Machine-Checkable Correctness Proofs: Formalizing Taylor Models

Roland Zumkeller

Project TypiCal, INRIA École Polytechnique, Paris

Project MathComponents
Microsoft Research / INRIA Joint Lab, Paris

Taylor Model Methods V, May 2008, Toronto

The maximal density of sphere packings in 3-space is $\frac{\pi}{\sqrt{18}}$.

The maximal density of sphere packings in 3-space is $\frac{\pi}{\sqrt{18}}$.

Proof (Thomas Hales, 1998)

The maximal density of sphere packings in 3-space is $\frac{\pi}{\sqrt{18}}$.

Proof (Thomas Hales, 1998)

300 pages

- Geometry
- Analysis

The maximal density of sphere packings in 3-space is $\frac{\pi}{\sqrt{18}}$.

Proof (Thomas Hales, 1998)

300 pages

- Geometry
- Analysis

40.000 lines, several weeks

- Graph Enumeration
- Linear Optimization
- Non-linear Optimization

Lemma 751442360

Lemma 751442360

$$2.51^{2} \le x_{1} \le 2.696^{2} \rightarrow 4 \le x_{4} \le 2.51^{2} \rightarrow 4 \le x_{2} \le 2.168^{2} \rightarrow 4 \le x_{5} \le 2.51^{2} \rightarrow 4 \le x_{3} \le 2.168^{2} \rightarrow 4 \le x_{6} \le 2.51^{2} \rightarrow 4 \le x_{3} \le 2.168^{2} \rightarrow 4 \le x_{6} \le 2.51^{2} \rightarrow 4 \le x_{6}$$

Proof 1

Homegrown, Refined Interval Arithmic

Lemma 751442360

$$2.51^{2} \le x_{1} \le 2.696^{2} \rightarrow \qquad 4 \le x_{4} \le 2.51^{2} \rightarrow 4 \le x_{2} \le 2.168^{2} \rightarrow \qquad 4 \le x_{5} \le 2.51^{2} \rightarrow 4 \le x_{3} \le 2.168^{2} \rightarrow \qquad 4 \le x_{6} \le 2.51^{2} \rightarrow 4 \le x_{3} \le 2.168^{2} \rightarrow \qquad 4 \le x_{6} \le 2.51^{2} \rightarrow 4$$

Proof 1

Homegrown, Refined Interval Arithmic

Proof 2

Computer Algebra System ...

Lemma 751442360

$$2.51^{2} \le x_{1} \le 2.696^{2} \rightarrow \qquad 4 \le x_{4} \le 2.51^{2} \rightarrow 4 \le x_{2} \le 2.168^{2} \rightarrow \qquad 4 \le x_{5} \le 2.51^{2} \rightarrow 4 \le x_{3} \le 2.168^{2} \rightarrow \qquad 4 \le x_{6} \le 2.51^{2} \rightarrow 4 \le x_{3} \le 2.168^{2} \rightarrow \qquad 4 \le x_{6} \le 2.51^{2} \rightarrow 4$$

Proof 1

Homegrown, Refined Interval Arithmic

Proof 2

Computer Algebra System ...

Proof 3

Proof Assistant: "Flyspeck" project What is a proof?

$$\forall n \in \mathbb{N}. \ \sum_{k=0}^{n} k = n(n+1)/2$$

Proof.

$$\forall n \in \mathbb{N}. \sum_{k=0}^{n} k^2 = n(n^2 + 1)/2$$

Proof.

$$\forall n \in \mathbb{N}. \ \sum_{k=0}^{n} k^2 = n(n^2 + 1)/2$$

Proof.

Example

$$1+4+9=3\cdot(9+1)/2$$

i.e.

$$14 = 15$$
.

Not a Theorem!

$$\forall n \in \mathbb{N}. \ \sum_{k=0}^{n} k^2 = n(n^2 + 1)/2$$

Proof by intimidation.

Example

$$1+4+9=3\cdot(9+1)/2$$

i.e.

$$14 = 15$$
.

$$\forall n \in \mathbb{N}. \ \sum_{k=0}^{n} k = n(n+1)/2$$

A More Detailed Proof.

