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ABSTRACT

This work is devoted to problems of optimization of RMS characteristics of beam of charged 

particles in accelerators.  Optimization problems of minimization of the effective emittance growth  

are considered. Special minimax functionals are introduced. Linear and nonlinear beam dynamics 

models can be used.   Numerical results on optimization problem of radial matching section in RFQ 

accelerator are presented.
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INTRODUCTION

Problem of transverse motion parameters optimization could be formulated in various ways and 

those problems are usually complicated multi parameters problems.   In case of linear equations of  

transverse motion it is suitable to consider beam envelops as beam characteristics. In nonlinear case 

RMS parameters of beam of trajectories of charged particles could be used for motion parameters  

estimation and for setting functionals of quality. 

Problems of optimization of transverse motion one should consider step by step to achieve 

desired  results.  Among  such  various  problems  the  main  are  the  problems  of  beam  focusing, 

minimization  of  effective  emittance  growth  and  also  a  problem  of  radial  matching  of  beam 

parameters at  RFQ accelerator structure input.
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INTRODUCTION (2)

Suggested  approach  to  mentioned  problems  based  on  solution  of  mathematical  formal 

optimization problem is considered. Capabilities of the method are shown on example of solution of 

a particular problem – problem of definition of radial matching section parameters. The use of such 

section allows providing matching of time independent constant beam input with time dependent 

acceptance at the entrance of the RFQ accelerator which rotates with the frequency of the RF field.  

The successful resolution of the problem is important because the quality of radial matching directly 

connected with  beam losses  in  the  channel.   Usually  geometry  of  radial  matching  section  was  

described by certain function of few variable parameters (for example, polynomial with uncertain 

coefficients).
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INTRODUCTION (3)

It is shown that with use of chosen form of quality functional one can get variation of the 

functional in analytic representation. It gives us opportunity significantly speed up calculations and 

increase the number of controllable parameters. In given example controllable parameters were the 

values of aperture of the channel at the beginning and in some certain points of the cells in the radial 

matching section (in between the geometry is described by splines).  In that case the class of possible 

solutions became wider.
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PROBLEM STATEMENT

Let us consider charged particle beam dynamics in RFQ structure:
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Here ( )zaa =  is a control function to be defined from an optimization problem.
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The equations can be transformed to the linear system of ODEs:
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Let the set of conditions for the linear system at initial  τ  fills the ellipses in the planes 
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Then to describe the system evolution the following matrix equation for beam envelopes can be 

written

)()( * ττ
τ

SASA
d
dS += , 

with initial condition                                1
0)0( −= BS . 

Or one can rewrite the equation in the form
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For  optimization  problem  it  is  often  suitable  to  consider  longitudinal  coordinate  z  as 

independent variable. In this case equations of longitudinal motion can be transformed to  

β
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=
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d
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d = ,

where 0
~ ϕτωϕ +=   - phase of particle, 

c
z=β  . 

And then transverse motion equations have the following form  
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With use of new shape of charged particle beam dynamics one can get the following equations for  

beam envelopes:

yx
yx

S
dz

dS ,
12

,
11 2= , 

yxyxzyxyx
yx

SSFS
Q

dz
dS ,

22
,

122
,

11
,

,
12 +−⋅=

ββ
,

yxzyxyx
yx

SFS
Q

dz
dS ,

222
,

12
,

,
22 22

ββ
−⋅= .

Taylor Model Methods Workshop VII, Key West, Florida, USA, December 14-17, 2011



PROBLEM STATEMENT (2)

Let the system describes transverse motion can be written as linear differential equation systems 
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Let the set of conditions for the system at some instant τ  fill the ellipses 

1* ≤ξξ xG ,     1* ≤ηη yG ,

in the planes 





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dxx,  and 
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dyy,  correspondingly. Then, the matrices xG  and yG  satisfy the 

following system of matrix equations

xxxxx AGGAG
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τ
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d
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τ
.

