping strategies for propellant mass reduction

Taylor Model Methods VII

Casa Marina Hotel Key West, Florida, December 14-17, 2011

High-Order Optimal Station Keeping of Geostationary Satellites

P. Di Lizia, R. Armellin, F. Bernelli Zazzera *Department of Aerospace Engineering, Politecnico di Milano, Milano, Italy*M. Berz *Department of Physics and Astronomy, East Lansing, Michigan, USA*

- Example: 2-Body Problem
 - Eccentricity: 0.5 Starting point: pericenter
 - Integration scheme: Runge-Kutta (variable step, order 8)
 - DA-based ODE flow expansion order: 5
- Uncertainty box on the initial position of 0.01 AU

 Any sample in the uncertainty box can be propagated using the 5th order polynomial

Fast Monte Carlo simulations

- Example: 2-Body Problem
 - Eccentricity: 0.5 Starting point: pericenter
 - Integration scheme: Runge-Kutta (variable step, order 8)
 - DA-based ODE flow expansion order: 5
- Uncertainty box on the initial position of 0.01 AU

• Any sample in the uncertainty box can be propagated using the 5th order polynomial

Fast Monte Carlo simulations