By induction on n.

• Basis: 0 = 0

• Step: Suppose $\sum_{k=0}^{n} k = n(n+1)/2$. Then

$$\sum_{k=0}^{n+1} k = \sum_{k=0}^{n} k + (n+1)$$
= $n(n+1)/2 + (n+1)$ by hypothesis
= $(n+1)(n+2)/2$ by algebra

- What is a proof?
 - \Rightarrow An object that can in principle be refined to a formal proof.

- What is a proof?
 - \Rightarrow An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)

- What is a proof?
 - \Rightarrow An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)
 - de Bruijn's Automath system (1967)

- What is a proof?
 - \Rightarrow An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)
 - de Bruijn's Automath system (1967)
 - Coq system

- What is a proof?
 - \Rightarrow An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)
 - de Bruijn's Automath system (1967)
 - Coq system
- Computers can assist us to . . .
 - ... find proofs.
 - ... <u>check</u> proofs.

- What is a proof?
 - \Rightarrow An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)
 - de Bruijn's Automath system (1967)
 - Coq system
- Computers can assist us to ...
 - ... find proofs.
 - ... <u>check</u> proofs.
- Proof assistents are software themselves, so why should we trust them?

- What is a proof?
 - ⇒ An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)
 - de Bruijn's Automath system (1967)
 - Coq system
- Computers can assist us to ...
 - ... find proofs.
 - ... <u>check</u> proofs.
- Proof assistents are software themselves, so why should we trust them?
 - Architecture: small, well-tested kernel

- What is a proof?
 - \Rightarrow An object that can *in principle* be refined to a formal proof.
- What is a formal proof? ⇒ A proof in a formal language:
 - Frege's Begriffsschrift (1879)
 - de Bruijn's Automath system (1967)
 - Coq system
- Computers can assist us to ...
 - ... find proofs.
 - ... check proofs.
- Proof assistents are software themselves, so why should we trust them?
 - · Architecture: small, well-tested kernel
 - "Coq in Coq"

Big Proofs

Theorem

$$\forall x \in [0; 1]. \ 0 \le f x$$

Proof.

Assume $x \in [0; 1]$. Let $X_i := [(i-1)/n; i/n]$. Then

$$x \in X_1 \vee \ldots \vee x \in X_n$$
.

In each of these cases $0 \le \hat{f} X_i$ and thus $0 \le f x$.

Big Proofs

Theorem

$$\forall x \in [0; 1]. \ 0 \le f x$$

Proof.

Assume $x \in [0; 1]$. Let $X_i := [(i-1)/n; i/n]$. Then

$$x \in X_1 \vee \ldots \vee x \in X_n$$
.

In each of these cases $0 \le \hat{f} X_i$ and thus $0 \le f x$.

• The necessary n depends on f. Is there a largest n such that this a proof?

Big Proofs

Theorem

$$\forall x \in [0; 1]. \ 0 \le f x$$

Proof.

Assume $x \in [0; 1]$. Let $X_i := [(i-1)/n; i/n]$. Then

$$x \in X_1 \vee \ldots \vee x \in X_n$$
.

In each of these cases $0 \le \hat{f} X_i$ and thus $0 \le f x$.

- The necessary *n* depends on *f*. Is there a largest *n* such that this a proof?
- Non-toy examples with quite large "n": Four Color Theorem, Pocklington Prime Numbers

Definition

```
Taylor models: \mathbb{T}[n] := \mathbb{R}[n] \times \mathbb{I}.
For f : D \to \mathbb{R} (where D \subseteq \mathbb{R}^n),
f \in (p, \Delta) :\Leftrightarrow \forall x \in D. \ f \ x - p \ x \in \Delta.
```

Definition

Taylor models: $\mathbb{T}[n] := \mathbb{R}[n] \times \mathbb{I}$. For $f : D \to \mathbb{R}$ (where $D \subseteq \mathbb{R}^n$), $f \in (p, \Delta) :\Leftrightarrow \forall x \in D. \ f \ x - p \ x \in \Delta$.