The system of equations should be solved on the interval from the entrance into the regular part of  

the accelerator to the end of structure, i.e. from 0=z  to Zz = . Initial conditions for the system are 

the matrices of ellipses defining acceptances of the regular part of the accelerator, depending on an  

initial phase 0ϕ  (0<φ0<2π)  :

( ) ( )00,0,0 ϕϕ xx GG = ,    ( ) ( )00,0,0 ϕϕ yy GG = .
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The optimization problem for the effective emittence growth minimization problem is to find a  

function  ( )za , i.e. law of the radius change along the accelerator structure, providing under the  

initial  conditions   the  maximum possible  overlapping  of  families  of  ellipses  at  the  end  of  the  

accelerating structure.
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METHOD OF SOLUTION

Let's represent elements of the matrices ( )0,ϕzGx  and ( )0,ϕzGy  as follows
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 are the so-called Courant-Snyder or Twiss 

parameters. 

Taylor Model Methods Workshop VII, Key West, Florida, USA, December 14-17, 2011



Now the equations can be written in the following form
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Let’s  also  consider  the  following  functional  which  characterizes  the  quality  of  transverse 

motion by mismatch of ellipses ( )0,ϕZGx  and ( )0,ϕZGy  with given ellipses xB  and yB :
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Here ( )21,min λλλ =  is a minimum eigenvalue of a cluster of quadratic forms generated by a 

pair of ellipses with the matrices G  and B : ( ) ( ) 0det =−= BG λλχ , ( ) ( ) 021 == λχλχ .   

The value of the inverse minimum eigenvalue characterizes the degree of mismatch pairs of 

ellipses. In the case of fully identical ellipses, this value is equal to unity. So always 11 ≥−λ .

Matrices  xB and  yB  describing  the  desired  phase  portrait  of  the  beam  at  the  end  of  the 

accelerator structure.

The problem of minimizing this functional is the minimax optimization problem and can be 

decided by directed methods of optimization.
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Rewrite the last system  as a system of the equations of the form

( )uzf
dz
d ,,, ϕσσ = ,  

with the corresponding initial conditions 

( ) ( )ϕσσ ,00 = ,   [ ]21,ϕϕϕ ∈ .

Here ( )4321 ,,, σσσσσ = , xασ =1 , xνσ =2 , yασ =3 , yνσ =4 ; ( )zau =  is a control function; 

initial phase value  0ϕϕ =  belongs to some interval. 

The functional can be written in the form 

( ) ( )( ) ( )( )002001 ,,max,,max
00

ϕϕσϕϕσ
ϕϕ

ZgZguJ += .
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It could be shown that in this case one have the following representation of variation of the 

functional:

( ) ( )dzzuzpJ
Z
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0

*δ ,

Where vector-function ( )τp  should be defined by formula
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Here xϕ  and  yϕ  correspond  to  the  “worst”  phases  in  corresponding  planes,  i.e. 
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ϕ
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ϕ
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1ψ  and 2ψ  are solutions of the following systems with special initial conditions:
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The vector-function ( )zp   defines the direction of minimization: 

( ) ( ) ( )ετττε puu += ,      where 0>ε , and ( )τεu  -  possible new control .
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Radial matching section optimization

For the radial matching section of the accelerator, charged particle dynamics in the ),( yx  plane 

which is perpendicular to the longitudinal axis in the case of micro canonical charge distribution can 

be described by the following system of equations:

ξ
τ
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Here

( ) ( ) ( )yxxz
yxx rrr

II
aW

eUrrzQ
+

−+=
β

ϕθ τϕτ 0
02

0
0

4cos,,,, ,                                      (1)

( ) ( ) ( )yxyz
yxy rrr

II
aW

eUrrzQ
+

−+−=
β

ϕθ τϕτ 0
02

0
0

4cos,,,, ,                                   (2)

where сt=τ , cπ ωθ 2= , U  is the intervane voltage, 0W  is the charged particle rest energy, ω  is 

the accelerating field frequency, 0ϕ  is the initial phase, c  is the velocity of light, a  is the radius of 

the channel, zv =  is the longitudinal velocity of a particle which is constant along the matching 

section, xr  and yr  are the beam envelopes,  I  is the beam current. 

Taylor Model Methods Workshop VII, Key West, Florida, USA, December 14-17, 2011



Let the set of conditions for system (1) at some instant τ  fill the ellipses 

1* ≤ξξ xG ,     1* ≤ηη yG ,                       (5)

in the planes 






τd
dxx,  and 







τd
dyy,  correspondingly.

