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Conjecture (Johannes Kepler, 1611)

The maximal density of sphere packings in 3-space is JL?B'
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Conjecture (Johannes Kepler, 1611)

The maximal density of sphere packings in 3-space is ¢L1*8

Proof (Thomas Hales, 1998)
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Conjecture (Johannes Kepler, 1611)

The maximal density of sphere packings in 3-space is ﬁ

Proof (Thomas Hales, 1998)
300 pages

@ Geometry
@ Analysis
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Conjecture (Johannes Kepler, 1611)

The maximal density of sphere packings in 3-space is \/L?a
Proof (Thomas Hales, 1998)
300 pages 40.000 lines, several weeks
@ Geometry @ Graph Enumeration
@ Analysis @ Linear Optimization
@ Non-linear Optimization
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Inside the Proof: Slicing and Measuring Space

Lemma 751442360
2512 < x4 < 2.6962 — 4< x4<2512 5
4 < x,<2.168° — 4 < x5 <2512 -
4 < x3<2.1682 — 4 < x5 <2512 -

—X1X3 — XoX4 + X1 X5 + X3Xe — X5Xp +
Xo(—Xo + X1 + X3 — X4 + X5 + Xe)

< tan (f _ o.74)
XoXa(—Xo + X1 + X3 — Xa + X5 + Xg) + 2
X1X5(Xo — X1 + X3 + X4 — X5 + Xg) +
X3Xs(Xo + X1 — X3 + X4 + X5 — Xg)
— X1 X3X4 — XoX3X5 — XoX1Xeg — XaX5Xp

4 x5
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Homegrown, Refined
Interval Arithmic
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Inside the Proof: Slicing and Measuring Space

Lemma 751442360
2512 < x4 < 2.6962 — 4< x4<2512 5
4 < x,<2.168° — 4 < x5 <2512 -
4 < x3<2.1682 — 4 < x5 <2512 -

—X1X3 — XoX4 + X1 X5 + X3Xe — X5Xp +
Xo(—Xo + X1 + X3 — X4 + X5 + Xe)

< tan (f - o.74)
XoXa(—Xo + X1 + X3 — Xq + X5 + Xg) + 2
X1X5(Xo — X1 + X3 + X4 — X5 + Xg) +
X3Xs(Xo + X1 — X3 + X4 + X5 — Xg)
— X1 X3X4 — XoX3X5 — XoX1Xeg — XaX5Xp

4 x5

Homegrown, Refined | Computer Algebra
Interval Arithmic System . ..
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Inside the Proof: Slicing and Measuring Space

2512 < x; < 2.6962 — 4 < x4 <2512 -
4 < x,<2.168° — 4 < x5 <2512 -
4 < x3<2.1682 — 4 < x5 <2512 -

—X1X3 — XoX4 + X1 X5 + X3Xe — X5Xp +
Xo(—Xo + X1 + X3 — X4 + X5 + Xe)

< tan (f - o.74)
XoXa(—Xo + X1 + X3 — Xq + X5 + Xg) + 2
X1X5(Xo — X1 + X3 + X4 — X5 + Xg) +
X3Xs(Xo + X1 — X3 + X4 + X5 — Xg)
— X1 X3X4 — XoX3X5 — XoX1Xeg — XaX5Xp

4 x5

Proof Assistant:
“Flyspeck” project

Homegrown, Refined | Computer Algebra
Interval Arithmic System . ..
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What is a proof?
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n
YneN. > k=n(n+1)/2
k=0
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n
VneN. Y Kk? =n(n®+1)/2
k=0
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n
VneN. Y Kk? =n(n®+1)/2
k=0

1+4+9=3-(9+1)/2,

14 = 15.
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Not a Theorem!

n
VneN. Y Kk? =n(n®+1)/2
k=0

Proof by intimidation.

1+4+9=3-(9+1)/2,

14 = 15.
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n
YneN. > k=n(n+1)/2
k=0

A More Detailed Proof.

By induction on n.
@ Basis: 0=0

n
@ Step: Suppose Y _k = n(n+1)/2. Then
k=0

n+1

d k=) k+(n+1)
k=0 k=0

=n(n+1)/2+(n+1) by hypothesis
(n+1)(n+2)/2 by algebra

y
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Computer-Assisted Proofs

@ What is a proof?
= An object that can in principle be refined to a formal
proof.

