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1 Introducing the method

this talk we describe approximation procedures for

curves in IRd which significantly improve the stan-

dard approximation order. These methods are based

on the observation that the parametrization of a

curve is not unique and can be suitably modified

to improve the approximation order.

Let

C : t 7→ (f1(t), , . . . , fd(t)) ∈ IRd, t ∈ [0, h]

be a regular smooth curve in IRd. We want to

approximate C using information at the points 0

and h by a polynomial curve

P : t 7→ (X1(t), . . . , Xd(t)) ∈ IRd,
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where Xi(t), i = 1, . . . , d are polynomials of de-

gree ≤ m. Furthermore, by a change of variables

(replacing t by t
h) we may assume that h = 1. If

we choose for Xi(t), i = 1, . . . , d the piecewise

Taylor polynomial of degree ≤ m, then P approx-

imates C with order m + 1, i.e.

fi(t)−Xi(t) = O(tm+1), i = 1, . . . , d.

2 de Boor, Höllig, Sabin

de Boor, K. Höllig and M. Sabin, High

accuracy geometric Hermite interpolation,

Comput. Aided Geom. Design 4 (1988),

269-278.

A better approximation order appeared first for

planar curves by generalization of cubic Hermite

interpolation yielding 6th order accuracy. In addi-

tion to position and tangent, the curvature is in-

terpolated at each endpoint of the cubic segments.

Let

C : s→ (f1(s), f2(s)) ∈ IR2

be a planar curve. Let p(t) be a cubic polyno-

mial curve that approximates the curve C using
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the conditions:

p(i) = f (si),
p′(i)

|p′(i)|
=

f ′(si)

|f ′(si)|
,

|p′(i)× p′′(i)|
|p′(i)|3

=
|f ′(si)× f ′′(si)|

|f ′(si)|3
,

where i = 0, 1. Note that the curvature of p(t)

and f (s) will be the same at the end points t =

0, t = 1. The polynomial p(t) is presented in the

Bézier Form

p(t) =
3∑
i=0
biB

3
i (t) t ∈ [0, 1],

where B3
i (t) are the Bernstein polynomials, and

bi, i = 0, 1, 2, 3 denote the Bézier control points.

Applying these conditions gives

p(0) = f (s0) ⇒ b0 = f (s0)

p(1) = f (s1) ⇒ b3 = f (s1)
p′(0)
|p′(0)| = f ′(s0)

|f ′(s0)|
⇒ b1 = b0 + |p′(0)|

3
f ′(s0)
|f ′(s0)|

,
p′(1)
|p′(1)| = f ′(s1)

|f ′(s1)|
⇒ b2 = b3 − |p′(1)

3
f ′(s1)
|f ′(s1)|

.

(1)

For the sake of simplicity, we define

d0 =
f ′(s0)

3|f ′(s0)|
, d1 =

f ′(s1)

3|f ′(s1)|
,
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f (s0) = f0, f (s1) = f1,

|p′(0)| = α0, |p′(1)| = α1.

Thus the equations become

b0 = f0, b3 = f1,

b1 = b0 + α0d0, b2 = b3 − α1d1.
(2)

The Bézier control points b1, b2 are determined by

two unknown parameters α0, α1.

The curvatures at the end points t = 0, t = 1 are

κ0 =
|p′(0)× p′′(0)|

|p′(0)|3
,

κ1 =
|p′(1)× p′′(1)|

|p′(1)|3,
where

κi =
|f ′(si)× f ′′(si)|

|f ′(si)|3
, i = 0, 1.

Since

p′(0) = 3(b1 − b0) , p′′(0) = 6b1 − 12b2 + 6b3,

thus we have

κ0 =
|3(b1 − b0)× (6b0 − 12b1 + 6b2)|

|3(b1 − b0)|
.

Thus the equations become

κ0 =
2

3α2
0

d0 × (b2 − b1). (3)
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Observing that

b2 − b1 = (f1 − f0)− α1d1 − α0d0,

and set a = f1 − f0, thus we get

(d0 × d1)α1 = (d0 × a)− 3

2
κ0α

2
0. (4)

Similar simplification at the other end point t = 1

gives

(d0 × d1)α0 = (a× d1)−
3

2
κ1α

2
1. (5)

To summarize, we get the following nonlinear quadratic

system

(d0 × d1)α1 = (d0 × a)− 3
2κ0α

2
0,

(d0 × d1)α0 = (a× d1)− 3
2κ1α

2
1,

(6)

with the unknown parameters α0, α1.

Theorem 1 If f is a smooth curve with non

vanishing curvature and

h := sup
i
|fi+1 − fi|

is sufficiently small, then positive solutions of

the nonlinear system exist and the correspond-

ing p(t) satisfies dist(f (s), p(t)) = O(h6).
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3 Example

Consider the circle

C : s→ (cos(s), sin(s)) ∈ IR2.