Then, the matrices xG  and yG  satisfy the following system of matrix equations

xxxxx AGGAG
d
d −−= *

τ
,   yyyyy AGGAG

d
d −−= *

τ
.     (6)

The system of equations (6) should be solved on the interval from the entrance into the regular part 

of the accelerator to the entrance into the radial matching section, i.e. from Τ=τ  to 0=τ . Initial 

conditions for the system (6) are the matrices of ellipses defining acceptances of the regular part of 

the accelerator, depending on an initial phase 0ϕ :

( ) ( )0,0, ϕϕ Τ=Τ xx GG ,    ( ) ( )0,0, ϕϕ Τ=Τ yy GG .   (7)
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The optimization problem for the radial matching section is to find a function ( )τa , i.e. law of 

the radius change along the matching sections, providing under the conditions (7) the maximum 

possible overlapping of families of ellipses at the entrance of the radial matching section.

Let's consider the functions

( ) ( )( ) 2
00 ,0Sp xxx BG −=Φ ϕϕ ,                   (8)

( ) ( )( )200 ,0Sp yyy BG −=Φ ϕϕ ,                  (9)

where xB , yB  are given matrices, Sp  is the trace of the corresponding matrix. Functions ( )0ϕxΦ  

and ( )0ϕyΦ  characterize deviations of ellipses xG  and yG   at 0=τ  from the given ellipses xB  and 

yB , accordingly.

Here two approaches based on introduction of two different functionals are considered. 
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Introduce the functional

( ) ( ) ( )∫∫ Φ+Φ=
2

1

2

1

002001

ϕ

ϕ

ϕ

ϕ
ϕϕϕϕ dcdcaJ yx ,       (10)

estimating the degree of mutual overlapping of ellipses corresponding to various initial phases at the 

entrance of the matching section. Here 1ϕ  and 2ϕ  are limits of variation of initial phase 0ϕ ; 1c , 2c  

are some positive constants. 

Note that the optimization of the functional (10) over the control function ( )τa   can be viewed as a 

nonstandard problem of the optimal control theory.
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Let’s also consider the following functional which characterizes the quality of the matching 

section by mismatch of ellipses ( )0,0 ϕxG  and ( )0,0 ϕyG  with given ellipses xB  and yB :

( ) ( ) ( )0
1

0
1

00
maxmax ϕλϕλ

ϕϕ

−− += yxaJ ,             (11)

where

( ) ( )( )xxx BG ,,0 0
1

0
1 ϕλϕλ −− = ,                  (12)

( ) ( )( )yyy BG ,,0 0
1

0
1 ϕλϕλ −− = .                  (13)

Here ( )21,min λλλ =  is a minimum eigenvalue of a cluster of quadratic forms generated by a pair of 

ellipses with the matrices G  and B :

( ) ( ) 0det =−= BG λλχ , ( ) ( ) 021 == λχλχ .    (14)
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The value of the inverse minimum eigenvalue characterizes the degree of mismatch pairs of ellipses. 

In the case of fully identical ellipses, this value is equal to unity. So always 11 ≥−λ .

Matrices xB and yB  describing the desired phase portrait of the beam at the beginning of the 

matching section.

The problem of minimizing the functional (11) is the minimax optimization problem. 
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 RESULTS OF NUMERICAL OPTIMIZATION

The analytic representations of the variations of the functionals (10),(11) were used to find 

geometric parameters of radial matching section of the RFQ accelerator of protons (initial energy  

45keV, intervane voltage 100kV, RF field frequency 352 MHz, current  75mA, emittance  7104 −⋅

m∙rad). One of the possible choices of the law of variation of the channel radius along the radial 

matching section is presented in Figure 3. In Figure 1 the RFQ acceptances without radial matching  

section are shown. The illustration of the radial matching section effect is shown in Figure 2.
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Also computations were used to find geometric parameters of radial matching section of the RFQ 

accelerator of protons (initial energy 95keV, output energy 5 MeV, intervane voltage 100kV, RF 

field frequency 352 MHz, initial cell length 6.06 mm).
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OPTIMIZATION RESULTS
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CONCLUSION

New mathematical models and methods of the RFQ structure optimization were suggested.  In  

this  work  the  optimization  approach  with  use  of  two  different  functionals  to  find  geometric  

parameters of radial matching section is considered. It should be noted, that the proposed approach  

can be utilized to optimize the transverse dynamics in accelerators if the dynamics is adequately  

described by linear equations or with use RMS parameters. In particular, this method can be used to  

minimize the growth of the effective emittance in the RFQ channel. 
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THE END
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