Definition

Chebyshev balls: $\Psi[n] := \mathbb{R}[n] \times \mathbb{R}$.

For $f: D \to \mathbb{R}$ (where $D \subseteq \mathbb{R}^n$),

$$f \in (p, \delta) :\Leftrightarrow ||f - p||_{\infty} \leq \delta.$$

Definition

Taylor models: $\mathbb{T}[n] := \mathbb{R}[n] \times \mathbb{I}$. For $f : D \to \mathbb{R}$ (where $D \subseteq \mathbb{R}^n$), $f \in (p, \Delta) :\Leftrightarrow \forall x \in D. \ f \ x - p \ x \in \Delta$.

Definition

Chebyshev balls: $\Psi[n] := \mathbb{R}[n] \times \mathbb{R}$. For $f : D \to \mathbb{R}$ (where $D \subseteq \mathbb{R}^n$),

$$f \in (p, \delta) :\Leftrightarrow ||f - p||_{\infty} \leq \delta.$$

Chebyshev balls are centered Taylor models:

$$f \in (\rho, \Delta) \Leftrightarrow f \in \left(\rho + \mathsf{m}\,\Delta, \frac{|\Delta|}{2}\right)$$

Definition

Taylor models: $\mathbb{T}[n] := \mathbb{R}[n] \times \mathbb{I}$. For $f : D \to \mathbb{R}$ (where $D \subseteq \mathbb{R}^n$), $f \in (p, \Delta) :\Leftrightarrow \forall x \in D. \ f \ x - p \ x \in \Delta$.

Definition

Chebyshev balls: $\Psi[n] := \mathbb{R}[n] \times \mathbb{R}$.

For $f: D \to \mathbb{R}$ (where $D \subseteq \mathbb{R}^n$),

$$f \in (\rho, \delta) :\Leftrightarrow ||f - \rho||_{\infty} \leq \delta.$$

Chebyshev balls are centered Taylor models:

$$f \in (p, \Delta) \Leftrightarrow f \in \left(p + \mathsf{m}\,\Delta, \frac{|\Delta|}{2}\right)$$

• Economy: Lemmas about $\|\cdot\|_{\infty}$ can be reused.

Extensions and Lifts

Definition

G is an extension of $g : \Leftrightarrow$

$$\forall f, F. f_1 \in F_1 \rightarrow \ldots \rightarrow f_r \in F_r \rightarrow g f_1 \ldots f_r \in G F_1 \ldots F_r.$$

Extensions and Lifts

Definition

G is an extension of $g : \Leftrightarrow$

$$\forall f, F. \ f_1 \in F_1 \rightarrow \ldots \rightarrow f_r \in F_r \rightarrow g f_1 \ldots f_r \in G F_1 \ldots F_r.$$

Definition

$$g: \mathbb{R}^r \to \mathbb{R}$$

$$\textbf{G} \ : \ (\textbf{Y}[\textbf{n}])^{\textbf{r}} \rightarrow \textbf{Y}[\textbf{n}]$$

G is a *lift* of $g : \Leftrightarrow$

G extends
$$f_1 \ldots f_r x_1 \ldots x_n \mapsto g(f_1 x_1 \ldots x_n) \ldots (f_r x_1 \ldots x_n)$$

Definition

$$(p_1, \Delta_1) \tilde{+} (p_2, \Delta_2) := (p_1 + p_2, \Delta_1 \hat{+} \Delta_2)$$

 $(p_1, \Delta_1) \tilde{\cdot} (p_2, \Delta_2) := ((p_1 p_2)_{\leq l}, \overline{(p_1 p_2)_{> l} + \overline{1}_1 p_2 + p_1 \overline{1}_2 + \overline{1}_1 \overline{1}_2})$

where $\exists_1 \in \Delta_1$ and $\exists_2 \in \Delta_2$ are fresh variables.

Definition

$$(p_1, \Delta_1) \tilde{+} (p_2, \Delta_2) := (p_1 + p_2, \Delta_1 \hat{+} \Delta_2)$$

$$(p_1, \Delta_1) \tilde{\cdot} (p_2, \Delta_2) := ((p_1 p_2)_{\leq l}, \underline{(p_1 p_2)_{> l} + \overline{1}_1 p_2 + p_1 \overline{1}_2 + \overline{1}_1 \overline{1}_2})$$

where $\exists_1 \in \Delta_1$ and $\exists_2 \in \Delta_2$ are fresh variables.

