High accuracy Hermite approximation for space curves in \mathbb{R}^d

A. RABABAH

Department of Mathematics, Jordan University of Science and Technology Irbid 22110, Jordan

May 14, 2008

1 Introducing the method

this talk we describe approximation procedures for curves in \mathbb{R}^d which significantly improve the standard approximation order. These methods are based on the observation that the parametrization of a curve is not unique and can be suitably modified to improve the approximation order. Let

$$\mathcal{C}: t \mapsto (f_1(t), \dots, f_d(t)) \in \mathbb{R}^d, \quad t \in [0, h]$$

be a regular smooth curve in \mathbb{R}^d . We want to approximate \mathcal{C} using information at the points 0 and h by a polynomial curve

$$\mathcal{P}: t \mapsto (X_1(t), \dots, X_d(t)) \in \mathbb{R}^d,$$

where $X_i(t)$, $i=1,\ldots,d$ are polynomials of degree $\leq m$. Furthermore, by a change of variables (replacing t by $\frac{t}{h}$) we may assume that h=1. If we choose for $X_i(t)$, $i=1,\ldots,d$ the piecewise Taylor polynomial of degree $\leq m$, then \mathcal{P} approximates \mathcal{C} with order m+1, i.e.

$$f_i(t) - X_i(t) = \mathcal{O}(t^{m+1}), \quad i = 1, \dots, d.$$

2 de Boor, Höllig, Sabin

de Boor, K. Höllig and M. Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (1988), 269-278.

A better approximation order appeared first for planar curves by generalization of cubic Hermite interpolation yielding 6^{th} order accuracy. In addition to position and tangent, the curvature is interpolated at each endpoint of the cubic segments.

Let

$$\mathcal{C}: s \to (f_1(s), f_2(s)) \in \mathbb{R}^2$$

be a planar curve. Let p(t) be a cubic polynomial curve that approximates the curve C using

the conditions:

$$\frac{p(i)}{\frac{p'(i)}{|p'(i)|}} = \frac{f'(s_i)}{|f'(s_i)|},
\frac{|p'(i) \times p''(i)|}{|p'(i)|^3} = \frac{|f'(s_i) \times f''(s_i)|}{|f'(s_i)|^3},$$

where i = 0, 1. Note that the curvature of p(t) and f(s) will be the same at the end points t = 0, t = 1. The polynomial p(t) is presented in the Bézier Form

$$p(t) = \sum_{i=0}^{3} b_i B_i^3(t)$$
 $t \in [0, 1],$

where $B_i^3(t)$ are the Bernstein polynomials, and b_i , i = 0, 1, 2, 3 denote the Bézier control points. Applying these conditions gives

$$p(0) = f(s_0) \implies b_0 = f(s_0)$$

$$p(1) = f(s_1) \implies b_3 = f(s_1)$$

$$\frac{p'(0)}{|p'(0)|} = \frac{f'(s_0)}{|f'(s_0)|} \implies b_1 = b_0 + \frac{|p'(0)|}{3} \frac{f'(s_0)}{|f'(s_0)|},$$

$$\frac{p'(1)}{|p'(1)|} = \frac{f'(s_1)}{|f'(s_1)|} \implies b_2 = b_3 - \frac{|p'(1)|}{3} \frac{f'(s_1)}{|f'(s_1)|}.$$

$$(1)$$

For the sake of simplicity, we define

$$d_0 = \frac{f'(s_0)}{3|f'(s_0)|}, \quad d_1 = \frac{f'(s_1)}{3|f'(s_1)|},$$

$$f(s_0) = f_0,$$
 $f(s_1) = f_1,$
 $|p'(0)| = \alpha_0,$ $|p'(1)| = \alpha_1.$

Thus the equations become

$$b_0 = f_0, b_3 = f_1, b_1 = b_0 + \alpha_0 d_0, b_2 = b_3 - \alpha_1 d_1.$$
 (2)

The Bézier control points b_1, b_2 are determined by two unknown parameters α_0, α_1 .

