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The physical problem

The mathematical modelling of electric signalling in biological tissues, and
in the cardiac muscle in particular, is a longstanding problem that has
attracted a number of efforts. The mathematical structure of the
differential models typically reads as a reaction–diffusion equation, linear in
the diffusion and nonlinear in the reaction term, coupled with a one or
more ordinary differential equations.
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The physical problem

The classical model that preserves the basic mathematical nature of the
problem while introducing the minimum amount of algebraic complications
are the Fitzhugh–Nagumo equations:

∂v

∂t
−∇ · (D∇v) = −Av(v − α)(v − 1)− Aw ,

∂w

∂t
= v − w

τ
,

where v(X, t) is the action potential and w(X, t) is the gate variable. In
general D is a symmetric positive definite tensor and A ' ||D|| � 1 where
||D|| denotes some suitable norm.
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The physical problem

Recent studies have pointed out the role of the contractility of the
substratum in real physiological conditions, where the electrical potential
actually modulates the contraction of the muscle fibers and then the strain
of the material. The equations are therefore to be rewritten in moving
coordinates, where the strain of the domain is driven by the action
potential itself. It is convenient to rewrite the equations in material
coordinates, using an mapping between current positions and reference
ones. Adopting the standard terminology of continuum mechanics, we
denote by x = x(X, t) the position at time t of the material point that was
at time t = 0 in X.
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The physical problem

The gradient of deformation is therefore F = ∂x
∂X and the equations read

∂

∂t
(Jv)−Div

(
JF−1DF−TGrad v

)
= −AJv(v − α)(v − 1)− AJw ,

∂

∂t
(Jw) = Jv − Jw

τ
,

where J = det(F). We are interested in the one dimensional version

∂

∂t
(Jv)− ∂

∂X
D

(
J−1 ∂v

∂X

)
= −AJv(v − α)(v − 1)− AJw ,

∂

∂t
(Jw) = Jv − Jw

τ
,

where the (scalar) diffusion coefficient D is taken constant and, simply,
J = ∂x/∂X .
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The physical problem

To close the problem, we need to introduce a relation between the
contraction of the substrate and the action potential. While this relation
in real biological tissues involes quite complicated relations, we choose the
simple linear relation

∂x

∂X
= 1− βv ,

where β is a positive constant. We finally get

ε
∂

∂t
((1−βv)v)−D

∂

∂X

(
1

1− βv

∂v

∂X

)
= −(1−βv)v(v−α)(v−1)−(1−βv)w ,

∂

∂t
((1− βv)w) = (1− βv)

(
v − w

τ

)
.

where we have directly taken A = D = ε−1.
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Numerical results

In a past paper we have numerically found that the system above admits a
travelling pulse solution that travels faster than in the rigid case.
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Main result

Here we present a proof that such solution exist, together with a tight
bound on its speed. Looking for solutions of travelling wave type and finite
energy, amounts to looking for solutions v(t,X ) = V (X − ct),
w(t,X ) = W (X − ct), where V and W are homoclinic to 0.
The system becomes

V ′′

1−βV = −εc(1− 2βV )V ′ − β(V ′)2

(1−βV )2

+(1− βV )V (V − α)(V − 1) + (1− βV )W

W ′ = W
cτ −

V
c −

β
c V 2

Theorem

Let α = 0.1, β = 0.3, ε = 0.01, τ = 0.2. There exists
c ∈ [c, c̄] = [59.173113678059, 59.173113678061] such that the system
above admits a solution homoclinic to 0.
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Proof

The strategy of the proof is based on following the unstable manifold until
it comes back to the (local) stable manifold.
Problem: the intersection is not transversal. Numerically it looks as if the
homoclinic solution exists only for a particular value of the parameter c.
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Proof

Solution: solve the problem for all c and show that there must be an
intersection.
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Parameter dependence

A crucial step of the proofs consists in making all computations and
estimates with a parameter that takes values in an interval. This issue one
may define the parameter c as an interval with center c0 and radius δ. But
this approach is unfeasible in this proof: if one attempts to follow the
unstable manifold using a parameter of finite width, however small, the
errors accumulate very rapidly, and the computation gets quickly out of
hand. Even a fine partition of the interval [c0 − δ, c0 + δ] is not feasible.
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Parameter dependence

Therefore, instead of an interval enclosure for c, we use a type TBall,
which is a Taylor of order 2 with coefficients of type Ball. So every
Scalar is effectively a function of c . We call ξ the parameter normalized
to the interval [−1, 1], so that c is represented by the TBall

c + c̄

2
+

c̄ − c

2
ξ .

