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DAEs—what and why?

◮ (Explicit) ordinary differential equations (ODEs) specify
derivative of a vector of state variables in terms of those
variables, y′ = f(t , y)

◮ Differential algebraic equation (DAE) system mixes purely
algebraic equations with those about derivatives

◮ Any modeling of complex systems may give a DAE —
eliminating algebraic eqns may be unnatural/expensive

◮ Ubiquitous in mechanical systems, control, chemical
engineering, electrical circuit modeling, . . .
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“DAEs are not ODEs” (Petzold)

◮ Compare Initial Value Problems (IVPs) for:

0 = x − g(t) ǫ z′ = x − g(t) (g(t) given)

x ′ = y x ′ = y

y ′ = z y ′ = z

◮ For any ǫ 6= 0, system on right is an ODE, with 3 degrees
of freedom (DOF)—needs 3 IVs for unique solution

◮ System on left has zero DOF—unique solution

x = g(t), y = g′(t), z = g′′(t)

◮ Funny features of DAE
◮ Cause-effect reversal
◮ Solution can be less smooth than driving function, instead

of smoother
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DAETS is a new kind of DAE solver

◮ Excellent at high-index DAEs
◮ Excellent for getting high accuracy
◮ Returns useful data about structure of problem
◮ Doesn’t compete on speed at moderate accuracies
◮ . . . or on handling very large problems
◮ Infrastructure: FADBAD++, IPOPT
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DAETS solves DAEs by Taylor series expansion

◮ DAETS (Differential Algebraic Equations by Taylor Series)
solves DAE initial value problems, for state variables
xj(t), j = 1, . . . , n, of the general form

fi( t , the xj and derivatives of them ) = 0, i = 1, . . . , n

◮ Can be fully implicit
◮ d/dt can appear anywhere in the expressions for fi
◮ e.g. one of the equations could be

(

(x ′

1 sin t)′
)2

1 + (x ′

2)
2 + t2 cos x2 = 0
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DAETS solves high index problems

◮ Index ν measures how “hard” DAE is to solve
◮ For traditional methods, ν ≥ 3 considered hard
◮ DAETS based on structural analysis of DAE + automatic

differentiation, so in principle unaffected by index
◮ Have solved artificial problems up to ν = 47

(Any physical sense? . . . is another matter)
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Numerical method summary

◮ Start with code for the fi that define the DAE
◮ Use AD (FADBAD++ package) to evaluate suitable

derivatives f (r)
i =

dr fi
dt r at given t = tr

◮ For each step:
◮ Equate these to zero “in batches” to get Taylor

coefficients of (vector) solution x(t) at current (tr−1, xr−1)

◮ Sum Taylor series to get approximation xr at tr = tr−1 + h
◮ Project this xr on DAE’s constraints to get a consistent xr

◮ Repeat, to step along range in usual way
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Numerical method, cont

◮ Before all this, do Structural Analysis:
preprocess the DAE code to find the 2n integer offsets,
one for each variable, one for each equation

◮ These prescribe the “batches” in the overall process of
solving for TCs

◮ They imply the Initial Values data is not a flat vector unlike
with most DAE solvers

◮ Following example illustrates
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The notorious simple pendulum

Index 3 system with equations

0 = f = x ′′ + xλ

0 = g = y ′′ + yλ − G G = gravity

0 = h = x2 + y2 − L2 L = length of pendulum.

State variables x(t), y(t), λ(t)

Item x y λ f g h
Offset 2 2 0 0 0 2
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User needs offsets to understand IVs

◮ Offsets tell what initial values should be provided

◮ Offsets x y λ
2 2 0

mean that IVs comprise values for x , x ′; y , y ′

x x ′

y y ′

◮ Except when DAETS sees DAE is non-linear
in leading derivatives (here x ′′, y ′′, λ) it re-
quires an extra set of derivatives
E.g. if first equation were 0 = (x ′′)3+xλ then
IVs must comprise x , x ′, x ′′; y , y ′, y ′′; λ

x x ′ x ′′

y y ′ y ′′

λ

◮ Reason: to assure local uniqueness of solution
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User needs offsets to understand constraints
Offsets tell what constraints the provided IVs must meet for
consistency

Offsets f g h
0 0 2

mean they must satisfy

in the linear case,
h, h′ = 0:

0 = h = x2 + y2 − L2

0 = h′ = 2xx ′ + 2yy ′

in the non-linear case
f ; g; h, h′, h′′ = 0,
so in our example, add these:

0 = f = (x ′′)3 + xλ

0 = g = y ′′ + yλ − G

0 = h′′ = 2(xx ′′ + (x ′)2 + yy ′′ + (y ′)2)
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Finding consistent point