The curvatures at the end points t = 0, t = 1 are

$$\kappa_0 = \frac{|p'(0) \times p''(0)|}{|p'(0)|^3},$$

$$\kappa_1 = \frac{|p'(1) \times p''(1)|}{|p'(1)|^3},$$

where

$$\kappa_i = \frac{|f'(s_i) \times f''(s_i)|}{|f'(s_i)|^3}, i = 0, 1.$$

Since

$$p'(0) = 3(b_1 - b_0)$$
, $p''(0) = 6b_1 - 12b_2 + 6b_3$,

thus we have

$$\kappa_0 = \frac{|3(b_1 - b_0) \times (6b_0 - 12b_1 + 6b_2)|}{|3(b_1 - b_0)|}.$$

Thus the equations become

$$\kappa_0 = \frac{2}{3\alpha_0^2} d_0 \times (b_2 - b_1). \tag{3}$$

Observing that

$$b_2 - b_1 = (f_1 - f_0) - \alpha_1 d_1 - \alpha_0 d_0,$$

and set $a = f_1 - f_0$, thus we get

$$(d_0 \times d_1)\alpha_1 = (d_0 \times a) - \frac{3}{2}\kappa_0\alpha_0^2.$$
 (4)

Similar simplification at the other end point t = 1 gives

$$(d_0 \times d_1)\alpha_0 = (a \times d_1) - \frac{3}{2}\kappa_1\alpha_1^2.$$
 (5)

To summarize, we get the following nonlinear quadratic system

with the unknown parameters α_0, α_1 .

Theorem 1 If f is a smooth curve with non vanishing curvature and

$$h := \sup_{i} |f_{i+1} - f_i|$$

is sufficiently small, then positive solutions of the nonlinear system exist and the corresponding p(t) satisfies $dist(f(s), p(t)) = \mathcal{O}(h^6)$.

3 Example

Consider the circle

$$\mathcal{C}: s \to (\cos(s), \sin(s)) \in \mathbb{R}^2.$$

We want to find the cubic polynomial approximation p(t) that satisfies the nonlinear system at the points $s_0 = 0$ and $s_1 = \pi/8, \pi/16, \pi/32$.

We compute p(t) at the starting point $(s_0 = 0, s_1 = \pi/8)$, the other cases are similarly.

To solve the quadratic system we have to compute the following quantities:

$$d_0 = \frac{f'(0)}{|f'(0)|} = (0,1).$$

$$d_1 = \frac{f'(\pi/2)}{|f'(\pi/2)|} = (-0.382683432, 0.9238795327).$$

$$a = f_1 - f_0 = (-0.076120467, 0.3826834324).$$

$$\kappa_0 = \kappa_1 = 1.$$

Then the quadratic system becomes

$$0.382683432 \alpha_0 = 0.0761204678 - \frac{3}{2}\alpha_1^2,$$

$$0.382683432 \alpha_1 = 0.076120467 - \frac{3}{2}\alpha_0^2.$$

number of points	error	order
4	0.14×10^{-2}	
8	0.55×10^{-4}	
16	0.32×10^{-6}	-6.02
32	0.49×10^{-8}	-6.01

Table 1: Error and order of approximation

Solving this system numerically for the unknowns α_0 and α_1 yields the solution

$$\alpha_1 = 0.1715093022, \ \alpha_0 = 0.08361299186.$$

The Bézier control points b_i , i=0,1,2,3 associated with this solution are

$$b_0 = (1, 0), b_1 = (1, 0.08361299186),$$

 $b_2 = (0.989513301, 0.224229499), b_3 = (0.92387953, 0.38268343).$

4 Rababah: Planar Curves

A. Rababah, Taylor theorem for planar curves, Proc. Amer. Math. Soc. Vol 119 No. 3 (1993), 803-810.

A conjecture is studied, which generalizes Taylor theorem and achieves the accuracy of 2m for planar curves (rather than m+1) in special cases.

Let

$$\mathcal{C}: t \to (f(t), g(t)) \in \mathbb{R}^2,$$

be a regular smooth planar curve. We seek a polynomial curve

$$\mathcal{P}: t \to (X(t), Y(t)) \in \mathbb{R}^2,$$

where X(t), Y(t) are polynomials of degree m, that approximate the planar curve \mathcal{C} with high accuracy.