We want to find the cubic polynomial approxima-

tion p(t) that satisfies the nonlinear system at the

points s0 = 0 and s1 = π/8, π/16, π/32.

We compute p(t) at the starting point (s0 = 0, s1 =

π/8), the other cases are similarly.

To solve the quadratic system we have to compute

the following quantities:

d0 =
f ′(0)

|f ′(0)|
= (0, 1).

d1 =
f ′(π/2)

|f ′(π/2)|
= (−0.382683432, 0.9238795327).

a = f1 − f0 = (−0.076120467, 0.3826834324).

κ0 = κ1 = 1.

Then the quadratic system becomes

0.382683432α0 = 0.0761204678− 3

2
α2

1,

0.382683432α1 = 0.076120467− 3

2
α2

0.
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number of points error order

4 0.14× 10−2

8 0.55× 10−4 −6.07

16 0.32× 10−6 −6.02

32 0.49× 10−8 −6.01

Table 1: Error and order of approximation

Solving this system numerically for the unknowns

α0 and α1 yields the solution

α1 = 0.1715093022, α0 = 0.08361299186.

The Bézier control points bi , i = 0, 1, 2, 3 associ-

ated with this solution are

b0 = (1, 0), b1 = (1, 0.08361299186),

b2 = (0.989513301, 0.224229499), b3 = (0.92387953, 0.38268343).

4 Rababah: Planar Curves

A. Rababah, Taylor theorem for planar curves,

Proc. Amer. Math. Soc. Vol 119 No. 3 (1993),

803-810.

A conjecture is studied, which generalizes Tay-

lor theorem and achieves the accuracy of 2m for

planar curves (rather than m+ 1) in special cases.
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Let

C : t→ (f (t), g(t)) ∈ IR2,

be a regular smooth planar curve. We seek a poly-

nomial curve

P : t→ (X(t), Y (t)) ∈ IR2,

where X(t), Y (t) are polynomials of degree m,

that approximate the planar curve C with high ac-

curacy.

Conjecture: A smooth regular curve in IR2 can

be approximated by a polynomial curve of degree

≤ m with order α = 2m•
To illustrate the conjecture, assume, with out

loss of generality, that

(f (0), g(0)) = (0, 0),

and

(f ′(0), g′(0)) = (1, 0).

Hence for small t, f−1 exist. Thus, the parameter

x = f (t) can be chosen as a local parameter for C,

i.e

C : t→ x = f (t) → (x, φ(x))
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where

φ(x) = (g ◦ f−1)(x)

Again, since X(0) = 0, and X ′(0) > 0, the param-

eter x = X(t) can be chosen as a local parameter

for P , i.e.

P : t→ x = X(t) → (x, ψ(x)),

where

ψ(x) = (Y ◦X−1)(x).

Thus, the parametrization for C is given by

C : t→ X(t) → (X(t), φ(X(t))).

Hence, the polynomial curve P approximates the

planar curve C with order α ∈ IN iff

φ(X(t))− Y (t) = O(tα),

i.e., iff d
dt

 {φ(X(t))− Y (t)}|t=0 = 0, j = 1, ..., α− 1,

and

X(0) = Y (0) = 0.

Assume that X ′(0) = 1, then the system is deter-

mined by 2m− 1 free parameters. The conjecture

follows by comparing the number of equations with

the number of parameters.
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5 Example: Cubic case

To illustrate the conjecture in a special case, a cu-

bic parametrization P(t) is constructed to achieve

the optimal approximation order 6.

To this end, the following nonlinear system should

be solved:

φ1X1 − Y1 = 0,

φ2X
2
1 + φ1X2 − Y2 = 0,

φ3X
3
1 + 3φ2X1X2 + φ1X3 = 0,

φ4X
4
1 + 6φ3X

2
1X2 + 3φ2X

2
2 + 4φ2X1X3 = 0,

φ5X
5
1 + 10φ4X

3
1X2 + 15φ3X1X

2
2 + 10φ3X

2
1X3 + 10φ2X2X3 = 0,

where φi = φi(X(0)), Xi = Xi(0), and Yi = Yi(0)

are the ith derivatives of φ, X , and Y respectively.

The assumption X1 = 1 reduce the nonlinear sys-

tem to the form

φ1 − Y1 = 0,

φ2 + φ1X2 − Y2 = 0,

φ3 + 3φ2X2 + φ1X3 − Y3 = 0,

φ4 + 6φ3X2 + 3φ2X
2
2 + 4φ2X3 = 0,

φ5 + 10φ4X2 + 15φ3X
2
2 + 10φ3X3 + 10φ2X2X3 = 0,
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This nonlinear system has a solution with some

restrictions at the derivatives of φ, the following

result shows an improvement of the standard Tay-

lor approximation.