◮ Solution x(t) must satisfy algebraic constraints for all t to
be consistent

◮ Constraint can be obvious, as (for Pendulum) h = 0,
or hidden, as h′ = 0

◮ Finding initial consistent point can be hardest part of
solving DAE

◮ Not built in to most solvers.
Often, user has only a poor guess of required values

◮ But fits naturally into DAETS workflow.
We formulate it as a nonlinear minimisation problem
and give it to IPOPT package
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Numerical results

◮ Accuracy comparisons on a standard test problem
◮ DAETS on a High-index problem
◮ Efficiency comparisons
◮ DAETS on a Continuation problem
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Plots of accuracy vs. tolerance

◮ Problem is Transistor Amplifier from Test Set for Initial
Value Problem Solvers, Bari University, Italy

◮ Index 1 DAE of size n = 8
◮ “DAETS”, “RADAU”, “DASSL” curves compare with

reference solution (at end of range) in Test Set
documentation

◮ “DAETS-2” curve uses reference solution computed by
DAETS with tol= 10−16

◮ We plot “Significant Correct Digits” SCD

= − log10 ‖componentwise relative error at end of integration‖

as a function of tolerance
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Plots of accuracy vs. tolerance
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Comments on this experiment

◮ Even though only index-1, this problem is too much for
DASSL at tolerances below 10−10

◮ RADAU gets another 2 orders of accuracy, and DAETS
probably another 3 orders beyond that

◮ Difference between DAETS and DAETS-2 curves shows
DAETS’s “reference solution” is better than Test Set’s one
(computed by PSIDE solver on Cray C90 in double
precision, machine epsilon = 0.25e-28)
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“Multi-pendula” — a class of high-index problems

◮ System is a “chain” of P simple pendula with coupling
◮ Pendulum 1 is as normal
◮ Tension in pendulum (p−1) has a small effect on length of

pendulum p, for p = 2, . . . , P
◮ For P = 2

0 = x ′′

1 + λ1x1

0 = y ′′

1 + λ1y1 − G

0 = x2
1 + y2

1 − L2

and

0 = x ′′

2 + λ2x2

0 = y ′′

2 + λ2y2 − G

0 = x2
2 + y2

2 − (L + cλ1)
2

where c is a constant. (λ is essentially tension.)
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Multi-pendula are high-index and chaotic

◮ Chain of length P has size n = 3P and index 2P + 1
◮ Not surprisingly shows chaotic behaviour for all P ≥ 2
◮ DAETS has solved system for P up to 23 giving index 47.
◮ Here are sample solutions for x7(t) (P = 7, index 15)

with two slightly differing sets of IVs
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Multi-pendula plot
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Multi-pendula plot
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Exponential divergence of nearby solutions suggests chaos
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Efficiency experiments

◮ For problems from ODE/DAE Test Set, plot CPU time vs.
Significant Correct Digits SCD (defined above)

◮ Problems are
◮ Car axis: index-3 DAE, n = 10;
◮ Transistor amplifier: index-1 DAE, n = 8;
◮ Chemical Akzo Nobel: index-1 DAE, n = 6;
◮ HIRES: ODE, n = 8.

◮ Compare with DASSL and RADAU solvers
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Efficiency: Work-Precision diagrams
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Comments on work-precision data

These are work-precision diagrams as described in ODE/DAE
Test Set for DAETS, DASSL, and RADAU on four problems.

◮ DASSL, RADAU much faster for low to medium precision
◮ Car axis (high index): DAETS keeps going up to 13 correct

digits while DASSL & RADAU can only give about 5.
Power of AD!

◮ HIRES: Weird behaviour for DAETS. Much more expensive
than the others, BUT tighter tolerance means less work.
Why?
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Continuation problems

◮ No need for derivatives actually to be present — can solve
n purely algebraic equations

f(λ, x) = 0

to find x = (x1, . . . , xn) as a function of λ

◮ To handle turning points, best use arc-length continuation.
Treat λ and the xi as all on same footing, define Euclidean
arc-length s by

(dλ/ds)2 + (dx1/ds)2 + . . . + (dxn/ds)2 = 1,

and find (λ, x) as function of s
◮ Gives an index 1 DAE of size n + 1
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Continuation is difficult

◮ Difficulty in typical applications is path tracking failure.
◮ Illustrate with problem from Layne Watson (1979).

Solve g(x) = x (find fixed point) for g = (g1, . . . , gn) where

gi(x) = gi(x1, . . . , xn) = exp(cos(i
n

∑

k=1

xk )), i = 1, . . . , n.