Conjecture: A smooth regular curve in \mathbb{R}^2 can be approximated by a polynomial curve of degree $\leq m$ with order $\alpha = 2m \bullet$

To illustrate the conjecture, assume, with out loss of generality, that

$$(f(0), g(0)) = (0, 0),$$

and

$$(f'(0), g'(0)) = (1, 0).$$

Hence for small t, f^{-1} exist. Thus, the parameter x = f(t) can be chosen as a local parameter for \mathcal{C} , i.e

$$\mathcal{C}: t \to x = f(t) \to (x, \phi(x))$$

where

$$\phi(x) = (g \circ f^{-1})(x)$$

Again, since X(0) = 0, and X'(0) > 0, the parameter x = X(t) can be chosen as a local parameter for \mathcal{P} , i.e.

$$\mathcal{P}: t \to x = X(t) \to (x, \psi(x)),$$

where

$$\psi(x) = (Y \circ X^{-1})(x).$$

Thus, the parametrization for C is given by

$$C: t \to X(t) \to (X(t), \phi(X(t))).$$

Hence, the polynomial curve \mathcal{P} approximates the planar curve \mathcal{C} with order $\alpha \in \mathbb{N}$ iff

$$\phi(X(t)) - Y(t) = \mathcal{O}(t^{\alpha}),$$

i.e., iff

$$\left(\frac{d}{dt}\right) \{\phi(X(t)) - Y(t)\}|_{t=0} = 0, \quad j = 1, ..., \alpha - 1,$$
 and

$$X(0) = Y(0) = 0.$$

Assume that X'(0) = 1, then the system is determined by 2m - 1 free parameters. The conjecture follows by comparing the number of equations with the number of parameters.

5 Example: Cubic case

To illustrate the conjecture in a special case, a cubic parametrization $\mathcal{P}(t)$ is constructed to achieve the optimal approximation order 6.

To this end, the following nonlinear system should be solved:

$$\phi_1 X_1 - Y_1 = 0,$$

$$\phi_2 X_1^2 + \phi_1 X_2 - Y_2 = 0,$$

$$\phi_3 X_1^3 + 3\phi_2 X_1 X_2 + \phi_1 X_3 = 0,$$

$$\phi_4 X_1^4 + 6\phi_3 X_1^2 X_2 + 3\phi_2 X_2^2 + 4\phi_2 X_1 X_3 = 0,$$

$$\phi_5 X_1^5 + 10\phi_4 X_1^3 X_2 + 15\phi_3 X_1 X_2^2 + 10\phi_3 X_1^2 X_3 + 10\phi_2 X_2 X_3 = 0$$

where $\phi_i = \phi_i(X(0))$, $X_i = X_i(0)$, and $Y_i = Y_i(0)$ are the i^{th} derivatives of ϕ , X, and Y respectively. The assumption $X_1 = 1$ reduce the nonlinear system to the form

$$\phi_1 - Y_1 = 0,$$

$$\phi_2 + \phi_1 X_2 - Y_2 = 0,$$

$$\phi_3 + 3\phi_2 X_2 + \phi_1 X_3 - Y_3 = 0,$$

$$\phi_4 + 6\phi_3 X_2 + 3\phi_2 X_2^2 + 4\phi_2 X_3 = 0,$$

$$\phi_5 + 10\phi_4 X_2 + 15\phi_3 X_2^2 + 10\phi_3 X_3 + 10\phi_2 X_2 X_3 = 0,$$

This nonlinear system has a solution with some restrictions at the derivatives of ϕ , the following result shows an improvement of the standard Taylor approximation.

Theorem 2 For m > 3, define

$$n_1 = \begin{cases} n & for & m = 3n & or \ 3n + 1, \\ n + 1 & for \ m = 3n + 2. \end{cases}$$

Then for almost all $(\phi_1, ..., \phi_{m+n_1}) \in \mathbb{R}^{m+n_1}$ there is a solution for the first $m+n_1$ equations.

