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1 Introducing the method

this talk we describe approximation procedures for
curves in R? which significantly improve the stan-
dard approximation order. These methods are based
on the observation that the parametrization of a
curve is not unique and can be suitably modified
to improve the approximation order.

Let

C:t (fi(t),,..., fat) € R, te0,h]

be a regular smooth curve in R%. We want to
approximate C using information at the points 0
and h by a polynomial curve

Pt (Xy(t),...,X4(t) € RY,



where X;(t), i=1,...,d are polynomials of de-
gree < m. Furthermore, by a change of variables
(replacing t by 7) we may assume that h = 1. If
we choose for X;(t), ¢ = 1,...,d the piecewise
Taylor polynomial of degree < m, then P approx-
imates C with order m + 1, i.e.

filt) — X;(t) = 0™, i=1,...,d.
2 de Boor, Hollig, Sabin

de Boor, K. Hollig and M. Sabin, High

accuracy geometric Hermite interpolation,
Comput. Aided Geom. Design 4 (1988),

269-278.

A better approximation order appeared first for
planar curves by generalization of cubic Hermite
interpolation yielding 6 order accuracy. In addi-
tion to position and tangent, the curvature is in-
terpolated at each endpoint of the cubic segments.

Let

C:s— (fi(s), fos)) € R’

be a planar curve. Let p(t) be a cubic polyno-
mial curve that approximates the curve C using



the conditions:

p(@) = f(Sz'),

pa) (s

@) [ (si)

/() x p"(&)] | f(s)
[P (@)}

where ¢ = 0,1. Note that the

FUCHIE

curvature of p(t)

and f(s) will be the same at the end points t =
0,t = 1. The polynomial p(t) is presented in the

Bézier Form

p(t) = S bBHE) te

0, 1],

where BJ(t) are the Bernstein polynomials, and
bi,© =0,1,2,3 denote the Bézier control points.

Applying these conditions gives

p(0) = f(s0) = by =
p(l) = f(s1) = by =
p'(0) _ f'(s0)

p — 51 — —
Pl = (e = 2=

For the sake of simplicity, we define

_ J'(s0)
31.f"(s0)|

dy dy =




f(s0) = fo, [(s1)=f1,
P'0)] = ag, [p'(1)] = au.
Thus the equations become
bo = Jo, bs = f, )
by = by + apdy, by = b3 — aqd;.
The Bézier control points b1, by are determined by

two unknown parameters oy, a;.
The curvatures at the end points t = 0,t = 1 are

_ 1P'(0) x p"(0)]

PP
wy = P x P
P/ (D),
where
|f'(si) x f'(si)|
Ki = (5P 1 =0, 1.
Since

p'(0) =3(by — by) , p"(0) = 6by — 12by + Gbs,

thus we have

‘B(bl — bo) X (6b0 — 12b1 + 6[)2)’

Ko =
0 3(b1 — by)|
Thus the equations become
Ko 7610 X (bg — bl) (3)
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Observing that

by — b1 = (f1 — fo) — cady — apd,
and set a = f1 — fy, thus we get

3
(do X dl)Oél = (do X CL) — 2/%300{8. (4)

Similar simplification at the other end point t = 1
gives
S
(do X d1>040 = (CL X dl) — 5/%1041. (5)
To summarize, we get the following nonlinear quadratic

system
(d() X dl)Oél = (d() X CL) — %/430048,

d()Xdl Q) — CLXCll —§/€1&2,
2 1

(6)

with the unknown parameters aq, a;.

Theorem 1 If f is a smooth curve with non
vanishing curvature and

h = Sup ‘fi—I—l - fz|

s sufficiently small, then positive solutions of
the nonlinear system exist and the correspond-

ing p(t) satisfies dist(f(s),p(t)) = O(h°).
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3 Example

Consider the circle
C: s — (cos(s),sin(s)) € R?