Roland Zumkeller Formalizing Taylor Models



Computer-Assisted Proofs

@ What is a proof?
= An object that can in principle be refined to a formal
proof.
@ What is a formal proof? = A proof in a formal language:
o Frege’s Begriffsschrift (1879)
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Computer-Assisted Proofs
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@ Computers can assistusto ...

e ... find proofs.
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Computer-Assisted Proofs

@ What is a proof?
= An object that can in principle be refined to a formal
proof.
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Computer-Assisted Proofs

@ What is a proof?
= An object that can in principle be refined to a formal
proof.
@ What is a formal proof? = A proof in a formal language:
o Frege’s Begriffsschrift (1879)
e de Bruijn’s Automath system (1967)
e Coq system
@ Computers can assistusto ...
e ... find proofs.
@ ... check proofs.
@ Proof assistents are software themselves, so why should
we trust them?

@ Architecture: small, well-tested kernel
e “Coqin Coq”

Roland Zumkeller Formalizing Taylor Models



Big Proofs

Vx €[0;1].0 < fx

Assume x € [0;1]. Let X; :=[(i — 1)/n;i/n]. Then

xeXiV...Vxe X

In each of these cases 0 < ?X,- and thus 0 < f x. O
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Big Proofs

Vx €[0;1].0 < fx

Assume x € [0;1]. Let X; :=[(i — 1)/n;i/n]. Then

xeXiV...Vxe X

In each of these cases 0 < ?X,- and thus 0 < f x. O

@ The necessary n depends on f. Is there a largest n such
that this a proof?
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Big Proofs

Vx €[0;1].0 < fx

Assume x € [0;1]. Let X; :=[(i — 1)/n;i/n]. Then

xeXiV...Vxe X

In each of these cases 0 < ?X,- and thus 0 < f x. O

@ The necessary n depends on f. Is there a largest n such
that this a proof?

@ Non-toy examples with quite large “n”: Four Color
Theorem, Pocklington Prime Numbers
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Taylor Models and Chebyshev Balls

Definition

Taylor models: T[n] := R[n] x L.
For f: D — R (where D C R"),

fé(p,A):<VxeD. . fx—pxeA.
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Taylor Models and Chebyshev Balls

Taylor models: T[n] := R[n] x L.
For f: D — R (where D C R"),

fé(p,A):<VxeD. . fx—pxeA.

Chebyshev balls: Y[n] .= R[n] x R.
For f: D — R (where D C R"),

f &€ (p,d) & [If = pllo < 0.
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Taylor Models and Chebyshev Balls

Taylor models: T[n] := R[n] x L.
For f: D — R (where D C R"),

fé(p,A):<VxeD. . fx—pxeA.

Chebyshev balls: Y[n] .= R[n] x R.
For f: D — R (where D C R"),

f &€ (p,d) & [If = pllo < 0.

@ Chebyshev balls are centered Taylor models:

fé(p,A)sfé (p+mA,’2‘)
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Taylor Models and Chebyshev Balls

Taylor models: T[n] := R[n] x L.
For f: D — R (where D C R"),

fé(p,A):<VxeD. . fx—pxeA.

Chebyshev balls: Y[n] .= R[n] x R.
For f: D — R (where D C R"),

f &€ (p,d) & [If = pllo < 0.

@ Chebyshev balls are centered Taylor models:

~ ~ A
fE(p,A)&fE <p+mA, ’2‘)
@ Economy: Lemmas about || - ||« can be reused.
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Extensions and Lifts

g : RM">R) - ... - (R"—>R) — (R —=R)
G : q[m] = oo = LI[nr] — UI[n,+1]

G is an extension of g :<

ViEF.RéEFR — ... EF—-gfi...F EGF ... F.
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Extensions and Lifts

g : RM">R) - ... - (R"—>R) — (R —=R)
G : q[m] = oo = LI[nr] — UI[n,+1]

G is an extension of g :<

ViEF.RéEFR — ... EF—-gfi...F EGF ... F.

g : RR>R
G : (Yn)" — Y[n]

Gisaliftof g .=
Gextends fy...frxy ... xn— g (fi X1 ... Xp) ... (fr X1 ... Xpn)
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Arithmetic

Definition

(P1, A1) F (P2, A2) := (P1 + P2, Ay & Ap)
(P1, A1)~ (P2, A2) := ((P1P2) <1, (P1P2)>1 + T1P2 + P12 + 1T

where Ty € Ay and 7> € As are fresh variables.
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Arithmetic
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(P1, A1) F (P2, A2) := (P1 + P2, Ay & Ap)
(P1, A1)~ (P2, A2) := ((P1P2) <1, (P1P2)>1 + T1P2 + P12 + 1T

where Ty € Ay and 7> € As are fresh variables.