As a second result we show that the conjecture is valid for a set of curves of non-zero measure, for which the optimal approximation order 2m is attained. To this end, we view equations $m + 1, m + 2, \ldots, 2m - 1$ as a nonlinear system

$$F(\Phi, V) = \left(\frac{d}{dt}\right)^l \phi(X(t))_{|t=0} = 0, \quad l = m+1, \dots, 2m-1,$$

with $V := (X_2, \ldots, X_m)$, $X_1 := 1$, $\Phi := (\phi_2, \ldots, \phi_{2m-1})$, and show that this system is solvable in a neighborhood of a particular solution (Φ^*, X^*) . The exact statement is

Theorem 3 Define $X_j^* := 0, \quad j = 2, ..., m,$ and

$$\phi_j^* := \begin{cases} 1, & j = m \\ 0, & otherwise \end{cases}$$

Then (Φ^*, X^*) is a solution of $F(\Phi, V) = 0$, where $X^* := (X_2^*, \dots, X_m^*)$ and $\Phi^* := (\phi_2^*, \dots, \phi_{2m-1}^*)$. Moreover, there exists a neighborhood of Φ^* such that the non-linear system is uniquely solvable.

6 Rababah: Space Curves

A. Rababah, High accuracy Hermite approximation for space curves in \Re^d . Journal of Mathematical Analysis and Applications 325, Iss. 2, (2007) 920-931.

In fact, without loss of generality we may assume that $(f_1(0), \ldots, f_d(0)) = (0, \ldots, 0), \quad (f'_1(0), \ldots, f'_d(0)) = (1, 0, \ldots, 0),$ so that for small t we can parameterize \mathcal{C} in the form

$$\mathcal{C}: t \mapsto X_1(t) \mapsto (X_1(t), \phi_1(X_1(t)), \phi_2(X_1(t)), \dots, \phi_{d-1}(X_1(t))) \in$$

Since $f'_1(t) > 0$ on a neighborhood U of 0, and $t \mapsto x = f_1(t)$ defines a diffeomorphism on a neighborhood of the origin of the x-axis. Thus,

we can choose x as a local parameter for \mathcal{C} , and get the equivalent representation

$$C: x \mapsto (x, \phi_1(x), \phi_2(x), \dots, \phi_{d-1}(x)) \in \mathbb{R}^d,$$

where $\phi_i = f_{i+1} \circ f_1^{-1}, \quad i = 1, 2, \dots, d-1$. Sim-

where $\phi_i = f_{i+1} \circ f_1^{-1}$, i = 1, 2, ..., d-1. Similarly, since $X_1(0) = 0$ and $X'_1(0) > 0$, thus the analogous is true for $t \mapsto x = X_1(t)$, and there is a second reparametrization $t = X_1^{-1}(x)$ for the parameter t on \mathcal{P} , and thus the curve \mathcal{C} can be represented in the form

$$\mathcal{C}: t \mapsto X_1(t) \mapsto (X_1(t), \phi_1(X_1(t)), \phi_2(X_1(t)), \dots, \phi_{d-1}(X_1(t))) \in$$

Thus, \mathcal{P} approximates \mathcal{C} with order $\alpha = \alpha_1 + \alpha_2$; $\alpha_1, \alpha_2 \in \mathbb{N}$, iff the parameterizations $X_i(t)$, $i = 1, \ldots, d$ are chosen such that

$$\phi_i(X_1(t)) - X_{i+1}(t) = \mathcal{O}(t^{\alpha}), \quad i = 1, \dots, d-1$$

i.e. iff for $i = 1, \ldots, d - 1$, we have

$$\left(\frac{d}{dt}\right)^{j} \{\phi_{i}(X_{1}(t)) - X_{i+1}(t)\}_{|t=0} = 0; \quad j = 1, \dots, \alpha_{1} - 1,
\left(\frac{d}{dt}\right)^{j} \{\phi_{i}(X_{1}(t)) - X_{i+1}(t)\}_{|t=1} = 0; \quad j = 0, 1, \dots, \alpha_{2} - 1,$$

and

$$X_1(1) = 1, \quad X_1(0) = \dots = X_d(0) = 0$$

and derivatives of X_i , i = 1, ..., d are bounded on [0,1].

We choose here $X_i(t) = \sum_{j=0}^m a_{i,j} t^j$, i = 1, ..., d. So, the j^{th} derivative of $X_i(t)$ at t = 1 is given by the derivatives of $X_i(t)$ at t = 0 as follows

$$X_i^{(j)}(1) = \sum_{k=j}^m \frac{X_i^{(k)}(0)}{(k-j)!}, \quad j = 1, 2, \dots, m, \quad i = 1, \dots, d,$$

where $X_i^{(j)}(t)$ is the j^{th} derivative of $X_i(t)$. The polynomial approximation \mathcal{P} is determined by dm-1 free parameters

 $\{a_{1,j}\}_{j=2}^m, \{a_{2,j}\}_{j=1}^m, \ldots, \{a_{d,j}\}_{j=1}^m$ and the number of equations is $(\alpha-1)(d-1)$. Comparing the number of parameters with the number of equations leads to the following conjecture for α .