Lemma

 $\tilde{+}$ and $\tilde{\cdot}$ are lifts of + and \cdot .

Definition

$$(p_1, \Delta_1) \tilde{+} (p_2, \Delta_2) := (p_1 + p_2, \Delta_1 \hat{+} \Delta_2) (p_1, \Delta_1) \tilde{\cdot} (p_2, \Delta_2) := ((p_1 p_2)_{\leq l}, \underline{(p_1 p_2)_{> l} + \exists_1 p_2 + p_1 \exists_2 + \exists_1 \exists_2})$$

where $\exists_1 \in \Delta_1$ and $\exists_2 \in \Delta_2$ are fresh variables.

Lemma

 $\tilde{+}$ and $\tilde{\cdot}$ are lifts of + and \cdot .

Proof (for ~).

Assume $f_1 \in (p_1, \Delta_1)$ and $f_2 \in (p_2, \Delta_2)$.

Let $d_1 := f_1 - p_1$ and $d_2 := f_2 - p_2$.

$$f_1f_2 = (p_1 + d_1)(p_2 + d_2) = p_1p_2 + p_1d_2 + d_1p_2 + d_1d_2$$

Definition

$$(p_1, \Delta_1) \tilde{+} (p_2, \Delta_2) := (p_1 + p_2, \Delta_1 \hat{+} \Delta_2) (p_1, \Delta_1) \tilde{\cdot} (p_2, \Delta_2) := ((p_1 p_2)_{\leq l}, \underline{(p_1 p_2)_{> l} + \exists_1 p_2 + p_1 \exists_2 + \exists_1 \exists_2})$$

where $\exists_1 \in \Delta_1$ and $\exists_2 \in \Delta_2$ are fresh variables.

Lemma

 $\tilde{+}$ and $\tilde{\cdot}$ are lifts of + and \cdot .

Proof (for ~).

Assume $f_1 \in (p_1, \Delta_1)$ and $f_2 \in (p_2, \Delta_2)$. Let $d_1 := f_1 \stackrel{\circ}{-} p_1$ and $d_2 := f_2 \stackrel{\circ}{-} p_2$.

$$f_1 f_2 = (p_1 + d_1)(p_2 + d_2) = p_1 p_2 + p_1 d_2 + d_1 p_2 + d_1 d_2$$

$$\tilde{\in} ((p_1 p_2)_{>l}, \overline{(p_1 p_2)_{>l} + \overline{1}_1 p_2 + p_1 \overline{1}_2 + \overline{1}_1 \overline{1}_2})$$

Definition

$$(\boldsymbol{p}, \delta) \circ \boldsymbol{F} := [\boldsymbol{p}] \boldsymbol{F} + (\boldsymbol{0}, \delta)$$

Definition

$$(p,\delta) \circ F := [p] F + (0,\delta)$$

Lemma

 $\tilde{\circ}: \Psi[1] \to \Psi[\textbf{n}] \to \Psi[\textbf{n}]$ is an extension of

$$\circ: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}).$$

Definition

$$(\boldsymbol{p}, \delta) \circ \boldsymbol{F} := [\boldsymbol{p}] \boldsymbol{F} + (\boldsymbol{0}, \delta)$$

Lemma

- $\tilde{\circ}: \, \boldsymbol{\Psi}[1] \to \boldsymbol{\Psi}[\textbf{n}] \to \boldsymbol{\Psi}[\textbf{n}]$ is an extension of
- $\circ: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}).$

Proof.

Assume $g \in (p, \delta)$ and $f \in F$. Then

$$\|g \stackrel{\circ}{-} [p]\|_{\infty} \leq \delta.$$

Definition

$$(p,\delta) \circ F := [p] F + (0,\delta)$$

Lemma

- $\tilde{\circ}: \Psi[1] \to \Psi[n] \to \Psi[n]$ is an extension of
- $\circ: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}).$

Proof.

