- Asteroid survey is a key program for planetary defense
- Accurate orbit determination (OD) is necessary to predict the asteroid orbital parameters and impact probability...
- Accurate OD requires many observations of the same object

- For optical systems (i.e. telescope) a minimum of three observations are necessary to determine an initial guess of the orbit (preliminary OD)
- Due to observation uncertainties the initial orbit can be far from the real one

Where should I point telescope to obtain additional observations?

- Differential algebra is used to:
- Implement of a new high-order iterative procedure for preliminary OD
- Analytically map observation uncertainties from the observations to the phase space

Roberto Armellin

Outline

- Preliminary orbit determination problem
- Gauss Method
- Differential Algebra (DA)
- Solution of parametric implicit equations
- High-order preliminary orbit determination algorithm
- Test cases

Preliminary orbit determination (OD) problem

- Given:
- three observation epochs t_{1}, t_{2}, and t_{3}
- three measured right ascensions $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$
- three measured declinations $\boldsymbol{\delta}=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$
- the inertial position of the observer $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$

- Compute the position \boldsymbol{r}_{2} of the body at t_{2} that exactly matches all the observations in a two-body dynamical framework
- Preliminary OD is an old problem (Laplace 1780, Gauss 1809), but it is still the starting point for newly discovered objects
- When more than 3 observations are available a least square problem is set up using the preliminary orbit as first guess
- The measurement uncertainties play a key-role in orbit determination

Preliminary orbit determination (OD) problem

- Given:
- three observation epochs t_{1}, t_{2}, and t_{3}
- three measured right ascensions $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$
- three measured declinations $\boldsymbol{\delta}=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$
- the inertial position of the observer $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$

- Compute the position \boldsymbol{r}_{2} of the body at t_{2} that exactly matches all the observations in a two-body dynamical framework
- Preliminary OD is an old problem (Laplace 1780, Gauss 1809), but it is still the starting point for newly discovered objects
- When more than 3 observations are available a least square problem is set up using the preliminary orbit as first guess
- The measurement uncertainties play a key-role in orbit determination

Preliminary OD: Gauss' method

- Gauss' method was derived for the recovery of the dwarf planet Ceres (1801)
- Preliminary OD is reduced to a two-step procedure:

1. It exploits truncated Lagrange coefficients expansions to determine a first guess solution at epoch t_{2} (solving a 8-th order polynomial)
2. It iterates using the exact Lagrange coefficients until the three sets of observations are exactly satisfied in the two-body dynamical framework (when it converges)

- Measurement accuracies are considered only when additional observations are available, i.e. propagation of the covariance matrix

Differential Algebra is exploited to:

- Implement a new high-order iterative procedure for preliminary OD
- Deal with measurement uncertainties analytically from preliminary OD

Differential Algebra (DA)

- Differential Algebra (DA) is an automatic differentiation technique

Algebra of real numbers

Algebra of Taylor polynomials

- Unlike standard automatic differentiation tools, the analytic operations of differentiation and antiderivation are introduced
- DA can be easily implemented in a computer environment (COSY-Infinity, Berz and Makino, 1998)
- Given any sufficiently regular function f of v, DA enables the computation of its Taylor expansion up to an arbitrary order n with respect to all v variables and any additional parameter

Solution of parametric implicit equations

- We want to find the solution $x(p)$ of the parametric implicit equation (PIE)

$$
\begin{equation*}
f(x, p)=0 \tag{1}
\end{equation*}
$$

- Compute the solution x for the nominal value of the parameter p by a pointwise method (e.g. Newton's method)
- Initialize the state and the parameter as DA variables

$$
\begin{align*}
& {[x]=x+\delta x} \tag{2}\\
& {[p]=p+\delta p}
\end{align*}
$$

- Evaluate (1) in the DA-framework to obtain

$$
\delta f=\mathcal{M}_{f}(\delta x, \delta p)
$$

- Map (2) has no constant part as x is solution of (1) for p
- Build the map

$$
\left[\begin{array}{l}
\delta f \\
\delta p
\end{array}\right]=\left[\begin{array}{c}
\mathcal{M}_{f} \\
\mathcal{I}_{p}
\end{array}\right]\left[\begin{array}{l}
\delta x \\
\delta p
\end{array}\right]
$$

