Automatic Adaptation of the Computing Precision

Nathalie Revol

INRIA, Université de Lyon LIP, ENS Lyon, France Nathalie.Revol@ens-lyon.fr

V Taylor Models Workshop, Toronto, 21-23 May 2008

Context

My field: interval arithmetic and arbitrary precision.

Recurring problems:

- how to detect that the current computing precision does not suffice?
- how to increase the current computing precision?

Today's problem: how to increase the current computing precision?

Ideally...

Let the exact solution of a given problem be x^* .

Goal: compute an approximation \tilde{x} of the exact solution x^* with prescribed accuracy:

$$|\tilde{x} - x^*| \le \epsilon.$$

The optimal computing precision to reach this accuracy is p^* .

In the real world...

Let the exact solution of a given problem be x^* .

Goal: compute an approximation \tilde{x} of the exact solution x^* with prescribed accuracy:

$$|\tilde{x} - x^*| \le \epsilon.$$

The optimal computing precision to reach this accuracy is p^* but p^* is unknown.

Method:

- ▶ try to compute with a precision p₀
- ▶ if the result is not accurate enough, change the precision to p_1 try to compute with the precision p_1
- ▶ try with precisions $p_2 \dots p_i \dots p_n$ until the precision $p_n \ge p^*$.

Assumptions

Let $\tilde{x}(p)$ be the approximation computed with precision p.

Let $\varepsilon(p)$ be the accuracy: $|\tilde{x}(p) - x^*| \le \varepsilon(p)$.

$$\varepsilon(p) \to 0$$
 as $p \to +\infty$.

Notations

Optimal precision p^*

Computing time *t**

```
\begin{array}{lll} \text{precision } p_0 & \text{computing time } t_0 \\ \text{precision } p_1 & \text{computing time } t_1 \\ & \vdots & & \vdots \\ \text{precision } p_n & \text{computing time } t_n \end{array}
```

finally
$$p_n \geq p^*$$
 total computing time $T = \sum_{i=0}^n t_i$

overhead = T/t^*

Question

How to minimize the overhead?

In other words, if p_i is not large enough, how should we choose p_{i+1} ?

Motivation

Theoretical results exist... but practical experiments + intuition contradict these results!

Motivation

Theoretical results exist... but practical experiments + intuition contradict these results!

Approach:

- survey existing work
- analyse the theoretical result to determine where and when we disagree.

Outline

Problem

Experimental and theoretical results
Implementations
Theoretical results

New results

Assumptions and new results Asymptotically optimal results

Conclusion and future work

iRRAM

Müller 2000, based on Brattka and Hertling 1995

It is well-known that the asymptotic complexity of sequences of iterated computations is of the same order as the complexity of the last iteration.

Choice of the new precision:

$$p_i = p_0 + g \frac{f^i - 1}{f - 1}$$
, with $g = 50$ and $f = 1.25$.

or equivalently

$$p_i - p_0 = g + f.(p_{i-1} - p_0).$$

the precision bound is incremented as above, the computation is restarted from the beginning.

Mathemagix

van der Hoeven 2006

Then we let $p_{i+1} > p_i$ be such that $t_{i+1} \simeq 2t_i$ and we replace our p_i -digit approximation by a p_{i+1} -digit approximation. $[\ldots]$

Consequently the total time is approximately twice the time of the last iteration and less than 4 times the optimal time.

More generally, the evaluation at different precisions $p_1, \ldots p_n$ requires at most four times the evaluation at the maximal precision $\max(p_1, \ldots, p_n)$.

MPFR

Fousse, Hanrot, Lefèvre, Pélissier, Théveny, Zimmermann et al.

In theory: increase the precision to be able to round correctly take into account the probability of failure increment the current precision p by $\log p$ average of the overhead OK: large overheads are very unlikely

In practice:

first iteration: just add one extra-word

next iterations: precision is a geometric series of ratio 1.5

Interval Newton using MPFI

Revol 2003

Context:

determine the zeros of a function with a prescribed accuracy using interval Newton and a given precision.

Adaptation of the computing precision:

if the accuracy is not reached,
double the precision
since the result will be twice more accurate.

No mention neither of the computing time nor of the overhead.

