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Motivation 

‣ Asteroid survey is a key program for planetary defense

‣ Accurate orbit determination (OD) is necessary 
to predict the asteroid orbital parameters
and impact probability...

‣ Accurate OD requires many observations 
of the same object 

‣ For optical systems (i.e. telescope) a minimum of three observations are 
necessary to determine an initial guess of the orbit (preliminary OD)

‣ Due to observation uncertainties the initial orbit can be far from the real one 

         Where should I point telescope to obtain additional observations?

‣ Implement of a new high-order iterative procedure for preliminary OD

‣ Analytically map observation uncertainties from the observations to the 
phase space

‣ Differential algebra is used to:
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Outline

‣ Preliminary orbit determination problem

‣ Gauss Method 

‣ Differential Algebra (DA)

‣ Solution of parametric implicit equations 

‣ High-order preliminary orbit determination algorithm 

‣ Test cases 
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‣ Given: 

‣ three observation epochs t1, t2, and t3  

‣ three measured right ascensions

‣ three measured declinations

‣ the inertial position of the observer    ,    ,  

‣ Compute the position      of the body at t2 that exactly matches all the 
observations in a two-body dynamical framework

‣ Preliminary OD is an old problem (Laplace 1780, Gauss 1809), but it is 
still the starting point for newly discovered objects

‣ When more than 3 observations are available a least square problem is 
set up using the preliminary orbit as first guess

‣ The measurement uncertainties play a key-role in orbit determination
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Preliminary orbit determination (OD) problem
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1. It exploits truncated Lagrange coefficients expansions to determine 
a first guess solution at epoch t2 (solving a 8-th order polynomial)

2. It iterates using the exact Lagrange coefficients until the three sets 
of observations are exactly satisfied in the two-body dynamical 
framework (when it converges)

Preliminary OD: Gauss’ method

Differential Algebra is exploited to:

‣ Implement a new high-order iterative procedure for preliminary OD

‣ Deal with measurement uncertainties analytically from preliminary OD

‣ Gaussʼ method was derived for the recovery of the dwarf planet 
Ceres (1801)

‣ Preliminary OD is reduced to a two-step procedure:

‣ Measurement accuracies are considered only when additional 
observations are available, i.e. propagation of the covariance matrix       
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‣ Given any sufficiently regular function      of     , DA enables the 
computation of its Taylor expansion up to an arbitrary order       
with respect to all      variables and any additional parameter   
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‣ Differential Algebra (DA) is an automatic differentiation technique

Algebra of 
real numbers

Algebra of 
Taylor polynomials

‣ Unlike standard automatic differentiation tools, the analytic 
operations of differentiation and antiderivation are introduced

f v
n

v

Differential Algebra (DA)

‣ DA can be easily implemented in a computer environment 
(COSY-Infinity, Berz and Makino, 1998)
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‣ We want to find the solution x(p) of the parametric implicit equation (PIE)
                                                                                                      

‣ Compute the solution x for the nominal value of the parameter p by a 
pointwise method (e.g. Newton’s method)

‣ Initialize the state and the parameter as DA variables

                                                                                                   

‣ Evaluate (1) in the DA-framework to obtain

‣ Map (2) has no constant part as x is solution of (1) for p 

‣ Build the map 
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Solution of parametric implicit equations 

(1)

(2)
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‣ Invert the Taylor map (ad hoc inversion algorithm available)

‣ Evaluate the map in δf = 0 to satisfy equation 

                                                                                                 

‣ Extract the first line of (3)

‣ Obtain 

‣ The solution x(p) is approximated by a Taylor polynomial of arbitrary 
order: given any       the evaluation of (4) delivers the new solution 
of the parametric implicit equation 

Solution of parametric implicit equations 

δp

(3)

(4)
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‣ The solution of Gaussʼ 8-th order
polynomial is the starting point 

‣ Gaussʼ iterations are replaced by an
high-order iterative procedure solving:
‣ Lambertʼs problem from t2 and t3
‣ Keplerʼs problem from t2  and t1 

‣ Lambertʼs and Keplerʼs problems are solved via the high-order DA 
algorithm for the solution of parametric implicit equations

‣ The result is the state r2 that exactly matches the observations + its 
dependence from the observation accuracies in terms of a Taylor map:

‣ The Taylor polynomial of r2 is mapped forward in time to analytically 
describe the regions of the sky to be scanned for successive observations

r2 = r2(δα, δδ)

Roberto Armellin

Preliminary OD: DA-based method
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‣ Initialize the observation sets as DA variables 

‣ Thus, the lines of sight at t2 and t3 are 

‣ Compute Gaussʼ 8-th order polynomial solution
‣ Initialize the slant ranges at t2 and t3 

as DA variables

where the constant parts are from the solution of Gaussʼ 8th order polynomial

‣ Thus, compute the Taylor polynomial of the asteroid position at t2 and t3 :
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High-order iterative OD
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‣ Solve Lambertʼs problem from t2 and t3 using the DA-solution solution of PIE 