Theorem 2 For m > 3, define

n1 =

 n for m = 3n or 3n + 1,

n + 1 for m = 3n + 2.

Then for almost all (φ1, ..., φm+n1) ∈ IRm+n1 there

is a solution for the first m + n1 equations.

As a second result we show that the conjecture

is valid for a set of curves of non-zero measure,

for which the optimal approximation order 2m is

attained. To this end, we view equations m +

1,m + 2, . . . , 2m− 1 as a nonlinear system

F (Φ, V ) =

 d
dt

l φ(X(t))|t=0 = 0, l = m + 1, . . . , 2m− 1,

with V := (X2, . . . , Xm), X1 := 1, Φ := (φ2, . . . , φ2m−1),

and show that this system is solvable in a neighbor-

hood of a particular solution (Φ∗, X∗). The exact

statement is
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Theorem 3 Define X∗
j := 0, j = 2, . . . ,m,

and

φ∗j :=

 1, j = m

0, otherwise

Then (Φ∗, X∗) is a solution of F (Φ, V ) = 0,

where X∗ := (X∗
2 , . . . , X

∗
m) and Φ∗ := (φ∗2, . . . , φ

∗
2m−1).

Moreover, there exists a neighborhood of Φ∗ such

that the non-linear system is uniquely solvable•

6 Rababah: Space Curves

A. Rababah, High accuracy Hermite approxima-

tion for space curves in <d. Journal of Mathemat-

ical Analysis and Applications 325, Iss. 2, (2007)

920-931.

In fact, without loss of generality we may assume

that (f1(0), , . . . , fd(0)) = (0, . . . , 0), (f ′1(0), . . . , f ′d(0)) =

(1, 0, . . . , 0), so that for small t we can parame-

terize C in the form

C : t 7→ X1(t) 7→ (X1(t), φ1(X1(t)), φ2(X1(t)), . . . , φd−1(X1(t))) ∈ IRd.

Since f ′1(t) > 0 on a neighborhood U of 0, and

t 7→ x = f1(t) defines a diffeomorphism on a

neighborhood of the origin of the x-axis. Thus,
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we can choose x as a local parameter for C, and

get the equivalent representation

C : x 7→ (x, φ1(x), φ2(x), . . . , φd−1(x)) ∈ IRd,

where φi = fi+1 ◦ f−1
1 , i = 1, 2, . . . , d− 1. Sim-

ilarly, since X1(0) = 0 and X ′
1(0) > 0, thus the

analogous is true for t 7→ x = X1(t), and there

is a second reparametrization t = X−1
1 (x) for the

parameter t on P , and thus the curve C can be

represented in the form

C : t 7→ X1(t) 7→ (X1(t), φ1(X1(t)), φ2(X1(t)), . . . , φd−1(X1(t))) ∈ IRd, t ∈ U.
Thus, P approximates C with order α = α1+α2;

α1, α2 ∈ IN, iff the parameterizations Xi(t), i =

1, . . . , d are chosen such that

φi(X1(t))−Xi+1(t) = O(tα), i = 1, . . . , d− 1

i.e. iff for i = 1, . . . , d− 1, we have
 d
dt

j {φi(X1(t))−Xi+1(t)}|t=0 = 0; j = 1, . . . , α1 − 1,

 d
dt

j {φi(X1(t))−Xi+1(t)}|t=1 = 0; j = 0, 1, . . . , α2 − 1,

and

X1(1) = 1, X1(0) = · · · = Xd(0) = 0
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and derivatives of Xi, i = 1, . . . , d are bounded

on [0,1].

We choose hereXi(t) =
∑m
j=0 ai,jt

j, i = 1, . . . , d.

So, the jth derivative of Xi(t) at t = 1 is given by

the derivatives of Xi(t) at t = 0 as follows

X
(j)
i (1) =

m∑
k=j

X
(k)
i (0)

(k − j)!
, j = 1, 2, . . . ,m, i = 1, . . . , d,

where X
(j)
i (t) is the jth derivative of Xi(t).

The polynomial approximation P is determined by

dm− 1 free parameters

{a1,j}mj=2, {a2,j}mj=1, . . . , {ad,j}mj=1 and the number

of equations is (α−1)(d−1). Comparing the num-

ber of parameters with the number of equations

leads to the following conjecture for α.

Conjecture: A smooth regular curve in IRd

can be approximated piecewise at two points by

a parameterized polynomial curve of degree ≤ m

with order α = (m + 1) + b(m− 1)/(d− 1)c•

The significance of the improvement of the approx-

imation order is relatively low for higher dimen-
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sions. Table 2 shows a few values of d,m and the

optimal order of approximation α from the conjec-

ture.

m = 3 4 5 6 7

d = 2 6 8 10 12 14 2m

3 5 6 8 9 11 m + 1 +
[
m−1

2

]

4 4 6 7 8 10 m + 1 +
[
m−1

3

]

Table 2: Order of approximation by polynomial

curves of degree m in IRd based on the conjecture.