We want to find the cubic polynomial approxima-
tion p(t) that satisfies the nonlinear system at the
points so = 0 and s; = 7/8,7/16, 7/32.

We compute p(t) at the starting point (sg = 0, 51 =
7/8), the other cases are similarly.

To solve the quadratic system we have to compute
the following quantities:

f'(0)
dy = — (0,1).
"= ey — O
!/
2
d; :f,(ﬁ/) = (—0.382683432, 0.9238795327).
| f/(m/2)]
a=fi—fy = (—0.076120467, 0.3826834324).
kKo — K1 = 1.

Then the quadratic system becomes

3
0.382683432 a9 = 0.0761204678 — 204%,

3
0.382683432 ; = 0.076120467 — 2043.



number of points error order
4 0.14 x 1072

8 0.55 x 107%| —6.07
16 0.32 x 107 | —6.02
32 0.49 x 1078 | —6.01

Table 1: Error and order of approximation

Solving this system numerically for the unknowns
o and «a;q yields the solution

a1 = 0.1715093022, oy = 0.08361299186.

The Bézier control points b; , 1 = 0, 1, 2, 3 associ-

ated with this solution are

bo = (1,0),b; = (1,0.08361299186),

by = (0.989513301, 0.224229499), by = (0.92387953, 0.38268343).

4 Rababah: Planar Curves

A. Rababah, Taylor theorem for planar curves,
Proc. Amer. Math. Soc. Vol 119 No. 3 (1993),
803-810.

A conjecture is studied, which generalizes Tay-
lor theorem and achieves the accuracy of 2m for
planar curves (rather than m + 1) in special cases.



Let
C:t— (f(t),g(t)) € R?,
be a regular smooth planar curve. We seek a poly-
nomial curve

Pt — (X(t),Y(t) € R?

where X(t),Y (t) are polynomials of degree m,
that approximate the planar curve C with high ac-
curacy.

Conjecture: A smooth regular curve in R* can
be approximated by a polynomial curve of degree
< m with order &« = 2me

To illustrate the conjecture, assume, with out
loss of generality, that

(f(0),9(0)) = (0,0),
and
(f(0),4'(0)) = (1,0).
Hence for small ¢, f~! exist. Thus, the parameter
x = f(t) can be chosen as a local parameter for C,
1.e
C:t—ux=[f(t)— (z,0(x))
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where
o(x) = (go f)(2)

Again, since X (0) = 0, and X'(0) > 0, the param-
eter x = X () can be chosen as a local parameter
for P, i.e.

Pt —x=X(t) = (z,¢()),
where

Y(z) = (Y o X)(x).

Thus, the parametrization for C is given by

C:t— X(t) — (X(t),p(X(2))).

Hence, the polynomial curve P approximates the
planar curve C with order o € N iff

P(X (1) =Y (t) = O(t),
i.e., iff

d .
[5) X ®) =Y OHo =0, =11,
and
X(0)=Y(0)=0.
Assume that X’(0) = 1, then the system is deter-
mined by 2m — 1 free parameters. The conjecture

follows by comparing the number of equations with
the number of parameters.
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5 Example: Cubic case

To illustrate the conjecture in a special case, a cu-
bic parametrization P(t) is constructed to achieve
the optimal approximation order 6.

To this end, the following nonlinear system should
be solved:

01 X1 — Y1 =0,

G2 X7 + 1 Xo — Yo =0,

D3 X7 + 32 X1 Xo + 01X3 = 0,

G1X| + 63 X7 Xs + 32 X3 + 492X, X3 =0,

G5 X7 + 1004 X7 Xo + 15¢3X1 X5 + 103X 2 X3 + 100 X5 X3 = (
where ¢; = ¢;(X(0)), Xi = X;(0), and ¥; = ¥;(0)
are the i derivatives of ¢, X, and Y respectively.

