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ABSTRACT

This work is devoted to problems of optimization of RMS characteristics of beam of charged
particles in accelerators. Optimization problems of minimization of the effective emittance growth
are considered. Special minimax functionals are introduced. Linear and nonlinear beam dynamics
models can be used. Numerical results on optimization problem of radial matching section in RFQ

accelerator are presented.
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INTRODUCTION

Problem of transverse motion parameters optimization could be formulated in various ways and
those problems are usually complicated multi parameters problems. In case of linear equations of
transverse motion it is suitable to consider beam envelops as beam characteristics. In nonlinear case
RMS parameters of beam of trajectories of charged particles could be used for motion parameters
estimation and for setting functionals of quality.

Problems of optimization of transverse motion one should consider step by step to achieve
desired results. Among such various problems the main are the problems of beam focusing,
minimization of effective emittance growth and also a problem of radial matching of beam

parameters at RFQ accelerator structure input.
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INTRODUCTION (2)

Suggested approach to mentioned problems based on solution of mathematical formal
optimization problem is considered. Capabilities of the method are shown on example of solution of
a particular problem — problem of definition of radial matching section parameters. The use of such
section allows providing matching of time independent constant beam input with time dependent
acceptance at the entrance of the RFQ accelerator which rotates with the frequency of the RF field.
The successful resolution of the problem is important because the quality of radial matching directly
connected with beam losses in the channel. Usually geometry of radial matching section was
described by certain function of few variable parameters (for example, polynomial with uncertain

coefficients).
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INTRODUCTION (3)

It 1s shown that with use of chosen form of quality functional one can get variation of the
functional in analytic representation. It gives us opportunity significantly speed up calculations and
increase the number of controllable parameters. In given example controllable parameters were the
values of aperture of the channel at the beginning and in some certain points of the cells in the radial
matching section (in between the geometry 1s described by splines). In that case the class of possible

solutions became wider.
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PROBLEM STATEMENT

Let us consider charged particle beam dynamics in RFQ structure:
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Here a = a(z) is a control function to be defined from an optimization problem.
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The equations can be transformed to the linear system of ODEs:

dx
— = AT ))X
2 (T)x,

Y0 R?; X% = X, X, = dx/dl and X = y, %, = dy/dl .

And matrix A(T ) has the following form:

y 0 1
T):=
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Let the set of conditions for the linear system at initial T fills the ellipses in the planes

dx

QX, . @ and @y, j—);@ correspondingly
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Then to describe the system evolution the following matrix equation for beam envelopes can be

written
a5 AT)S+ 84" (1),
dr

with initial condition S(0)= B, .

Or one can rewrite the equation in the form

Sy
dT = 2S12,y)
as;y’ . .
dr = Qx,y DSlfy t S2§y’
dS5;" .
dr - 2Qx,y DSIZ,y°

Here r_ - \/@7 7y = S
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For optimization problem it is often suitable to consider longitudinal coordinate Z as

independent variable. In this case equations of longitudinal motion can be transformed to

d b _ .

o
dz p~° dz [~
~ , z
where § = 0T + ¢, - phase of particle, f = — .
c

And then transverse motion equations have the following form
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With use of new shape of charged particle beam dynamics one can get the following equations for

beam envelopes:

ds’:”
=285,
dz
dSlxiy - Qx,y DSX,J/ _ FZ Sx’y + Sxay
- 11 5 P12 22 >
dz 1§ B
dSy _ ,Qxy F,
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dz p B
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PROBLEM STATEMENT (2)

Let the system describes transverse motion can be written as linear differential equation systems

¢ dn
= A4 —z 4
dz ox dz M

d d
where ¢ =(f1><(2), 51:x,52:d—x, ] :('71,'72) n=1y, Uz-d—y a and matrices 4, and 4, have
A A

the form

SR g
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Let the set of conditions for the system at some instant T fill the ellipses

'GE<1, n7Gy<l,

: H dx H H dy H : : :
in the planes Dx’a’_D and Dy’d_D correspondingly. Then, the matrices G, and G, satisfy the
z z

following system of matrix equations

d _ % _ %
-G = -4 G- G A, -G, = A G- G,

The system of equations should be solved on the interval from the entrance into the regular part of
the accelerator to the end of structure, i.e. from z= 0 to z = Z. Initial conditions for the system are

the matrices of ellipses defining acceptances of the regular part of the accelerator, depending on an

initial phase¢ o (0<@,<2m) :
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The optimization problem for the effective emittence growth minimization problem is to find a

function a(z), i.e. law of the radius change along the accelerator structure, providing under the
initial conditions the maximum possible overlapping of families of ellipses at the end of the

accelerating structure.
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METHOD OF SOLUTION