Assume $g \in (p, \delta)$ and $f \in F$. Then

$$\|g \circ f \stackrel{\circ}{-} [p] \circ f\|_{\infty} \leq \|g \stackrel{\circ}{-} [p]\|_{\infty} \leq \delta.$$

Definition

$$(p,\delta) \circ F := [p] F + (0,\delta)$$

Lemma

- $\tilde{\circ}: \, \boldsymbol{\Psi}[1] \to \boldsymbol{\Psi}[\textbf{n}] \to \boldsymbol{\Psi}[\textbf{n}]$ is an extension of
- $\circ: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}) \to (\mathbb{R}^n \to \mathbb{R}).$

Proof.

Assume $g \in (p, \delta)$ and $f \in F$. Then

$$\|g \circ f \stackrel{\circ}{-} [p] \circ f\|_{\infty} \leq \|g \stackrel{\circ}{-} [p]\|_{\infty} \leq \delta.$$

Furthermore $[p] \circ f = [p]^{\circ} f \in [p]^{\sim} F$, hence

$$g \circ f \in [p]^{\sim} F + (0, \delta) = (p, \delta) \circ F.$$

Lemma

For $g: \mathbb{R} \mapsto \mathbb{R}$ and $G: \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathcal{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

For a given $g:X\mapsto \mathbb{R}$ (where $X\subset \mathbb{R}$) find $G: \mathrm{Y}[1]$ such that $g\ \tilde{\in}\ G$.

Bernstein Taylor Chebyshev Remez

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

For a given $g: X \mapsto \mathbb{R}$ (where $X \subset \mathbb{R}$) find $G: \mathrm{Y}[1]$ such that $g \in G$.

Bernstein slow convergence Taylor Chebyshev Remez

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

For a given $g: X \mapsto \mathbb{R}$ (where $X \subset \mathbb{R}$) find $G: \mathrm{Y}[1]$ such that $g \in G$.

Bernstein slow convergence

Taylor easy to implement, good *local* convergence

Chebyshev

Remez

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

For a given $g: X \mapsto \mathbb{R}$ (where $X \subset \mathbb{R}$) find $G: \mathrm{Y}[1]$ such that $g \in G$.

Bernstein slow convergence

Taylor easy to implement, good *local* convergence Chebyshev Is there a good Jackson theorem? Remez

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

For a given $g: X \mapsto \mathbb{R}$ (where $X \subset \mathbb{R}$) find $G: \mathrm{Y}[1]$ such that $g \in G$.

Bernstein slow convergence

Taylor easy to implement, good local convergence

Chebyshev Is there a good Jackson theorem?

Remez difficult to implement, but optimal

Lemma

For $g : \mathbb{R} \mapsto \mathbb{R}$ and $G : \mathrm{Y}[1]$, if $g \in G$ then $F \mapsto G \circ F$ lifts g.

Proof.

By definition of lift this means that $F \mapsto G \circ F$ extends $f x \mapsto g(f x) = f \mapsto g \circ f$. The extension property is preserved by partial application.

Remaining Problem: Polynomial Approximation

For a given $g: X \mapsto \mathbb{R}$ (where $X \subset \mathbb{R}$) find $G: \mathbb{Y}[1]$ such that $g \in G$.

Bernstein slow convergence

Taylor easy to implement, good *local* convergence Chebyshev Is there a good Jackson theorem?