The assumption X; = 1 reduce the nonlinear sys-
tem to the form

¢ — Y1 =0,

P2 + 91 X9 — Yo =0,

¢34+ 3P Xo + 91 X3 — Y3 =0,

G1+ 63X + 32X5 + 4 X3 = 0,

¢5 + 1004 Xo + 1563 X5 + 10¢3X3 + 1009 X2 X3 = 0,
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This nonlinear system has a solution with some
restrictions at the derivatives of ¢, the following
result shows an improvement of the standard Tay-
lor approximation.

Theorem 2 For m > 3, define

{ n for m=3n or 3n+1,
ny =

n+1 for m=3n+ 2.

Then for almost all (¢1, ..., Pmin,) € R™T™ there
s a solution for the first m + ny equations.

As a second result we show that the conjecture
is valid for a set of curves of non-zero measure,
for which the optimal approximation order 2m is
attained. To this end, we view equations m +
I,m+2,...,2m — 1 as a nonlinear system

d

l
F(®,V) = () HX () =0, l=m+1,...

dt

with V = (XQ, . ,Xm), X1 = 1, b = (¢2, ce

and show that this system is solvable in a neighbor-
hood of a particular solution (®*, X*). The exact
statement 1s

11
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Theorem 3 Define X7 =0, j = 2,...,m,

and
L, 7=m

0; = { 0, otherwise
Then (D*, X*) is a solution of F(®,V) = 0,
where X* = (X5,..., X)) and ®* := (&5, ..., 05, 1)
Moreover, there exists a neighborhood of ®*  such
that the non-linear system s uniquely solvablee

6 Rababah: Space Curves

A. Rababah, High accuracy Hermite approxima-
tion for space curves in 2. Journal of Mathemat-
ical Analysis and Applications 325, Iss. 2, (2007)
920-931.
In fact, without loss of generality we may assume
that (fl(o)v R fd(o)) = (0,...,0), (fll(o)7 R fc/i(o)) -
(1,0,...,0), so that for small ¢ we can parame-
terize C in the form

C:t— Xy(t) — (Xu(t), 91(X1(1)), P2(Xu(2)), - - -, @a-1(X1(1))) €

Since f{(t) > 0 on a neighborhood U of 0, and
t — x = fi(t) defines a diffeomorphism on a
neighborhood of the origin of the x-axis. Thus,
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we can choose x as a local parameter for C, and
get the equivalent representation

C:a— (z,01(x), po(), ..., pa_r(z)) € RY,
where ¢; = fi10 frt, i=1,2,...,d—1. Sim-
ilarly, since X7(0) = 0 and X7(0) > 0, thus the
analogous is true for t — x = Xi(¢), and there
is a second reparametrization t = X7 !(x) for the
parameter ¢ on P, and thus the curve C can be
represented in the form

C:t= Xu(t) = (Xa(t), ¢1(Xa(t)), p2(Xa (D)), - -+, Qa1 (Xa(2))) €

Thus, P approximates C with order o = a;+awo;
a1, ay € N iff the parameterizations X;(t), i =

1,...,d are chosen such that
¢i(X1(t) — Xina(t) =O@"), i=1,...,d—-1
e iffforte=1,...,d — 1, we have

(ccli)j {0 Xi() = Xia(D) =0 = 03 J=1,...,0 =1,
(c?t)j {0i(X1(t) = Xia(®) =1 = 05 j=0,1,..., a9 =1,

and

Xi(1) =1, Xi(0)=- = X4(0) =0



and derivatives of X;, ¢=1,...,d are bounded
on [0,1].

We choose here X;(t) = =7 ait’, i=1,...,d
So, the j derivative of X;(t) at t = 1 is given by
the derivatives of X;(t) at t = 0 as follows

x7(0)
j (k=)
where X )(t) is the j1 derivative of X;(t).

The polynomial approximation P is determined by

x9(1) = f i=1,2...m, i=1,....d

dm — 1 free parameters

{ai;}e, {a )7y, - - -, {aa 172 and the number
of equations is (¢ —1)(d—1). Comparing the num-
ber of parameters with the number of equations
leads to the following conjecture for a.