Reminder: Notations

Optimal precision p^*

Computing time *t**

```
\begin{array}{lll} & \text{precision } p_0 & \text{computing time } t_0 \\ & \text{precision } p_1 & \text{computing time } t_1 \\ & \vdots & & \vdots \\ & \text{precision } p_n & \text{computing time } t_n \end{array}
```

finally
$$p_n \geq p^*$$
 total computing time $T = \sum_{i=0}^n t_i$

overhead =
$$T/t^*$$

Theoretical results

Kreinovich and Rump, 2006

Result 1:

if precision p_i so that $t_i = 2t_{i-1}$ then overhead = 4.

Furthermore: 4 is the minimal overhead for every geometric sequence of (t_i) .

Result 2:

for every increasing sequence of (t_i) , if the total time is $T = \sum_{i=0}^{n} t_i$ then overhead > 4.

Questions

- Is this optimal result really optimal
- ► Can the overhead be < 4?
- Can the overhead be only 2 for Newton?
- Can the overhead be even less?

Outline

Problem

Experimental and theoretical results
Implementations
Theoretical results

New results

Assumptions and new results Asymptotically optimal results

Conclusion and future work

Assumptions

The new iteration can benefit from the previous computations, instead of being restarted from scratch.

Typical example: Newton

Starting from the last iterate and doubling the computing precision yields a result with twice the precision of the last iterate.

Overhead $\leq 1 + t_n/t^*$.

Example of Newton with time linear in the precision

Example: if $t_i = c.p_i^*$ and $p_i^* = 2p_{i-1}^*$, optimal time $t^* = \sum_{i=0}^n c.p_i^* = \sum_{i=0}^n c.p^*/2^i = 2.c.p^*$: time of the last iteration = time of all previous iterations.

If p^* is not known, iterations with precisions p_o , p_1 , ..., $p_{n-1} < p^*$, $p_n \ge p^*$. At worse $p_n \simeq 2p^*$, time for this extra-iteration = time of all previous iterations \simeq optimal time.

In conclusion, total time $\simeq 2$ optimal time i.e. overhead ≤ 2 .

Notations

Ideal world	precision p_0^*	time t_0^*
	precision p_1^*	time t_1^*
	:	:
	precision p_m^*	time t_m^*
	$p^* := p_m^*$	total computing time $T^* = \sum_{i=0}^{m} t_i^*$
Real world	precision <i>p</i> ₀	computing time t_0
	precision p_1	computing time t_1
	:	:
	precision p_n	computing time t_n
	finally $p_n \geq p^*$	total computing time $T = \sum_{i=0}^{n} t_i$
		overhead = T/T^*

Simplifying Assumptions

Computing times are proportional to the computing precision:

$$t = p$$
.

Precisions are equal except the last one:

$$p_0 = p_0^*, \ p_1 = p_1^*, \dots p_{n-1} < p_m^* \le p_n.$$

Thus

$$T - T^* = t_n - t^* \le t_n - t_{n-1}.$$

Important point

Asymptotically optimal results

Idea: inspired from amortized techniques by Floyd and Brent adapted from [Beaumont, Daoudi, Maillard, Manneback, Roch].

Principle: increase p_i at a slower pace as i increases so as no to overtake p^* by too far:

$$p_i = \rho^{f(i)}.p_0$$

where $\rho > 1$ and $f(i) \to \infty$ when $i \to \infty$, but not too quickly: $f(i)/i \to 0$ when $i \to \infty$.

First example:
$$f(i) = i^{\alpha}$$
 with $0 < \alpha < 1$

$$T-T^* \leq t_n-t_{n-1}$$

$$T-T^* \leq t_n-t_{n-1} \leq \rho^{n^{\alpha}}-\rho^{(n-1)^{\alpha}}$$

$$T - T^* \leq t_n - t_{n-1}$$

$$\leq \rho^{n^{\alpha}} - \rho^{(n-1)^{\alpha}}$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{n^{\alpha} - (n-1)^{\alpha}} - 1)$$

$$T - T^* \leq t_n - t_{n-1}$$

$$\leq \rho^{n^{\alpha}} - \rho^{(n-1)^{\alpha}}$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{n^{\alpha} - (n-1)^{\alpha}} - 1)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \rho^{\alpha \cdot n^{\alpha-1} + o(n^{\alpha-1})}$$

$$T - T^* \leq t_n - t_{n-1}$$

$$\leq \rho^{n^{\alpha}} - \rho^{(n-1)^{\alpha}}$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{n^{\alpha} - (n-1)^{\alpha}} - 1)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \rho^{\alpha \cdot n^{\alpha-1} + o(n^{\alpha-1})}$$