Remez difficult to implement, but optimal

$$T'_{a}gx := \sum_{k=0}^{l} \frac{\partial^{k}ga}{k!} (x - a)^{k}$$

$$R'_{a}g := g - T'_{a}g$$

$$L'_{a}gX := \frac{\partial^{l+1}gX}{(l+1)!} (X - a)^{l+1}$$

Taylor's Theorem with Lagrange remainder

$$\forall x \in X. R_a^l g x \in L_a^l g X$$

$$T'_{a}gx := \sum_{k=0}^{l} \frac{\partial^{k}ga}{k!} (x - a)^{k}$$

$$R'_{a}g := g - T'_{a}g$$

$$L'_{a}gX := \frac{\partial^{l+1}gX}{(l+1)!} (X - a)^{l+1}$$

Taylor's Theorem with Lagrange remainder

$$\forall x \in X. \ \mathsf{R}_{a}^{l} g x \in \mathsf{L}_{a}^{l} g X$$

$$g \in (\mathsf{T}_{a}^{l} g, \mathsf{L}_{a}^{l} g X)$$

$$T'_{a}gx := \sum_{k=0}^{l} \frac{\partial^{k}ga}{k!} (x - a)^{k}$$

$$R'_{a}g := g - T'_{a}g$$

$$L'_{a}gX := \frac{\partial^{l+1}gX}{(l+1)!} (X - a)^{l+1}$$

Taylor's Theorem with Lagrange remainder

$$\forall x \in X. \ \mathsf{R}_{a}^{l} g x \in \mathsf{L}_{a}^{l} g X$$

$$g \in (\mathsf{T}_{a}^{l} g, \mathsf{L}_{a}^{l} g X)$$

No addition theorem needed. Move the value a instead.

$$T'_{a}gx := \sum_{k=0}^{l} \frac{\partial^{k}ga}{k!} (x - a)^{k}$$

$$R'_{a}g := g - T'_{a}g$$

$$L'_{a}gX := \frac{\partial^{l+1}gX}{(l+1)!} (X - a)^{l+1}$$

Taylor's Theorem with Lagrange remainder

$$\forall x \in X. \ \mathsf{R}_{a}^{l} \, g \, x \in \mathsf{L}_{a}^{l} \, g \, X$$
$$g \, \tilde{\in} \, (\mathsf{T}_{a}^{l} \, g, \mathsf{L}_{a}^{l} \, g \, X)$$

- No addition theorem needed. Move the value *a* instead.
- Taking the argument's constant part for a yields the same result as in [Makino-PhD] etc.

Observation

lf

$$\forall x \in [x_1, x_2]. \operatorname{sgn}(\partial (\mathsf{R}_a^I g) x) \geq 0$$

then

$$\forall x \in [x_1, x_2]. \, \mathsf{R}_a^I \, g \, x \in [\mathsf{R}_a^I \, g \, x_1; \mathsf{R}_a^I \, g \, x_2].$$

Observation

lf

$$\forall x \in [x_1, x_2]. \operatorname{sgn}(\partial (\mathsf{R}_a^l g) x) \geq 0$$

then

$$\forall x \in [x_1, x_2]. \, \mathsf{R}_a^I \, g \, x \in \big[\mathsf{R}_a^I \, g \, x_1; \, \mathsf{R}_a^I \, g \, x_2 \big].$$

$$\operatorname{sgn}(\partial(\mathsf{R}_{a}^{l}g)x) = \operatorname{sgn}(\mathsf{R}_{a}^{l-1}(\partial g)x)$$

R and ∂ commute

Observation

lf

$$\forall x \in [x_1, x_2]. \operatorname{sgn}(\partial (\mathsf{R}_a^I g) x) \geq 0$$

then

$$\forall x \in [x_1, x_2]. \, \mathsf{R}_a^I \, g \, x \in \big[\mathsf{R}_a^I \, g \, x_1; \, \mathsf{R}_a^I \, g \, x_2 \big].$$

$$\operatorname{sgn}(\partial \left(\mathsf{R}_{a}^{l} g\right) x) = \operatorname{sgn}(\mathsf{R}_{a}^{l-1} \left(\partial g\right) x)$$

$$\subseteq \operatorname{sgn}(\mathsf{L}_{a}^{l-1} \left(\partial g\right) X)$$

R and ∂ commute Lagrange remainder

Observation

lf

$$\forall x \in [x_1, x_2]. \operatorname{sgn}(\partial (\mathsf{R}_a^I g) x) \geq 0$$

then

$$\forall x \in [x_1, x_2]. \, \mathsf{R}_a^I \, g \, x \in [\mathsf{R}_a^I \, g \, x_1; \mathsf{R}_a^I \, g \, x_2].$$

$$\operatorname{sgn}(\partial\left(\mathsf{R}_{a}^{l}g\right)x) = \operatorname{sgn}(\mathsf{R}_{a}^{l-1}\left(\partial g\right)x) \qquad \qquad \mathsf{R} \text{ and } \partial \text{ co}$$

$$\subseteq \operatorname{sgn}(\mathsf{L}_{a}^{l-1}\left(\partial g\right)X) \qquad \qquad \mathsf{Lagrange rem}$$

$$= \operatorname{sgn}\left(\frac{1}{l!} \cdot \partial^{l}g \, X \cdot (X \,\hat{-}\, a)^{l}\right)$$