7 Main results

In the following Theorem 1, we solve m + b(m +

1)/(2d−1)c equations improving the classical Her-

mite approximation order by b(m+ 1)/(2d− 1)c.
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Theorem 4 For i = 1, . . . , d − 1, let φ
(j)
i :=

φ
(j)
i (0), j = 0, . . . ,m and φ

(m+j)
i := φ

(j)
i (1), j =

1, · · · , n1, n1 := b(m+1)/(2d−1)c. Then un-

der appropriate assumptions on

(φ
(1)
1 , . . . , φ

(m+n1)
1 , φ

(1)
2 , . . . , φ

(m+n1)
2 , . . . , φ

(1)
d−1, . . . , φ

(m+n1)
d−1 ) ∈ IR(d−1)(m+n1),

there exist polynomial approximations

t→ (X1(t), X2(t), . . . , Xd(t)) of degree ≤ m ap-

proximating the curve t→ (f1(t), f2(t), . . . , fd(t)) ∈
IRd piecewise with order (m + 1) + n1•

As a second result we show that the conjecture

is valid for a set of curves of non-zero measure, for

which the optimal approximation order m + 1 +

n2, n2 := b(m − 1)/(d − 1)c is attained. To

this end, we solve the following system, which is

equivalent to (1) for α = m + 1 + n2.

For i = 1, 3, . . . , od(d),
 d
dt

j {φi(X1(t))−Xi+1(t)}|t=0 = 0; j = 1, . . . ,m− 1,

 d
dt

j {φi(X1(t))−Xi+1(t)}|t=1 = 0; j = 0, 1, . . . , n2,
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and for i = 2, 4, . . . , ev(d), d
dt

j {φi(X1(t))−Xi+1(t)}|t=0 = 0; j = 1, . . . , n2,

 d
dt

j {φi(X1(t))−Xi+1(t)}|t=1 = 0; j = 0, 1, . . . ,m− 1,

where od(d) :=

 d, if d is odd

d− 1, else
, and ev(d) := d, if d is even

d− 1, else
.

We set V1 := (X
(n2)
1 (0), . . . , X

(1)
1 (0)), V2 :=

(X
(n2)
1 (1), . . . , X

(1)
1 (1)), and then combine these

systems in one system such that the first n2 equa-

tions for V1 are from the first system (i.e. φ1(X1(t))−
X2(t) = 0) and the second n2 equations for V2 are

from the second system (i.e. φ2(X1(t))−X3(t) =

0) and so on, into a system of the form F (Φ1,Φ2, . . . ,Φd−1, V ),

where V consists of the elements of V1, V2 i.e.

V := (X
(n2)
1 (0), . . . , X

(1)
1 (0), X

(n2)
1 (1), . . . , X

(1)
1 (1)),

and

Φi :=

 (φ
(1)
i (0), . . . , φ

(m)
i (0), φi(1), φ

(1)
i (1), . . . , φ

(n2)
i (1)),i=1,3, . . . , od(d)

(φ
(1)
i (0), . . . , φ

(n2)
i (0), φi(1), φ

(1)
i (1), . . . , φ

(m)
i (1)),i=2,4, . . . , ev(d)

.

We show that this system is solvable in a neigh-

borhood of a particular solution (Φ∗
1,Φ

∗
2, . . . ,Φ

∗
d−1, X

∗).
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The exact statement is

Theorem 5 Define X
(j)∗
1 (0) = X

(j)∗
1 (1) := 0, j =

1, . . . , n2,

X∗ = (X
(n2)∗
1 (0), . . . , X

(1)∗
1 (0), X

(n2)∗
1 (1), . . . , X

(1)∗
1 (1)),

and

Φ∗
i :=

φ
(1)∗
i (1) 6= 0, other elements = 0, i = 1, 3, . . . , od(d)

φ
(1)∗
i (0) 6= 0, other elements = 0, i = 2, 4, . . . , ev(d)

.

Then (Φ∗
1,Φ

∗
2, . . . ,Φ

∗
d−1, X

∗) is a solution of

F (Φ1,Φ2, . . . ,Φd−1, V ) = 0. Moreover, there ex-

ists a neighborhood of Φ∗
1, Φ∗

2, . . . ,Φ
∗
d−1 such

that the non-linear system is uniquely solvable•

18



References

[1] W. Boehm, G. Farin and J. Kahmann, A sur-

vey of curve and surface methods in CAGD,

Comput. Aided Geom. Design 1 (1984), 1-60.
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