Let's represent elements of the matrices Gx(Z i o) and Gy(Z 0 o) as follows

HAx+ax2 H HAy+ay2 a H
Gx:D V axDa Gy:D V yD»
I ¥ I g 7 0

0y V x 0 Oy vy

- .2 - -
where v /A | = rxz,vy/Ay- ro, b= detG,, A, = detG,

] a V

X

. 0 y y .
Notice that values , and , are the so-called Courant-Snyder or Twiss
YO D JA 7L

parameters.
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Now the equations can be written in the following form

dav A +qg 2
x:_za)m dax:_vax_ : ax
dr dr /N

2

dv—y:_za ; da—y:—QV _Ay'l'ay
dr Ydr 7y v,

Let’s also consider the following functional which characterizes the quality of transverse

motion by mismatch of ellipses GX(Z 0 o) and Gy(Z N 0) with given ellipses B, and B y:

Ja) = r{;@(}ﬂx'l(%) + n;%ﬂy'l(%)

b

Where

Taylor Model Methods Workshop VII, Key West, Florida, USA, December 14-17, 2011



Here A = min(),,),) is a minimum eigenvalue of a cluster of quadratic forms generated by a
pair of ellipses with the matrices G and B: ) (A)=det(G-1B)= 0,y (A1) = y(A,)=0.

The value of the inverse minimum eigenvalue characterizes the degree of mismatch pairs of
ellipses. In the case of fully identical ellipses, this value is equal to unity. So always } 1 > 1.

Matrices B,and B, describing the desired phase portrait of the beam at the end of the
accelerator structure.

The problem of minimizing this functional is the minimax optimization problem and can be

decided by directed methods of optimization.
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Rewrite the last system as a system of the equations of the form

Tz Az,

Z

with the corresponding initial conditions
0(0)=0(0.4), ¢0[81.65].
Here 0 = (01,02,03,04),01 =0, 0,=V,, 030, 04=V, u= a(z) is a control function;
initial phase value ¢ = ¢ ( belongs to some interval.

The functional can be written in the form

J(u) = max gy(0(Z,9,).8)+ maxg,({0(Z,04).60)

9o fo
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It could be shown that in this case one have the following representation of variation of the

functional:

= - [ (Bl

Where vector-function p(T ) should be defined by formula
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Here ¢, and ¢, correspond to the “worst” phases in corresponding planes, i.e.

ma}axgl(a (Z,0).0)=gl0(Z,0.).0 ) and m¢axg2(0 VAINIE gz(a (Z,d) y)’¢ y); vector-functions

¥, and§ , are solutions of the following systems with special initial conditions:
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The vector-function p(Z ) defines the direction of minimization:

wu (1) = ult)+ plr)e ,  where ¢ > 0, and u; r) - possible new control .
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Radial matching section optimization

For the radial matching section of the accelerator, charged particle dynamics in the (x, ) plane
which 1s perpendicular to the longitudinal axis in the case of micro canonical charge distribution can

be described by the following system of equations:

dé dn
— - Ax 5 —= 4 s 1
dr E dr S 1
_ _ dx _ _ dy ,
where ¢ = (51,52), $1=x,6,¢ E, N = (fh,f]z), Ni=y,N,= d—r,andthematrlces A, and Ay

have the form
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Here

elU 41/1,
T? 2 2 2 - 91- + - f ‘, 1
O\ ,2,0 0,7, ry) " cos(f7 + ¢ o) B ry) (1)
_ eU _ 4!/[0 ‘
Qy(T)Z)¢09r_Xer) - WOaZ COS(OT + ¢O) ,Bzf'y Vx + ry)a (2)

where T = ct, 0 = 21w /c, U is the intervane voltage, ¥} is the charged particle rest energy, @ is

the accelerating field frequency, ¢ ¢ is the initial phase, ¢ is the velocity of light, @ is the radius of

the channel, v = Z is the longitudinal velocity of a particle which is constant along the matching

section, 7, and 7y are the beam envelopes, [ is the beam current.
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Let the set of conditions for system (1) at some instant T fill the ellipses

'GE<1, NGy, ()
d. d
in the planes Ex,fg and E%%E correspondingly.

Then, the matrices G, and G, satisfy the following system of matrix equations

d _ %k d _ %k
-G 7 A G- Gd,, -G = -4 G, - G A, (6)

The system of equations (6) should be solved on the interval from the entrance into the regular part
of the accelerator to the entrance into the radial matching section, i.e. from T = T toT = 0. Initial

conditions for the system (6) are the matrices of ellipses defining acceptances of the regular part of

the accelerator, depending on an initial phase q:
G.(T.90) - G (¢o), Gy(T>¢O) =G, 90). (7)
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The optimization problem for the radial matching section is to find a function alr),ie. law of
the radius change along the matching sections, providing under the conditions (7) the maximum
possible overlapping of families of ellipses at the entrance of the radial matching section.