Conjecture: A smooth regular curve in \mathbb{R}^d can be approximated piecewise at two points by a parameterized polynomial curve of degree $\leq m$ with order $\alpha = (m+1) + \lfloor (m-1)/(d-1) \rfloor \bullet$

The significance of the improvement of the approximation order is relatively low for higher dimensions. Table 2 shows a few values of d, m and the optimal order of approximation α from the conjecture.

	m=3	4	5	6	7	
d=2	6	8	10	12	14	2m
3	5	6	8	9	11	$m+1+\left[\frac{m-1}{2}\right]$
4	4	6	7	8	10	$m+1+\left[\frac{m-1}{3}\right]$

Table 2: Order of approximation by polynomial curves of degree m in \mathbb{R}^d based on the conjecture.

7 Main results

In the following Theorem 1, we solve $m + \lfloor (m + 1)/(2d-1) \rfloor$ equations improving the classical Hermite approximation order by $\lfloor (m+1)/(2d-1) \rfloor$.

Theorem 4 For i = 1, ..., d - 1, let $\phi_i^{(j)} := \phi_i^{(j)}(0)$, j = 0, ..., m and $\phi_i^{(m+j)} := \phi_i^{(j)}(1)$, $j = 1, ..., n_1$, $n_1 := \lfloor (m+1)/(2d-1) \rfloor$. Then under appropriate assumptions on

$$(\phi_1^{(1)}, \dots, \phi_1^{(m+n_1)}, \phi_2^{(1)}, \dots, \phi_2^{(m+n_1)}, \dots, \phi_{d-1}^{(1)}, \dots, \phi_{d-1}^{(m+n_1)}) \in \mathbb{R}^{(d-n_1)}$$

there exist polynomial approximations $t \to (X_1(t), X_2(t), \dots, X_d(t))$ of degree $\leq m$ approximating the curve $t \to (f_1(t), f_2(t), \dots, f_d(t)) \in \mathbb{R}^d$ piecewise with order $(m+1) + n_1 \bullet$

As a second result we show that the conjecture is valid for a set of curves of non-zero measure, for which the optimal approximation order $m + 1 + n_2$, $n_2 := \lfloor (m-1)/(d-1) \rfloor$ is attained. To this end, we solve the following system, which is equivalent to (1) for $\alpha = m + 1 + n_2$.

For i = 1, 3, ..., od(d),

$$\left(\frac{d}{dt}\right)^{j} \{\phi_{i}(X_{1}(t)) - X_{i+1}(t)\}_{|t=0} = 0; \quad j = 1, \dots, m-1,
\left(\frac{d}{dt}\right)^{j} \{\phi_{i}(X_{1}(t)) - X_{i+1}(t)\}_{|t=1} = 0; \quad j = 0, 1, \dots, n_{2},$$

and for
$$i = 2, 4, ..., ev(d)$$
,

$$\left(\frac{d}{dt}\right)^{j} \{\phi_{i}(X_{1}(t)) - X_{i+1}(t)\}_{|t=0} = 0; \quad j = 1, \dots, n_{2},
\left(\frac{d}{dt}\right)^{j} \{\phi_{i}(X_{1}(t)) - X_{i+1}(t)\}_{|t=1} = 0; \quad j = 0, 1, \dots, m-1,$$

where
$$od(d) := \begin{cases} d, & \text{if } d \text{ is odd} \\ d-1, & \text{else} \end{cases}$$
, and $ev(d) := \begin{cases} d, & \text{if } d \text{ is even} \\ d-1, & \text{else} \end{cases}$.