R and ∂ commute Lagrange remainder

Observation

lf

$$\forall x \in [x_1, x_2]. \operatorname{sgn}(\partial (\mathsf{R}_a^I g) x) \geq 0$$

then

$$\forall x \in [x_1, x_2]. \, \mathsf{R}_a^I \, g \, x \in [\mathsf{R}_a^I \, g \, x_1; \mathsf{R}_a^I \, g \, x_2].$$

$$sgn(\partial (R_a^l g) x) = sgn(R_a^{l-1} (\partial g) x)$$

$$\subseteq sgn(L_a^{l-1} (\partial g) X)$$

$$= sgn\left(\frac{1}{l!} \cdot \partial^l g X \cdot (X - a)^l\right)$$

$$= sgn(\partial^l g X) \cdot sgn(X - a)^l$$

R and ∂ commute

Lagrange remainder

Lemma

$$\partial \circ \mathsf{R}_{a}^{l} = \mathsf{R}_{a}^{l-1} \circ \partial$$

Proof.

$$\partial R_a^l g = \partial x \mapsto g x - \sum_{k=0}^l \frac{\partial^k g \, a}{k!} (x - a)^k$$

$$= x \mapsto \partial g \, x - \sum_{k=1}^l \frac{\partial^k g \, a}{(k-1)!} (x - a)^{k-1}$$

$$= x \mapsto \partial g \, x - \sum_{k=0}^{l-1} \frac{\partial^k (\partial g) \, a}{k!} (x - a)^k$$

$$= R_a^{l-1} (\partial g)$$

Remaining Problem: Polynomial Approximation

For a given $g: X \mapsto \mathbb{R}$ (where $X \subset \mathbb{R}$) find $G: \mathbb{Y}[1]$ such that $g \in G$.

This problem has an optimal solution: the Remez polynomial

Remaining Problem: Polynomial Approximation

- This problem has an optimal solution: the Remez polynomial
- The correctness proof is hard, but we don't need it: Once we have obtained $G=(p,\delta)$ we can *compute* $\|g-[p]\|_{\infty}$ by interval arithmetic.

Remaining Problem: Polynomial Approximation

- This problem has an optimal solution: the Remez polynomial
- The correctness proof is hard, but we don't need it: Once we have obtained $G=(p,\delta)$ we can *compute* $\|g-[p]\|_{\infty}$ by interval arithmetic.
- The polynomial p can be obtained from outside the proof assistant: Sollya system by Arenaire in Lyon

Remaining Problem: Polynomial Approximation

- This problem has an optimal solution: the Remez polynomial
- The correctness proof is hard, but we don't need it: Once we have obtained $G = (p, \delta)$ we can *compute* $||g [p]||_{\infty}$ by interval arithmetic.
- The polynomial p can be obtained from outside the proof assistant: Sollya system by Arenaire in Lyon
- Remez is slower than Taylor: build a reusable database for different domains and degrees

 Formal proofs are necesseary if we want to rely on software.

- Formal proofs are necesseary if we want to rely on software.
- Generalized Taylor models don't depend on Taylor's theorem.

- Formal proofs are necesseary if we want to rely on software.
- Generalized Taylor models don't depend on Taylor's theorem.
- Chebyshev balls simplify proofs.
- Don't use the Lagrange remainders if deratives' signs are constant.

- Formal proofs are necesseary if we want to rely on software.
- Generalized Taylor models don't depend on Taylor's theorem.
- Chebyshev balls simplify proofs.
- Don't use the Lagrange remainders if deratives' signs are constant.