I and~ are lifts of + and -.
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Arithmetic

Definition
(P1, A1) F (P2, A2) := (p1 + P2, Ay + Ap)

(p1, A1) % (P2, A2) == ((P1P2)<s, (P1P2)>1 + T1p2 + P12+ 11 T2

where Ty € Ay and 7> € As are fresh variables.

I and~ are lifts of + and -.

Proof (for ).

Assume f; € (p1,A1) and f, € (pg,Ag).
Letd; :=fi —pyand ds :=f — po.

fifo = (p1 + di)(p2 + o) = p1p2 + p1d + dyp2 + 0y

Ol
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Arithmetic

Definition
(P1, A1) F (P2, A2) := (p1 + P2, Ay + Ap)

(p1, A1) % (P2, A2) == ((P1P2)<s, (P1P2)>1 + T1p2 + P12+ 11 T2

where Ty € Ay and 7> € As are fresh variables.

I and~ are lifts of + and -.

Proof (for ).

Assume f; € (p1,A1) and f, € (pg,Ag).
Letd; :=fi —pyand ds :=f — po.

fifo = (p1 + di)(p2 + o) = p1p2 + p1d + dyp2 + 0y
€ ((b1p2)<1; (P1P2)>1 + T1P2 + p1 To + T4 To) O
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Extending Function Composition

Definition

(p,0) 3 F :=[p] F ¥+ (0,9)
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Extending Function Composition

Definition

(p,0) 3 F :=[p] F ¥+ (0,9)

& : Y[1] — Y[n] — Y[n] is an extension of
o:(R—R)— (R" - R) — (R" - R).
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Extending Function Composition

Definition
(p.8) 3 F := [p] F T (0,0)

Lemma

& : Y[1] — Y[n] — Y[n] is an extension of
o:(R—R)— (R" - R) — (R" - R).

Assume g € (p,d) and f € F. Then

19 = [P]lloc < 0.
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Extending Function Composition

Definition
(p.8) 3 F := [p] F T (0,0)

Lemma

& : Y[1] — Y[n] — Y[n] is an extension of
o:(R—R)— (R" - R) — (R" - R).

Assume g € (p,d) and f € F. Then

lgof=[ploflloo < g =[pllloo < 4.
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Extending Function Composition

Definition

(p,d8) 3 F :=[p] F ¥+ (0,9)

Lemma

& : Y[1] — Y[n] — Y[n] is an extension of
o:(R—R)— (R" - R) — (R" - R).

Proof.
Assume g € (p,d) and f € F. Then

lgof=[ploflloo < g =[pllloo < 4.

Furthermore [p] o f = [p]° f € [p]™ F, hence

gof&[p]™F T (0,8) =(p,6)5F. O
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

By definition of lift this means that F — G & F extends
fx— g(fx)=fr~— gof. The extension property is preserved
by partial application. OJ
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

Proof.

By definition of lift this means that F — G & F extends

fx— g(fx)=fr~— gof. The extension property is preserved
by partial application. OJ

V.

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

Proof.

By definition of lift this means that F — G & F extends

fx— g(fx)=fr~— gof. The extension property is preserved
by partial application. OJ

V.

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

Bernstein
Taylor
Chebyshev
Remez
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

Proof.

By definition of lift this means that F — G & F extends

fx— g(fx)=fr~— gof. The extension property is preserved
by partial application. OJ

V.

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

Bernstein slow convergence
Taylor
Chebyshev
Remez
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

Proof.

By definition of lift this means that F — G & F extends

fx— g(fx)=fr~— gof. The extension property is preserved
by partial application. O

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

Bernstein slow convergence
Taylor easy to implement, good local convergence
Chebyshev
Remez
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

Proof.

By definition of lift this means that F — G & F extends
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Proof.
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Lifting Elementary Functions

Forg:R—RandG:Y[1],ifg € Gthen F — G3 F lifts g.

Proof.