‣ Solve Kepler’s problem from t2 and t1

‣ Compute the associated values of the observables 

‣ Build the map of defects

where the constant part is due to initial guess (it is not the exact solution)

‣ Build an origin preserving map 
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High-order iterative OD
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∆α̃1
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‣ Build an augmented map

 

‣ Invert it with Taylor polynomial algorithm

‣ Extract the map 

‣ Evaluate in                         and                              

‣ Iterate until          = 0 and         = 0     
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High-order 
correction map!
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High-order iterative OD
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‣ The high-order iterative method delivers

where 

‣ r2  and v2  exactly satisfy the 
nominal observations

‣ the polynomial part analytically maps 
the observations uncertainties in the phase space 

‣ A DA-Kepler problem can be used to map the state to any arbitrary epoch t4

‣ This map can be used to analytically map the observation uncertainties in 
the sky at epoch t4

(4)

(5)

(6)
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it tells where to look for 
successive observations
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Easily extended to n-body 
dynamics (Armellin et al 2010)

High-order iterative OD
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analytically describe how deviations from the nominal observation affect      , 
and

‣ For given values of measurements standard deviations σ, the Taylor maps 
can be used to

‣ Perform fast Monte Carlo simulations based on the evaluation of the 
polynomial maps (running only one DA-based OD solver)

‣ Analytically map the covariance matrix of the measurements in the phase 
space (using Park and Scheeres 2006)

‣ Draw the propagated uncertainty sets by sampling each uncertain variable 
in  -3σ, 0, 3σ

‣ The measurements performed by telescope (in general from any device) are 
affected by errors modeled by gaussian distributions

‣ Given any         and        , the Taylor polynomial maps:

α4

δ4

δδ
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The Use of the high-order maps

δα
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‣ Simulated observations of two known asteroids to assess the method 
performances 

‣ Observatory of discovery and epoch of discovery

Roberto Armellin

Test cases: simulated observations
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‣ Simulated observations of two known asteroids to assess the method 
performances 

‣ Observatory of discovery and epoch of discovery

‣ Observations separation:

‣             one day                        one day         

‣             two hours                      one day

‣ Standard deviations σ = 0.15, 0.3 and 0.45 arcsec

t1→ t2 t3
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Test cases: simulated observations

→ → →
t1→ t2→ → t3→

t2
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J95E01K: 1 day separated observations
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‣ Convergence in two iterations (vs. ~50 Gaussʼ iterations)

‣ Large observation uncertainties can be managed by high order computation 

‣ Computational time for the solution, expansion, and evaluations of 1000 samples

‣ 1.25 s for 5th order,  6.23 s for 6th order (Mac OS X, 2 GHz Intel Core Duo)

OD accuracy Propagation accuracy
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J95E01K: 1 day separated observations

Trajectory propagation Observable set propagation

‣ Observation close to opposition with σ = 0.3 arcsec

‣ Set propagated up to 30 days
‣ Plot obtained by sampling each variable in -3σ, 0, 3σ
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J95E01K: 2 hour - 1 day separation 

Trajectory propagation Observable set propagation

‣ Observation close to opposition with σ = 0.15 arcsec

‣ Closer observations yield larger uncertainty sets  
‣ Plot obtained by sampling each variable in -3σ, 0, 3σ
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J95E01K: 2 hour - 1 day separation

‣ Observation close to opposition with σ = 0.3 arcsec

‣ Within this uncertainty set both elliptic and hyperbolic solutions appear 

‣ A single 7th order expansion capture both elliptic and hyperbolic solutions  
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K095197: 1 day separated observations

‣ Convergence in two iterations
‣ Gauss does not converge to the true solution

OD accuracy Propagation accuracy
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K095197: 1 day separated observations

Trajectory propagation Observable set propagation

‣ Observation close to quadrature with σ = 0.3 arcsec

‣ Set propagated up to 100 days
‣ Plot obtained by sampling each variable in -3σ, 0, 3σ
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K095197: 2 hour - 1 day separation

‣ Observation close to quadrature with σ = 0.45 arcsec

‣ A single 6th order expansion greatly reduces the region of the sky to be scanned 
for future observations 

Linear vs. 6-th order

linear
6-th order
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Conclusion and Future Work

‣ A new high-order iterative procedure for preliminary OD is presented

‣ The method is based on Taylor differential algebra implemented in 
COSY-Infinity

‣ The method converges with few iterations (maximum 3) 

‣ The method can converge also when classical methods do not   

‣ Observation uncertainties are analytically mapped in the phase space

‣ Regions of the sky to be scanned for successive observations are 
described by Taylor polynomial 

‣ A detailed convergence analysis is missing 

‣ Application of the method from simulated observation to real 
observations

Future Work

Conclusions
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