Solution of parametric implicit equations

- Invert the Taylor map (ad hoc inversion algorithm available)

$$
\left[\begin{array}{l}
\delta x \\
\delta p
\end{array}\right]=\left[\begin{array}{c}
\mathcal{M}_{f} \\
\mathcal{I}_{p}
\end{array}\right]^{-1}\left[\begin{array}{c}
\delta f \\
\delta p
\end{array}\right]
$$

- Evaluate the map in $\delta f=0$ to satisfy equation

$$
\left[\begin{array}{l}
\delta x \tag{3}\\
\delta p
\end{array}\right]=\left[\begin{array}{c}
\mathcal{M}_{f} \\
\mathcal{I}_{p}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
\delta p
\end{array}\right]
$$

- Extract the first line of (3)

$$
\delta x=\mathcal{M}_{x}(\delta p)
$$

- Obtain

$$
\begin{equation*}
[x]=x+\mathcal{M}_{x}(\delta p) \tag{4}
\end{equation*}
$$

- The solution $x(p)$ is approximated by a Taylor polynomial of arbitrary order: given any δp the evaluation of (4) delivers the new solution of the parametric implicit equation

Preliminary OD: DA-based method

- The solution of Gauss’ 8-th order polynomial is the starting point
- Gauss' iterations are replaced by an high-order iterative procedure solving:
- Lambert's problem from t_{2} and t_{3}
- Kepler's problem from t_{2} and t_{1}

- Lambert's and Kepler's problems are solved via the high-order DA algorithm for the solution of parametric implicit equations
- The result is the state r_{2} that exactly matches the observations + its dependence from the observation accuracies in terms of a Taylor map:

$$
\boldsymbol{r}_{2}=\boldsymbol{r}_{2}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})
$$

- The Taylor polynomial of r_{2} is mapped forward in time to analytically describe the regions of the sky to be scanned for successive observations

High-order iterative OD

- Initialize the observation sets as DA variables

$$
\begin{aligned}
& {[\boldsymbol{\alpha}]=\boldsymbol{\alpha}+\delta \boldsymbol{\alpha}} \\
& {[\boldsymbol{\delta}]=\boldsymbol{\delta}+\delta \boldsymbol{\delta}}
\end{aligned}
$$

- Thus, the lines of sight at t_{2} and t_{3} are

$$
\begin{aligned}
& {\left[\hat{\boldsymbol{\rho}}_{2}\right]=\hat{\boldsymbol{\rho}}_{2}+\mathcal{M}_{\hat{\boldsymbol{\rho}}_{2}}\left(\delta \alpha_{2}, \delta \delta_{2}\right)} \\
& {\left[\hat{\boldsymbol{\rho}}_{3}\right]=\hat{\boldsymbol{\rho}}_{3}+\mathcal{M}_{\hat{\rho}_{3}}\left(\delta \alpha_{3}, \delta \delta_{3}\right) .}
\end{aligned}
$$

- Compute Gauss' 8-th order polynomial solution
- Initialize the slant ranges at t_{2} and t_{3} as DA variables

$$
\begin{aligned}
& {\left[\rho_{2}\right]^{1^{-}}=\rho_{2}^{1^{-}}+\delta \rho_{2}} \\
& {\left[\rho_{3}\right]^{1^{-}}=\rho_{3}^{1^{-}}+\delta \rho_{3}}
\end{aligned}
$$

where the constant parts are from the solution of Gauss' 8th order polynomial

- Thus, compute the Taylor polynomial of the asteroid position at t_{2} and t_{3} :

$$
\begin{aligned}
& {\left[\boldsymbol{r}_{2}\right]=\boldsymbol{r}_{2}+\mathcal{M}_{\boldsymbol{r}_{2}}\left(\delta \alpha_{2}, \delta \delta_{2}, \delta \rho_{2}\right)} \\
& {\left[\boldsymbol{r}_{3}\right]=\boldsymbol{r}_{3}+\mathcal{M}_{\boldsymbol{r}_{3}}\left(\delta \alpha_{3}, \delta \delta_{3}, \delta \rho_{3}\right)}
\end{aligned}
$$