By definition of lift this means that F — G & F extends

fx— g(fx)=fr~— gof. The extension property is preserved
by partial application. O

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

Bernstein slow convergence
Taylor easy to implement, good local convergence
Chebyshev Is there a good Jackson theorem?
Remez difficult to implement, but optimal
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Lifting Elementary Functions: by Taylor/Lagrange

Taylor's Theorem with Lagrange remainder

vxe X.RlgxellgXx
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Lifting Elementary Functions: by Taylor/Lagrange

Taylor's Theorem with Lagrange remainder
vxe X.RlgxellgXx
g & (Thg,LLgX)
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Lifting Elementary Functions: by Taylor/Lagrange

Taylor's Theorem with Lagrange remainder
vxe X.RlgxellgXx
g & (Thg,LLgX)

@ No addition theorem needed. Move the value a instead.
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Lifting Elementary Functions: by Taylor/Lagrange

Taylor's Theorem with Lagrange remainder
vxe X.RlgxellgXx
g & (Thg,LLgX)

@ No addition theorem needed. Move the value a instead.
@ Taking the argument’s constant part for a yields the same
result as in [Makino-PhD] etc.
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Lifting Elementary Functions: with Sharp Remainder

Observation

Vx € [x1,%]. sgn(d (R, g) x) > 0

Vx € [x1,%].Rbgx € [Rhgxi;RLgxe].

Roland Zumkeller Formalizing Taylor Models



Lifting Elementary Functions: with Sharp Remainder

Observation

Vx € [x1,%]. sgn(d (R, g) x) > 0

Vx € [x1,%].Rbgx € [Rhgxi;RLgxe].

sgn(d (R g) x) = sgn(RL " (8g) x) R and & commute
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Lifting Elementary Functions: with Sharp Remainder

Observation

Vx € [x1,%]. sgn(d (R, g) x) > 0

Vx € [x1,%].Rbgx € [Rhgxi;RLgxe].

sgn(d (R, g) x) = sgn(RL (8g) x) R and & commute
a a
C sgn(LL 1 (8g) X) Lagrange remainder
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Lifting Elementary Functions: with Sharp Remainder

Observation

Vx € [x1,%]. sgn(d (R, g) x) > 0

Vx € [x1,%].Rbgx € [Rhgxi;RLgxe].

sgn(d (R, g) x) = sgn(RL (8g) x) R and & commute
a a
C sgn(LL 1 (8g) X) Lagrange remainder

= sgn </1| AlgX (X2 a)’>
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Lifting Elementary Functions: with Sharp Remainder

Observation

Vx € [x1,%]. sgn(d (R, g) x) > 0

Vx € [x1,%].Rbgx € [Rhgxi;RLgxe].

sgn(d (R g) x) = sgn(RL " (8g) x) R and & commute
C sgn(LL 1 (8g) X) Lagrange remainder

= sgn </1| AlgX (X2 a)’>
= sgn(d'g X) - sgn(X = a)’
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Lifting Elementary Functions: with Sharp Remainder

Lemma

doRL=RL100

k=0
=R, '(99) O
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Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

@ This problem has an optimal solution: the Remez
polynomial
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Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

@ This problem has an optimal solution: the Remez
polynomial

@ The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, ) we can compute ||g — [P]||~
by interval arithmetic.
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Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

@ This problem has an optimal solution: the Remez
polynomial

@ The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, ) we can compute ||g — [P]||~
by interval arithmetic.

@ The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon
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Lifting Elementary Functions: by Remez

Remaining Problem: Polynomial Approximation

For a given g : X — R (where X C R) find G : Y[1] such that
ge G

@ This problem has an optimal solution: the Remez
polynomial

@ The correctness proof is hard, but we don’t need it: Once
we have obtained G = (p, ) we can compute ||g — [P]||~
by interval arithmetic.

@ The polynomial p can be obtained from outside the proof
assistant: Sollya system by Arenaire in Lyon

@ Remez is slower than Taylor: build a reusable database for
different domains and degrees
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@ Formal proofs are necesseary if we want to rely on
software.
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@ Formal proofs are necesseary if we want to rely on
software.

@ Generalized Taylor models don’t depend on Taylor’s
theorem.
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@ Formal proofs are necesseary if we want to rely on
software.

@ Generalized Taylor models don’t depend on Taylor’s
theorem.

@ Chebyshev balls simplify proofs.

@ Don'’t use the Lagrange remainders if deratives’ signs are
constant.
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@ Formal proofs are necesseary if we want to rely on
software.

@ Generalized Taylor models don’t depend on Taylor’s
theorem.

@ Chebyshev balls simplify proofs.

@ Don'’t use the Lagrange remainders if deratives’ signs are
constant.
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