We set $V_1 := (X_1^{(n_2)}(0), \dots, X_1^{(1)}(0)), \quad V_2 :=$

We set $V_1 := (X_1^{(n_2)}(0), \dots, X_1^{(1)}(0)), \quad V_2 := (X_1^{(n_2)}(1), \dots, X_1^{(1)}(1)),$ and then combine these systems in one system such that the first n_2 equations for V_1 are from the first system (i.e. $\phi_1(X_1(t)) - X_2(t) = 0$) and the second n_2 equations for V_2 are from the second system (i.e. $\phi_2(X_1(t)) - X_3(t) = 0$) and so on, into a system of the form $F(\Phi_1, \Phi_2, \dots, \Phi_{d-1}, V)$, where V consists of the elements of V_1, V_2 i.e.

$$V := (X_1^{(n_2)}(0), \dots, X_1^{(1)}(0), X_1^{(n_2)}(1), \dots, X_1^{(1)}(1)),$$

and

$$\Phi_i := \begin{cases} (\phi_i^{(1)}(0), \dots, \phi_i^{(m)}(0), \phi_i(1), \phi_i^{(1)}(1), \dots, \phi_i^{(n_2)}(1)), i=1,3, \dots, \\ (\phi_i^{(1)}(0), \dots, \phi_i^{(n_2)}(0), \phi_i(1), \phi_i^{(1)}(1), \dots, \phi_i^{(m)}(1)), i=2,4, \dots, \end{cases}$$

We show that this system is solvable in a neighborhood of a particular solution $(\Phi_1^*, \Phi_2^*, \dots, \Phi_{d-1}^*, X^*)$.

The exact statement is

Theorem 5 Define
$$X_1^{(j)*}(0) = X_1^{(j)*}(1) := 0, \quad j = 1, \ldots, n_2, \\ X^* = (X_1^{(n_2)*}(0), \ldots, X_1^{(1)*}(0), X_1^{(n_2)*}(1), \ldots, X_1^{(1)*}(1)),$$
 and
$$\Phi_i^* := \begin{cases} \phi_i^{(1)*}(1) \neq 0, & \text{other elements} = 0, i = 1, 3, \ldots, od(d) \\ \phi_i^{(1)*}(0) \neq 0, & \text{other elements} = 0, i = 2, 4, \ldots, ev(d) \end{cases}.$$
 Then $(\Phi_1^*, \Phi_2^*, \ldots, \Phi_{d-1}^*, X^*)$ is a solution of $F(\Phi_1, \Phi_2, \ldots, \Phi_{d-1}, V) = 0$. Moreover, there exists a neighborhood of $\Phi_1^*, \Phi_2^*, \ldots, \Phi_{d-1}^*$ such that the non-linear system is uniquely solvable•

References

- [1] W. Boehm, G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD, Comput. Aided Geom. Design 1 (1984), 1-60.
- [2] C. de Boor, K. Höllig and M. Sabin, High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design 4 (1988), 269-278.
- [3] W.L.F. Degen, High accurate rational approximation of parametric curves, Comput. Aided Geom. Design 10 (1993), 293-313.
- [4] T. Dokken, M. Dæhlen, T. Lyche and K. Mørken, Good approximation of circles by curvature-continuous Bézier curves, Comput. Aided Geom. Design 7 (1990), 33-41.
- [5] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Boston (1988).
- [6] J. Gregory, Geometric Continuity, in Mathematical Methods in CAGD, T. Lyche, and L. Schumacker (eds.), Academic Press (1989), 353-371.

- [7] K. Höllig, Algorithms for Rational Spline Curves, Conference on Applied Mathematics and Computing (1988), ARO Report 88-1.
- [8] K. Höllig, and J. Koch, Geometric Hermite interpolation, Comput. Aided Geom. Design 12 (1995), 567-580.
- [9] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, A K Peters, Wellesley (1993).
- [10] A. Rababah, Taylor theorem for planar curves, Proc. Amer. Math. Soc. Vol 119 No. 3 (1993), 803-810.
- [11] A. Rababah, High order approximation method for curves, Comput. Aided Geom. Design 12 (1995), 89-102.
- [12] A. Rababah, High accuracy Hermite approximation for space curves in \Re^d . Journal of Mathematical Analysis and Applications 325, Iss. 2, (2007) 920-931.
- [13] K. Scherer, Parametric polynomial curves of local approximation order 8, Proc. of conf. in

curves and surfaces, Saint-Malo, L. Schumaker (eds.), (2000), 1-6.