High-order iterative OD

- Solve Lambert's problem from t_{2} and t_{3} using the DA-solution solution of PIE

$$
\left[\boldsymbol{v}_{2}\right]=\boldsymbol{v}_{2}+\mathcal{M}_{\boldsymbol{v}_{2}}\left(\delta \alpha_{2}, \delta \delta_{2}, \delta \alpha_{3}, \delta \delta_{3}, \delta \rho_{2}, \delta \rho_{3}\right)
$$

- Solve Kepler's problem from t_{2} and t_{1}

$$
\left[\boldsymbol{r}_{1}\right]=\boldsymbol{r}_{1}+\mathcal{M}_{\boldsymbol{r}_{1}}\left(\delta \alpha_{2}, \delta \delta_{2}, \delta \alpha_{3}, \delta \delta_{3}, \delta \rho_{2}, \delta \rho_{3}\right)
$$

- Compute the associated values of the observables

$$
\begin{aligned}
& {\left[\tilde{\alpha}_{1}\right]=\tilde{\alpha}_{1}+\mathcal{M}_{\tilde{\alpha}_{1}}\left(\delta \alpha_{2}, \delta \delta_{2}, \delta \alpha_{3}, \delta \delta_{3}, \delta \rho_{2}, \delta \rho_{3}\right)} \\
& {\left[\tilde{\delta}_{1}\right]=\tilde{\delta}_{1}+\mathcal{M}_{\tilde{\delta}_{1}}\left(\delta \alpha_{2}, \delta \delta_{2}, \delta \alpha_{3}, \delta \delta_{3}, \delta \rho_{2}, \delta \rho_{3}\right)}
\end{aligned}
$$

- Build the map of defects

$$
\begin{aligned}
& {\left[\Delta \tilde{\alpha}_{1}\right]=\left[\tilde{\alpha}_{1}\right]-\left[\alpha_{1}\right]=\Delta \tilde{\alpha}_{1}+\mathcal{M}_{\Delta \tilde{\alpha}_{1}}\left(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta}, \delta \rho_{2}, \delta \rho_{3}\right)} \\
& {\left[\Delta \tilde{\delta}_{1}\right]=\left[\tilde{\delta}_{1}\right]-\left[\delta_{1}\right]=\Delta \tilde{\delta}_{1}+\mathcal{M}_{\Delta \tilde{\delta}_{1}}\left(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta}, \delta \rho_{2}, \delta \rho_{3}\right)}
\end{aligned}
$$

where the constant part is due to initial guess (it is not the exact solution)

- Build an origin preserving map

$$
\begin{aligned}
& {\left[\Delta \alpha_{1}\right]=\left[\Delta \tilde{\alpha}_{1}\right]-\Delta \tilde{\alpha}_{1}=\mathcal{M}_{\Delta \alpha_{1}}\left(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta}, \delta \rho_{2}, \delta \rho_{3}\right)} \\
& {\left[\Delta \delta_{1}\right]=\left[\Delta \tilde{\delta}_{1}\right]-\Delta \tilde{\delta}_{1}=\mathcal{M}_{\Delta \delta_{1}}\left(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta}, \delta \rho_{2}, \delta \rho_{3}\right)}
\end{aligned}
$$

High-order iterative OD

- Build an augmented map

$$
\left[\begin{array}{c}
\Delta \alpha_{1} \\
\Delta \delta_{1} \\
\delta \boldsymbol{\alpha} \\
\delta \boldsymbol{\delta}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{M}_{\Delta \alpha_{1}} \\
\mathcal{M}_{\Delta \delta_{1}} \\
\mathcal{I}_{\boldsymbol{\alpha}} \\
\mathcal{I}_{\boldsymbol{\delta}}
\end{array}\right]\left[\begin{array}{c}
\delta \boldsymbol{\alpha} \\
\delta \boldsymbol{\delta} \\
\delta \rho_{2} \\
\delta \rho_{3}
\end{array}\right]
$$

- Invert it with Taylor polynomial algorithm

$$
\left[\begin{array}{l}
\delta \alpha \\
\delta \delta \\
\delta \rho_{2} \\
\delta \rho_{3}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{M}_{\Delta \alpha_{1}} \\
\mathcal{M}_{\Delta \delta_{1}} \\
\mathcal{I}_{\alpha} \\
\mathcal{I}_{\delta}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Delta \alpha_{1} \\
\Delta \delta_{1} \\
\delta \alpha \\
\delta \delta
\end{array}\right]
$$