When $n \to \infty$, since $0 < \alpha < 1$, $\alpha \cdot n^{\alpha - 1} \to 0$ and $\rho^{\alpha \cdot n^{\alpha - 1}} \to 1$.

$$T - T^* \leq t_n - t_{n-1}$$

$$\leq \rho^{n^{\alpha}} - \rho^{(n-1)^{\alpha}}$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{n^{\alpha} - (n-1)^{\alpha}} - 1)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \rho^{\alpha \cdot n^{\alpha-1} + o(n^{\alpha-1})}$$

When $n \to \infty$, since $0 < \alpha < 1$, $\alpha \cdot n^{\alpha - 1} \to 0$ and $\rho^{\alpha \cdot n^{\alpha - 1}} \to 1$. Thus

$$T-T^* \sim \rho^{(n-1)^{\alpha}} < p^*$$

$$T - T^* \leq t_n - t_{n-1}$$

$$\leq \rho^{n^{\alpha}} - \rho^{(n-1)^{\alpha}}$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{n^{\alpha} - (n-1)^{\alpha}} - 1)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \rho^{\alpha \cdot n^{\alpha-1} + o(n^{\alpha-1})}$$

When $n \to \infty$, since $0 < \alpha < 1$, $\alpha \cdot n^{\alpha - 1} \to 0$ and $\rho^{\alpha \cdot n^{\alpha - 1}} \to 1$.

$$T - T^* \sim \rho^{(n-1)^{\alpha}} < \rho^*$$

$$\frac{T}{T^*} - 1 < 1$$

$$T - T^* \leq t_n - t_{n-1}$$

$$\leq \rho^{n^{\alpha}} - \rho^{(n-1)^{\alpha}}$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{n^{\alpha} - (n-1)^{\alpha}} - 1)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \rho^{\alpha \cdot n^{\alpha-1} + o(n^{\alpha-1})}$$

When $n \to \infty$, since $0 < \alpha < 1$, $\alpha \cdot n^{\alpha - 1} \to 0$ and $\rho^{\alpha \cdot n^{\alpha - 1}} \to 1$. Thus

$$T - T^* \sim \rho^{(n-1)^{\alpha}} < p^*$$

$$\frac{T}{T^*} - 1 < 1$$

and finally

$$\frac{T}{T^*}$$
 < 2.

$$T-T^* \leq t_n-t_{n-1}$$

$$T-T^* \leq t_n-t_{n-1} \leq \rho^{\frac{n}{\log n}}-\rho^{\frac{n-1}{\log(n-1)}}$$

$$\begin{array}{lcl} T - T^* & \leq & t_n - t_{n-1} \\ & \leq & \rho^{\frac{n}{\log n}} - \rho^{\frac{n-1}{\log(n-1)}} \\ & \leq & \rho^{\frac{n-1}{\log(n-1)}} \cdot \left(\rho^{\frac{n}{\log n} - \frac{n-1}{\log(n-1)}} - 1\right) \end{array}$$

$$\begin{array}{rcl} T-T^* & \leq & t_n-t_{n-1} \\ & \leq & \rho^{\frac{n}{\log n}}-\rho^{\frac{n-1}{\log(n-1)}} \\ & \leq & \rho^{\frac{n-1}{\log(n-1)}}\cdot\left(\rho^{\frac{n}{\log n}-\frac{n-1}{\log(n-1)}}-1\right) \end{array}$$
 Since $\frac{n}{\log n}-\frac{n-1}{\log(n-1)}<\frac{1}{\log(n-1)}$
$$T-T^* & \leq & \rho^{(n-1)^\alpha}\cdot\left(\rho^{\frac{1}{\log(n-1)}}-1\right) \end{array}$$