◮ Many solutions. Hard for even n around 10.
◮ Formulate as

0 = f(λ, x) = x − λg(x)

and “continue” from λ = 0 (trivial solution)
to λ = 1 (what we want to solve) using arc-length.
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Two components of Layne Watson curve for n = 10
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◮ Lots of turning points!
◮ Tracking failure is serious problem if step size h unlimited.

Restricting h ≤ 0.3 cured it.
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How to improve the structural analysis

Chemical Akzo Nobel problem is an index-1 DAE with 6
variables and equations
Here is the solution scheme DAETS reports at present

>> showstruct(spsigmx(’chemakzo’));
Stage -1:

Solve nothing
after giving IVs for x1 x2 x3 x4 x5

Stage 0:
Solve f1 f2 f3 f4 f5 f6

after giving IVs for x1’ x2’ x3’ x4’ x5’ x6

. . . and so on, giving a complete scheme for generating Taylor
coefficients
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Improving the structural analysis
Dulmage Mendelsohn re-orders a matrix to block triangular
It can drastically reduce the size of the equations to solve:

>> showstruct(spsigmx(’chemakzo’));
Stage -1:

Solve nothing after giving IVs for x1 x2 x3 x4 x5
Stage 0:

Solve f6 automatically for x6
Solve f5 after giving IVs for x5’
Solve f4 automatically for x4’
Solve f3 automatically for x3’
Solve f2 after giving IVs for x2’
Solve f1 automatically for x1’

Result: one nonlinear system of size 6 × 6 has become
◮ 4×linear systems of size 1 × 1, and
◮ 2×nonlinear systems of size 1 × 1
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The same data in graphic form
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Summary

◮ We now have a robust DAE code based on Structural
Analysis theory that I began, with George Corliss, in 1996

◮ Excellent for high index and high accuracy
and giving you information about DAE structure

◮ Current state:
◮ Paper “Solving DAEs by Taylor Series III: the DAETS code”

accepted by JNAIAM Jan 2008
◮ User Guide: final touches May 2008
◮ Distribution: Free demo version, ≤ 8 variables: from Ned.

Commercial version: from Canada’s Flintbox innovation
portal. Licence levels $199, $399, $599
Binary library plus C++ header files.

◮ Thanks to Ned Nedialkov as main software architect
— he has lots yet to do
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Example: simple pendulum—code for function

#include "DAEsolver.h"

template <typename T>
void fcn(int n, T t, const T *z, T *f, void *p) {

const double g = 9.8, L = 10.0;
// z[0], z[1], z[2] are x, y, lambda.

f[0] = Diff(z[0],2) + z[0]*z[2];
f[1] = Diff(z[1],2) + z[1]*z[2] - g;
f[2] = sqr (z[0]) + sqr(z[1]) - sqr(L);

}
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Example: simple pendulum—main program

int main() {
const int n = 3; // size of the problem
DAEsolver Solver(n, DAE_FCN(fcn)); // create a solver + analyse DAE
Solver.printDAEinfo(); // print info about the DAE
Solver.printDAEpointStructure(); // .. and more info
DAEsolution x(Solver); // create a DAE solution object
x.setT(0.0); // initial value of t
x.setX(0, 0,-1.0).setX(0, 1, 0.0); // .. and of x and x’
x.setX(1, 0, 0.0).setX(1, 1, 1.0); // .. and of y and y’
double tend = 100.0;
DAEexitflag flag;
Solver.integrate(x, tend, flag); // integrate until tend
if (flag!=success)

printDAEexitflag(flag); // check the exit flag
x.printSolution(); // print solution
x.printStats(); // print integration statistics
return 0;

}
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Pendulum output

johnpryce> pendulum
SIGNATURE MATRIX & OFFSETS:

0 1 2 |c_i
|------------------

0| 2 - 0* | 0
1| - 2* 0 | 0
2| 0* 0 - | 2
|------------------

d_j| 2 2 0

DAE
size..................3
index ................3
LINEAR

Initial values must be given for:
variable derivatives

0 0 1
1 0 1
-
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Pendulum output

t = 1.000000e+02
x x’ x’’

-------------------------------------------------
0 8.037130e+00 6.453216e+00 -1.414013e+01
1 5.950171e+00 -8.716614e+00 -6.684351e-01
2 1.759350e+00

CPU TIME (sec)...........0.0527
NO STEPS.................388

accepted..............388
rejected..............0 * 0.00%

STEPSIZES
smallest..............0.02
largest ..............0.35

ORDER OF TAYLOR SERIES...15
TOLERANCE

relative..............1.0e-12
absolute..............1.0e-12
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