Let's consider the functions
v x(¢0): Sp(Gx(Oa¢0)_ Bx)2’ (8)
0 ,(80) = Sp[G,(0.4,) - B,], 9)

where B, , B y are given matrices, Sp is the trace of the corresponding matrix. Functions @ x(¢ 0)
and ¢ y(¢ 0) characterize deviations of ellipses G, and G, at =0 from the given ellipses B, and

B, accordingly.

Here two approaches based on introduction of two different functionals are considered.
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Introduce the functional

) )
J(a)= ¢ [0 cl0o)dbot ey [© y(¢o)d¢o, (10)
f1 91

estimating the degree of mutual overlapping of ellipses corresponding to various initial phases at the

entrance of the matching section. Here ¢ | and ¢ , are limits of variation of initial phasef ¢; ¢;, ¢,
are some positive constants.
Note that the optimization of the functional (10) over the control function alr) can be viewed as a

nonstandard problem of the optimal control theory.
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Let’s also consider the following functional which characterizes the quality of the matching

section by mismatch of ellipses G,(0,0 o) and G y(09¢ o) with given ellipses B, and B,

J(a) = nq}%ﬂx'l(%) ' n;eomy'l(%), (11)
where
o 90)=27(G[0.94).B,), (12)
1,00 = 176, (0.0). 8, ). (13)

Here / = min(A 1>/ 2) 1s a minimum eigenvalue of a cluster of quadratic forms generated by a pair of

ellipses with the matrices G and B:

¥(1)=det{G-1B)=0, x(A)= y(1,)= 0. (14
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The value of the inverse minimum eigenvalue characterizes the degree of mismatch pairs of ellipses.
In the case of fully identical ellipses, this value is equal to unity. So always } !> 1.
Matrices B and B, describing the desired phase portrait of the beam at the beginning of the

matching section.

The problem of minimizing the functional (11) 1s the minimax optimization problem.
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RESULTS OF NUMERICAL OPTIMIZATION
The analytic representations of the variations of the functionals (10),(11) were used to find
geometric parameters of radial matching section of the RFQ accelerator of protons (initial energy
45keV, intervane voltage 100kV, RF field frequency 352 MHz, current 75mA, emittance 40107’
mrad). One of the possible choices of the law of variation of the channel radius along the radial
matching section is presented in Figure 3. In Figure 1 the RFQ acceptances without radial matching

section are shown. The illustration of the radial matching section effect is shown in Figure 2.
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ACCEPTANCES W ITHOUT RADIAL WATCHING SECTION, (X 4XIdp) ACCEPTANCES WITHOUTRADIAL HATCHING SECTION, (Y.dY/4)

NN = s —
. TSN A

ol RSN )/

“

dY/ldy, mrad

dX/dy, mrad

Figure 1.

ACCEPTANCES W ITH RADIAL MATCHING SECTION, (X, dX[df) ACCEPTANCES W ITH RADIAL MATCHING SECTION, (Y ,dY/g)

dXldy mrad
aYldy, mrad

Figure 2.
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RADIUS OF CHANNEL IN RADIAL MATCHING SECTION
16

14

12

10

R, mm

Figure 3.

Also computations were used to find geometric parameters of radial matching section of the RFQ

accelerator of protons (initial energy 95keV, output energy 5 MeV, intervane voltage 100kV, RF

field frequency 352 MHz, initial cell length 6.06 mm).
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OPTIMIZATION RESULTS

OfnacTi sazmana xawana ® mRockecw: x, de/dz: 3 = 0.17985 stcwtwpan

Onacws saxsava xamana B Gaocwoows y, dy/de: 3 = 0.16955 stowiwpan
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OPTIMIZATION RESULTS

OBnacTe saxmava xakana B naockeoww x, dx/dz: 3, = 0.18023 xtoutmpax

ObnacTe saxmawa xawana B naocwocws x, dx/dz: 3, = 0.18023 x*cx*wpan ObnacTe saxmawa xawana B mmockeown x, dx/dz: 3, = 0.18393 xtoatmpax

ObnacTs 3axmava xamana ® nnockecwn x, dx/dz: 3 = 0.17572 s*ewwpan

faa, wpan
fda, wpan

dupaz, wpan

a 2 1 o 1 2 3 3 2 1 o 1 2 3
OSnacTe saxeava wakana B maocwooms y, dy/dz; 3 = 0.1694 stowtmpan Obnacm. saxmawa xamana 8 macckeows ¥, dy/ds; 3, = 0.16571 xtowmpax O8nacws saxsava xamana B maockoomk y, dy/ds; 3, = 0.16834 xtowmpax
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CONCLUSION

New mathematical models and methods of the RFQ structure optimization were suggested. In
this work the optimization approach with use of two different functionals to find geometric
parameters of radial matching section is considered. It should be noted, that the proposed approach
can be utilized to optimize the transverse dynamics in accelerators if the dynamics is adequately
described by linear equations or with use RMS parameters. In particular, this method can be used to

minimize the growth of the effective emittance in the RFQ channel.
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THE END
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