By using TBalls as coefficients we obtain an explicit expression for a
parametrization of the invariant manifolds, depending on both a
geometrical parameter and c .

GA (with Hans Koch) (PoliMi) Computer assisted proofs December 15, 2011 12 / 29



Invariant manifolds of dynamical systems

Consider the nonlinear dynamical system in RN

y ′ = Ay + B(y) , (1)

with A ∈ GLN(R), B : RN → RN analytic, B(0) = 0, ∇B(0) = 0. The
unstable manifold is tangent in 0 to the eigenspace of A corresponding to
eigenvalues with positive real part. The following theorem provides a mean
of computing the unstable manifold in a neighborhood of the origin, in the
case when A has pair of complex conjugate eigenvalues {λ, λ̄} with
eigenvectors {v , v̄}.

GA (with Hans Koch) (PoliMi) Computer assisted proofs December 15, 2011 13 / 29



2-d invariant manifold

Theorem

Let Z : C2 → CN such that

Z (s1, s2) =
∞∑

j ,k=0

zjks j1sk2

converges when |sk | < 1, zjk = 0 if j + k ≤ 1 and

λs1Z1(s1, s2) + λ̄s2Z2(s1, s2) = AZ (s1, s2) + B
(
s1v + s2v̄ + Z (s1, s2)

)
, (2)

where Zk = ∂Z
∂sk

. Then, for all (r1, r2) ∈ C2 such that |rk | < 1 and all
t ≤ 0 the function

y(t) = r1eλtv + r2eλ̄t v̄ + Z
(

r1eλt , r2eλ̄t
)

is a solution of equation (1). If additionally r2 = r̄1, then y(t) ∈ RN .
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2-d invariant manifold

Let R > 0, let X 2
R be the space of functions of two complex variables

which can be written as a power series

Z (s1, s2) =
∞∑

j ,k=0

zjks j1sk2 (3)

with zjk ∈ CN and such that

‖Z‖ :=
∞∑

j ,k=0

|zjk |R j+k

converges. The space X 2
R is a Banach algebra.
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2-d invariant manifold

In order to represent any function in XR by using only a finite set of
coefficients plus an estimate on the remainder. Our choice is to write
functions as follows:

Z (s1, s2) =

j+k≤N∑
j ,k≥0

zjks j1sk2 + EZ , (4)

where EZ is a function in X 2
R with all coefficients of degree less or equal to

N equal to zero.
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Trasforming the problem into a fixed point problem

We write equation (2) as

z(s) = D−1
λ (Az(s) + N(sv + z(s))) ,

where D−1
λ is defined by

D−1
λ (s j1sk2 ) =

s j1sk2
jλ+ kλ̄

Let ZR be the subalgebra of the functions in XR with zero constant and
first degree term, and note that, if z ∈ (ZR)N and

z̃(s) = D−1
λ (Az(s) + B(sv + z(s))) ,

then z̃ ∈ (ZR)N , so we have defined an operator C : (ZR)N → (ZR)N by
z̃ = C (z) and its fixed points correspond to the solution that we are
looking for.
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Finding the fixed point

We observe that, thanks to the compactness of C , it is feasible to build a
Newton-like (local) contraction which is useful both for computing an
approximated fixed point and for proving that there exists a (true) fixed
point close to it.
Let P : ZN

R → Cm be the map that returns the coefficients of the terms of
order less than m. We define a matrix M ∈ GLm(C) as a finite
dimensional approximation of D(PCP)− I , I being the identity map. Let
N : ZN

R → ZN
R be defined by

N (Z ) = C (Z )−M−1 ∗ (C (Z )− Z ) ,

where for all M ∈ GLm(C) and all Z ∈ ZN
R we define M ∗ z to be the

function in ZN
R with coefficients MPZ .
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Finding the fixed point

A direct consequence of the contraction theorem is the following

Lemma

If there exist positive constants ε, r ,K and Z0 ∈ ZN
R such that

‖N (Z0)− Z0‖ < ε,

‖DN (Z )‖ ≤ K for all Z ∈ Br (Z0)