Conjecture: A smooth regular curve in R?
can be approximated piecewise at two points by

a parameterized polynomial curve of degree < m
with order a = (m+ 1)+ |(m—1)/(d—1)]e

The significance of the improvement of the approx-
imation order is relatively low for higher dimen-
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sions. Table 2 shows a few values of d, m and the
optimal order of approximation « from the conjec-

ture.
m=3[4]5 [6 |7
d=2]6 810 12|14 | 2m
3 |5 68 |9 |11 m+1+["5Y
4 4 67 |8 [10|m+1+ =]

Table 2: Order of approximation by polynomial
curves of degree m in RY based on the conjecture.

7 Main results

In the following Theorem 1, we solve m + [ (m +
1)/(2d—1)] equations improving the classical Her-
mite approximation order by |(m +1)/(2d — 1)].
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Theorem 4 For 1 = 1,...,d — 1, let ¢§j> =

6(0), §=0,....mand " =67 (1), j=
L,---,ny, mny:=[(m+1)/(2d—1)]. Then un-
der appropriate assumptions on

(¢1 VIR 1m+”1 7@52 VAR 7¢§m+n1)7 sty ¢£il—)17 ey EZTTnl)) € ]R(d_
there exist polynomial approximations
t— (X1(t), Xo(t), ..., Xy(t)) of degree < m ap-

prozimating the curvet — (f1(t), fa(t),. .., fa(t)) €
R? piecewise with order (m + 1) 4+ n,e

As a second result we show that the conjecture
is valid for a set of curves of non-zero measure, for
which the optimal approximation order m + 1 +
ny, n9 = [(m —1)/(d — 1)] is attained. To
this end, we solve the following system, which is
equivalent to (1) for « = m + 1 + no.

Fori=1,3,...,0d(d),

d\’ .
(dt) {oi(Xa(t) = Xiai(®) }jemo = 0;  j=1,...,m—1,
() {0000 = Xear = 0 T=01 - m,
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and for i =2,4,... ev(d),

d\’ .

[5) {600) = Xen@®hicy = 0 G=Liooma
(i)j{@(Xl(t)) Xisi@ = = 05 j=0,1,...,m—1,

d, if d is odd .
where od(d) := {d— 1 else , and  ev(d) =
{d, if d is even

d—1, else '

We set Vi = (X\"(0),..., X(0), Vi =
(X1(n2>(1), . ,Xl(l)(l)), and then combine these
systems in one system such that the first ny equa-
tions for V4 are from the first system (i.e. ¢1(X1(t))—
Xs(t) = 0) and the second ny equations for V5 are
from the second system (i.e. ¢o(X1(t)) — X3(t) =
0) and so on, into a system of the form F'(®y, g, ..., Dy 1, V),
where V' consists of the elements of Vi, V5 i.e.

Vo= (x{"™0),..., x{M0), x{™ ), ..., x{V (1),

and

D, = {(cbz 0, ...,0™(0), ¢:(1), 0 (1), ..., 8" (1)),i=13, ...

(37(0), ..., 8" (0), ¢i(1), 0 (1), . .., 6\™(1)),i=24, ...

We show that this system is solvable in a neigh-
borhood of a particular solution (®7, &5, ... &5 ;, X¥).

17



The exact statement is

Theorem 5 Define Xl(j)*(()) = Xl(j)*(l) =0, j=
1, ..., N9,

X* = (X"™0),..., xP0), X", .., xPr),
and

7

{ ¢§”*(1) # 0, other elements = 0,i = 1,3, ..., 0d(d)
¢§1)*(0> +£ 0, other elements = 0,5 = 2,4, ..., ev(d)
Then (®7, D5, ..., 95 1, X¥) is a solution of

F(®1,Dg,...,94.1,V) =0. Moreover, there ex-
ists a neighborhood of @7, ®5,..., 9%,  such
that the non-linear system s uniquely solvablee
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