- Extract the map

$$
\left[\begin{array}{l}
\delta \rho_{2} \\
\delta \rho_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{M}_{\rho_{2}} \\
\mathcal{M}_{\rho_{3}}
\end{array}\right]\left[\begin{array}{c}
\Delta \alpha_{1} \\
\Delta \delta_{1} \\
\delta \boldsymbol{\alpha} \\
\delta \boldsymbol{\delta}
\end{array}\right] \quad\left\langle\left[\begin{array}{c}
\text { High-order } \\
\text { correction map! }
\end{array}\right.\right.
$$

- Evaluate in $\left[\Delta \alpha_{1}\right]=-\Delta \tilde{\alpha_{1}}$ and $\left[\Delta \delta_{1}\right]=-\Delta \tilde{\delta_{1}}$
- Iterate until $\Delta \tilde{\alpha}_{1}=0$ and $\Delta \tilde{\delta}_{1}=0$

High-order iterative OD

- The high-order iterative method delivers

$$
\begin{align*}
& {\left[\boldsymbol{r}_{2}\right]=\boldsymbol{r}_{2}+\mathcal{M}_{\boldsymbol{r}_{2}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})} \tag{4}\\
& {\left[\boldsymbol{v}_{2}\right]=\boldsymbol{v}_{2}+\mathcal{M}_{\boldsymbol{v}_{2}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})}
\end{align*}
$$

where

- r_{2} and v_{2} exactly satisfy the nominal observations
- the polynomial part analytically maps
 the observations uncertainties in the phase space
- A DA-Kepler problem can be used to map the state to any arbitrary epoch t_{4}

$$
\left[\begin{array}{l}
\left.\boldsymbol{r}_{4}\right]=\boldsymbol{r}_{4}+\mathcal{M}_{\boldsymbol{r}_{4}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta}) \tag{5}\\
{\left[\boldsymbol{v}_{4}\right]=\boldsymbol{v}_{4}+\mathcal{M}_{\boldsymbol{v}_{4}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta}) .}
\end{array}\right.
$$

Easily extended to n-body dynamics (Armellin et al 2010)

- This map can be used to analytically map the observation uncertainties in the sky at epoch t_{4}

$$
\begin{align*}
& {\left[\alpha_{4}\right]=\alpha_{4}+\mathcal{M}_{\alpha_{4}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})} \tag{6}\\
& {\left[\delta_{4}\right]=\delta_{4}+\mathcal{M}_{\delta_{4}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})}
\end{align*}
$$

it tells where to look for successive observations

The Use of the high-order maps

- The measurements performed by telescope (in general from any device) are affected by errors modeled by gaussian distributions
- Given any $\delta \boldsymbol{\alpha}$ and $\delta \boldsymbol{\delta}$, the Taylor polynomial maps:

$$
\begin{aligned}
& {\left[\alpha_{4}\right]=\alpha_{4}+\mathcal{M}_{\alpha_{4}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})} \\
& {\left[\delta_{4}\right]=\delta_{4}+\mathcal{M}_{\delta_{4}}(\delta \boldsymbol{\alpha}, \delta \boldsymbol{\delta})}
\end{aligned}
$$

analytically describe how deviations from the nominal observation affect α_{4}, and δ_{4}

- For given values of measurements standard deviations σ, the Taylor maps can be used to
- Perform fast Monte Carlo simulations based on the evaluation of the polynomial maps (running only one DA-based OD solver)
- Analytically map the covariance matrix of the measurements in the phase space (using Park and Scheeres 2006)
- Draw the propagated uncertainty sets by sampling each uncertain variable in -3б, 0, 3б

Roberto Armellin

Test cases: simulated observations

- Simulated observations of two known asteroids to assess the method performances

Body	Epoch	a	e	i	Ω	ω	M
	JD	AU	-	deg	deg	deg	deg
J95E01K	2455200.5	2.2653859	0.7756466	8.85709	355.44679	296.83636	103.43357
K09S19T	2455200.5	2.3644574	0.5917237	6.68904	0.49354	336.40458	34.53061
Earth	2455200.5	0.9999880	0.0167168	$8.854 \mathrm{e}-4$	175.40648	287.61578	2.57607