ε+ rK < 1,

then there exists a unique fixed point of N (and therefore of C ) in Br (Z0).
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And then we follow the unstable manifold

When we have a fixed point z of C , we have a rigorous enclosure of the
unstable manifold tangent to v at 0, since such manifold intersects
sv + z(s) for all s ∈ [0,R)
Once we have good bounds on a point on the unstable manifold, away
from the stationary point, we can follow the unstable manifold by solving{

y ′ = Ay + N(y)

y(0) = s̄v + z̄(s̄) ,

for some choice of 0 < s̄ < R. To prove the existence of a homoclinic
solution we need to prove that y(t) belongs to the stable manifold of 0 as
well.
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Area-preserving maps

MacKay RG for pairs P = (F ,G ) of area-preserving maps:

R(P) = (F̃ , G̃ ) , F̃ = Λ−1G Λ , G̃ = Λ−1FG Λ , Λ =

[
λ 0
0 α

]

Motivation: Observation of critical phenomena (self-similarity, universal
scaling) during the breakup of invariant circles with rotation number

ϑ−1 =
√

5− 1

2
= 0.618033988 . . . (inverse golden mean),
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Area-preserving maps

In many families β 7→ Gβ , including the standard map

Fβ(x , z) = (x − 1, z) , Gβ(x , z) = (x + w ,w) , w = z − β sin(2πx) .

β = 0: smooth golden circle at w = ϑ−1 .
β > 0 small : smooth golden circle persists, by KAM theory.

β = β∗: golden circle turns non-smooth and breaks up.

In suitable coordinates, the golden circle and nearby orbits are

asymptotically invariant under a scaling Λ =

[
λ∗ 0
0 α∗

]
,

λ∗ = −0.7067956691 . . . , α∗ = −0.3260633966 . . . ,

with λ∗ and µ∗ universal (independent of the family).
This could be explained if

Rn(Pβ∗)→ P∗ , R(P∗) = P∗ .
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Critical area-preserving maps

Orbits for a critical Hamiltonian, [J. Abad, H.K., P. Wittwer:98]
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Renormalization of area-preserving map

Find a pair P = (F ,G ) of commuting area-preserving maps that is a fixed
point of R,

R(P) = (F̃ , G̃ ) , F̃ = Λ−1G Λ , G̃ = Λ−1FG Λ , Λ =

[
λ 0
0 α

]
where λ and α are determined by the normalization condition
G̃ (0, 0) = (−1,−1).
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Renormalization of area-preserving map

Preserved but hard to deal with: commuting property GF = FG .
Desirable but not preserved: reversibility G = SG−1S , with
S(x , z) = (−x , z).

Typical for computer-assisted proofs: first find appropriate reformulation.
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Renormalization of area-preserving map

First reformulation: consider the transformation

N(G ) = Λ−2GFG Λ2 , F = Λ−1G Λ ,

on a space of reversible maps G (preserved by N). Let J = G−1Λ−1FG Λ.
Lemma If G is an analytic reversible fixed point of N , with the property
that |λ|3 < |µ| < |λ|4, and that J 6= −Id, then P = (F ,G ) is a fixed point
of R and commuting.
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Renormalization of area-preserving map

Second reformulation uses generating functions: G = Γg , where

G (x , z) = (y ,w) , z = −∂xg(x , y) , w = ∂yg(x , y) ,

This defines a transformation N = Γ−1N Γ for generating functions.

Third reformulation: contraction M(φ) = φ+N (g0 + Mφ)− (g0 + Mφ).
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Main result: existence of the critical fixed point

Theorem (G. A., H. Koch:09)

R has a fixed point P∗ = (F∗,G∗). The maps F∗ and G∗ are analytic,
area-preserving, reversible, and they commute. The associated scaling Λ∗
satisfies λ∗ = −0.7067956691 . . . and α∗ = −0.3260633966 . . ..(
Earlier partial results by [A. Stirnemann:97]

)
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Implementation details

The computer uses Taylor series in two “variables” u and v,

g =
∑
m,n

am,nu
mvn + t

∑
m,n

bm,nu
mvn ,

(bm,n = 0 if g is the generating function of a reversible map), where

u =
[

t2 − t2
0

]
+ cv , v = s− s0 ,

and
t(x , y) = x + y , s(x , y) = x − y ,

with t0 = 51/128, s0 = 307/256, and c = 3.
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