$$\begin{array}{rcl} T-T^* & \leq & t_n-t_{n-1} \\ & \leq & \rho^{\frac{n}{\log n}}-\rho^{\frac{n-1}{\log(n-1)}} \\ & \leq & \rho^{\frac{n-1}{\log(n-1)}}\cdot\left(\rho^{\frac{n}{\log n}-\frac{n-1}{\log(n-1)}}-1\right) \end{array}$$
 Since $\frac{n}{\log n}-\frac{n-1}{\log(n-1)}<\frac{1}{\log(n-1)}$

$$T - T^* \leq \rho^{(n-1)^{\alpha}} \cdot \left(\rho^{\frac{1}{\log(n-1)}} - 1\right)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \frac{1}{\log(n-1)}$$

using this lemma: $n-1 \sim \log_{\rho} p^* \cdot \log \log_{\rho} p^*$ as $p^* \to \infty$.

$$\begin{array}{lcl} T - T^* & \leq & t_n - t_{n-1} \\ & \leq & \rho^{\frac{n}{\log n}} - \rho^{\frac{n-1}{\log(n-1)}} \\ & \leq & \rho^{\frac{n-1}{\log(n-1)}} \cdot \left(\rho^{\frac{n}{\log n} - \frac{n-1}{\log(n-1)}} - 1\right) \end{array}$$

Since
$$\frac{n}{\log n} - \frac{n-1}{\log(n-1)} < \frac{1}{\log(n-1)}$$

$$T - T^* \leq \rho^{(n-1)^{\alpha}} \cdot \left(\rho^{\frac{1}{\log(n-1)}} - 1\right)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \frac{1}{\log(n-1)}$$

using this lemma: $n-1 \sim \log_{\rho} p^* \cdot \log \log_{\rho} p^*$ as $p^* \to \infty$.

Thus

$$\frac{T}{T^*} - 1$$
 < $\frac{1}{\log(n-1)}$

$$\begin{array}{lcl} T - T^* & \leq & t_n - t_{n-1} \\ & \leq & \rho^{\frac{n}{\log n}} - \rho^{\frac{n-1}{\log(n-1)}} \\ & \leq & \rho^{\frac{n-1}{\log(n-1)}} \cdot \left(\rho^{\frac{n}{\log n} - \frac{n-1}{\log(n-1)}} - 1\right) \end{array}$$

Since
$$\frac{n}{\log n} - \frac{n-1}{\log(n-1)} < \frac{1}{\log(n-1)}$$

$$T - T^* \leq \rho^{(n-1)^{\alpha}} \cdot (\rho^{\frac{1}{\log(n-1)}} - 1)$$

$$\leq \rho^{(n-1)^{\alpha}} \cdot \frac{1}{\log(n-1)}$$

using this lemma: $n-1 \sim \log_{\rho} p^* \cdot \log \log_{\rho} p^*$ as $p^* \to \infty$.

Thus

$$\begin{array}{ccc} \frac{T}{T^*} - 1 & < & \frac{1}{\log(n-1)} \\ \frac{T}{T^*} & \rightarrow & 1 \text{ as } n \rightarrow \infty. \end{array}$$

General case

Remaining work: take into account the different paces in the progressions of p_i^* and p_i .

General case

Remaining work: take into account the different paces in the progressions of p_i^* and p_i .

Idea: one iteration using the optimal p_i^* requires several iterations using the p_j , to reach a sufficient precision.

General case

Remaining work: take into account the different paces in the progressions of p_i^* and p_i .

Idea: one iteration using the optimal p_i^* requires several iterations using the p_j , to reach a sufficient precision.

Recommendation: use large ρ .

Discussion

Large ρ ...

If p^* small and ρ large: p_n much larger than p^* .

Assumptions: ρ must be large, p^* must be large, p_n must be large and p_n should not be much larger than p^* .

Asymptotical result...

Conclusion and future work

When adaptive precision is used,

- optimal overhead = 4 when computations must be restarted
- optimal overhead smaller otherwise: smaller than 2 with doubling precision asymptotically made as small as desired.

To do:

- Detect automatically when the precision does not suffice: compute with current precision and doubled precision to guess the need of higher precision.
- ▶ Imagine incremental computations.