- Observatory of discovery and epoch of discovery

Observatory	Asteroid	year	month	day	UT [hr]
Oizumi	J95E01K	1995	3	7	18.82256
S.Maria de Montmagastrell	K09S19T	2009	9	26	4.03656

Test cases: simulated observations

- Simulated observations of two known asteroids to assess the method performances

Body	Epoch	a	e	i	Ω	ω	M
	JD	AU	-	deg	deg	deg	deg
J95E01K	2455200.5	2.2653859	0.7756466	8.85709	355.44679	296.83636	103.43357
K09S19T	2455200.5	2.3644574	0.5917237	6.68904	0.49354	336.40458	34.53061
Earth	2455200.5	0.9999880	0.0167168	$8.854 \mathrm{e}-4$	175.40648	287.61578	2.57607

- Observatory of discovery and epoch of discovery

Observatory	Asteroid	year	month	day	UT $[\mathrm{hr}]$
Oizumi	J95E01K	1995	3	7	18.82256
S.Maria de Montmagastrell	K09S19T	2009	9	26	4.03656

- Observations separation:
- $t_{1} \rightarrow$ one day $\rightarrow t_{2} \rightarrow$ one day $\rightarrow t_{3}$
- $t_{1} \rightarrow$ two hours $\rightarrow t_{2} \rightarrow$ one day $\rightarrow t_{3}$
- Standard deviations $\sigma=0.15,0.3$ and 0.45 arcsec

Roberto Armellin

J95E01K: 1 day separated observations

OD accuracy

Propagation accuracy

- Convergence in two iterations (vs. ~50 Gauss' iterations)
- Large observation uncertainties can be managed by high order computation
- Computational time for the solution, expansion, and evaluations of 1000 samples
- 1.25 s for 5 th order, 6.23 s for 6 th order (Mac OS X, 2 GHz Intel Core Duo)

Roberto Armellin

J95E01K: 1 day separated observations

Trajectory propagation

Observable set propagation

- Observation close to opposition with $\sigma=0.3 \operatorname{arcsec}$
- Set propagated up to 30 days
- Plot obtained by sampling each variable in $-3 \sigma, 0,3 \sigma$

J95E01K: 2 hour - 1 day separation

Trajectory propagation

Observable set propagation

- Observation close to opposition with $\sigma=0.15$ arcsec
- Closer observations yield larger uncertainty sets
- Plot obtained by sampling each variable in -3б, $0,3 \sigma$

J95E01K: 2 hour - 1 day separation

- Observation close to opposition with $\sigma=0.3$ arcsec
- Within this uncertainty set both elliptic and hyperbolic solutions appear
- A single 7th order expansion capture both elliptic and hyperbolic solutions

K095197: 1 day separated observations

OD accuracy

Propagation accuracy

- Convergence in two iterations
- Gauss does not converge to the true solution

K095197: 1 day separated observations

Trajectory propagation

Observable set propagation

- Observation close to quadrature with $\sigma=0.3 \operatorname{arcsec}$
- Set propagated up to 100 days
- Plot obtained by sampling each variable in -3б, $0,3 \sigma$

K095197: 2 hour - 1 day separation

Linear vs. 6-th order

- Observation close to quadrature with $\sigma=0.45 \operatorname{arcsec}$
- A single 6th order expansion greatly reduces the region of the sky to be scanned for future observations

Conclusion and Future Work

Conclusions

- A new high-order iterative procedure for preliminary OD is presented
- The method is based on Taylor differential algebra implemented in COSY-Infinity
- The method converges with few iterations (maximum 3)
- The method can converge also when classical methods do not
- Observation uncertainties are analytically mapped in the phase space
- Regions of the sky to be scanned for successive observations are described by Taylor polynomial

Future Work

- A detailed convergence analysis is missing
- Application of the method from simulated observation to real observations

7th International Workshop on Taylor Models Methods
 Key West - Florida
 December 14-17, 2011

High-order Uncertainty Management in Preliminary Orbit Determination

R. Armellin,

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy

