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Smooth Dynamical Systems and Orbits

Let (f ,X ) be a smooth dynamical system.

That is, X is a C∞ manifold, and
f : X → X is a C r surjective map (endomorphism) or a

C r diffeomorphism. (automorphism) r ≥ 1

We are interested in studying the orbit structure of f .
That is, the properties of the sets

O+(x) = {x , f (x), f (f (x)), . . . , f n(x)} (endomorphism)

O(x) = O+(x)
⋃

O+(f −1x) (automorphism)
for typical x ∈ X

Also, invariant sets: unions of orbits
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First Questions

In this lecture: X = R, R2,T2 = R2/Z2

Typical questions:

What is the structure of the closure of the set of periodic orbits? e.g.
What is its topology, Lebesgue measure, Hausdorff dimension ?

Periodic point: f τ (p) = p for some positive integer τ > 0; fixed
point: τ = 1.

How often do attracting periodic orbits (sinks) exist?

∃ open U with O(p) ⊂ U and
x ∈ U=⇒f n(x) → O(p) as n →∞

Can one describe the orbit behavior of points starting in a set of
positive (full) Lebesgue measure?
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The Logistic and Henon Families and Area Preserving
Maps

We will discuss three types of maps.

The logistic family: fr (x) = r x(1− x) x ∈ R, r ∈ R.
important recent progress
provides a model for other developments

Area Decreasing maps of the plane
Important for study of damped periodically forced oscillations
Focus on the Henon family

Ha,b(x , y) = (1 + y − a ∗ x2, b ∗ x), b 6= 0

Area Preserving maps of the 2-torus
Important for Hamiltonian Systems with two degrees of freedom
The restricted 3-body problem
Focus on The Chirikov Standard Map:

Tr (x , y) = (2 x − y + r sin(2πx), x) mod 1
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The logistic family: x → r ∗ x(1− x)

Consider the one-parameter family of maps
fr (x) = rx(1− x) where r > 0, and x ∈ R.

Studied by many people, including: Jakobson, Misiurewicz, Graczyk,
Swiatek, Lyubich, Van Strien, de Melo, and others.

Let B = {x : O+(x) is bounded }. (set of bounded orbits)

What is the structure of B? – depends heavily on r .
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Structural Stability

To discuss recent progress on the logistic family, it is useful to recall the
notion of structural stability
Two maps f : X → X , g : Y → Y are toplogically conjugate if there is a
homeomorphism h : X → Y such that

hf = gh, hfh−1 = g

Topologically conjugate maps have the same dynamical properties.

f is structurally stable if there is a neighborhood N of f (in an
appropriate topology) such that each g ∈ A is topologically conjugate
to f .

The dynamics of a structurally stable map are persistent

there is a complete description of the orbit structure of structurally
stable systems

C 1-topology –diffeomorphisms (vector fields) on any manifold
C r -topology for maps of a real interval
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Bounded orbits for x → 5 ∗ x ∗ (1− x)

r > 4=⇒B is a Cantor set, meas(B) = 0
Periodic points are dense in B
2 fixed points (p0, p1) = (1, 1− 1

r )
B = Closure(

⋃
n≥0 f −n(1))

0 < HD(B) < 1, HD(B) → 1 as r ↓ 4

Figure: First 3 iterates in [0, 1] of x → 5 ∗ x ∗ (1− x)
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Bifurcation Diagram of The Logistic Family:
x → r ∗ x(1− x)

r > 4=⇒B is a Cantor set, meas(B) = 0

if 0 ≤ r < 4, we have the following picture obtained by iterating the
orbits of a single point

3 ≤ r ≤ 4, downward

0 ≤ x ≤ 1 to the right

holes=sinks

piecewise solid lines = acim
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Lyubich Theorem

The Gaps are not accidental

Theorem (Graczyk-Swiatek, Lyubich) The set of r ′s such that fr is
structurally stable is is dense and open in [0,4]. For each such r , Lebesgue
almost all points x tend to a single periodic attracting point.

Theorem A logistic map fr is structurally stable if and only if it has a
single hyperbolic periodic attracting point and the forward orbit of the
critical point does not land on that attracting periodic point.
Remark: This gives verifiable conditions for structural stability.
Question: What is the measure of the set of r ′s for which fr has a
hyperbolic periodic attracting point?
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Lyubich Theorem

Theorem (Lyubich) There is a set Ar of full Lebesgue measure in (0, 4]
such that if r ∈ A, then either fr is structurally stable or fr has an invariant
probability measure which is absolutely continuous with respect to
Lebesgue measure on [0, 1].
In the case of an absolutely continuous invariant measure (acim), almost
all orbits tend to be disprersed in a stochastic way. The orbit structure can
still be described using symbolic dynanimcs.
Thus, with probability one in the parameter space, one knows the orbit
structure.
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Kozlovski-Shen-Van Strien Theorem

Recent Major Theorem: Extends part of the above result to polynomials
in one variable of degree > 1

Let I be a closed interval in the real line, and let Pd(I ) be the set of
polynomials f of degree d > 1 which map I into I with the coefficient
topology.
Theorem: (KSV) The set of structurally stable elements in Pd(I ) is dense
and open in Pd(I ). For each such map, there is a finite set Λ of attracting
periodic orbits in I such that⋃

p∈Λ

W s(O(p)) is dense in I .
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The Henon Family (x , y) → (a − x2 + b y , x)

This is a two-parameter family of diffeomorphisms of the plane

Ha,b(x , y) = (a− x2 + b y , x), b 6= 0
(or Ha,b(x , y) = (1 + y − a ∗ x2, b ∗ x))

polynomial diffeomorphism of the plane

H−1(x , y) = (y , −1
b (a− y2 − x))

−b = Jacobian determinant

usual values: a = 1.4, b = 0.3

As a first step, we can try numerical investigation
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H = Ha,b, a = 1.4, b = 0.3
Numerically: there is an open set U ⊂ R2 (trapping region) such that

H(U) ⊂ U⋂
n≥0 Hn(U) = Λ, x ∈ U=⇒Hn(x) → Λ

Λ is compact, H(Λ) = Λ, 1 < HD(Λ) < 3/2

H | Λ is topologically transitive (i.e., has a dense orbit)

Known (Benedicks-Carleson) for 0 < b << e−50, there is a positive
measure set of a′s for which these are true. Also true with
0 < | b | << e−50 (Mora-Viana, Wang-Young)
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The Chirikov Family

This is a one parameter family of area preserving maps on T2.
Arose in physical problem known as the kicked rotor
One form:

Tr (x , y) = (2 x − y + r sin(2πx), x) mod 1, r > 0

Observe, inverse map:

T−1
r (x , y) = (y , 2 y − x + r sin(2πy)) mod 1

(T−1
r = RTrR where R(x , y) = (y , x))

Another form: (after a linear change of coordinates)

Sr (x , y) = (x + y , y + r sin(2π(x + y)) mod 1, r > 0

Main Problem: Is there an invariant topologically transitive set
with positive Lebesgue measure?
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The Standard Map
(x , y) → (x + y , y + r sin(x + y)) mod 1

The Standard Map: Numerical investigation with r = 1
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The Standard Map
(x , y) → (x + y(mod1), y + r sin(x + y))

The Standard Map
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Recent results of Gorodetski and Kaloshin:

Theorem. There are uncountable many values of r such that Tr has a
compact topologically transitive Λ set of maximal Hausdorff dimension.
The periodic orbits (of saddle type) are dense in Λ

Application to planar restricted 3-body problem (also due to Gorodetski
and Kaloshin):

Theorem. There are uncountably many mass ratios in the planar
restricted three body problem for which the set of oscillatory motions has
maximal Hausdorff dimension
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Stable and Unstable Manifolds

The above phenomena are related to

stable and unstable sets (manifolds)
of a finite set of periodic orbits and associated homoclinic points.

A periodic point p, with f τ (p) = p is hyperbolic if

eigenvalues of Df τ (p) have norm different from 0, 1.

three types of hyperbolic periodic points

repelling: eigenvalues of norm > 1
attracting (sink): eigenvalues of norm < 1
saddle: eigenvalues λ, µ, 0 < | λ | < 1 < | µ |

W s(p) = {x ∈ X : d(f n(x), f n(p)) → 0, n →∞}
W u(p) = {x ∈ X : d(f n(x), f n(p)) → 0, n → −∞}
( diffeomorphism )

repelling: W s(p) = point, W u(p) = open set
attracting: W u(p) = point, W s(p) = open set
saddle W u(p),W s(p) injectively immersed C r curves.
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Homoclinic Points

Let p be a hyperbolic periodic point with orbit O(p).
A homoclinic point of p is a point q ∈ W u(O(p))

⋂
W s(O(p)) \ O(p).

Two types: transverse and tangent
Let Λ(p) denote the closure of the set of transverse homoclinic points of
p. (homoclinic tangle)
Then,

1 Λ(p) is a closed invariant topologically transitive set with a dense set
of hyperbolic saddle points.

2 f | Λ(p) has positive topological entropy htop(f ) and

Katok:

lim sup
n→∞

1

n
log Nn(f | Λ(p)) ≥ htop(f )

Here: Nn(f | Λ(p) = card(Fix(f n | Λ(p)))
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The Standard Map
(x , y) → (x + y(mod1), y + r sin(x + y))

The Standard Map

Stable and unstable manifolds in Standard Map
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Observations:

(0, 0) is a saddle fixed point with transverse homoclinic points. (not
proved in the literature for this value of r).

the transverse homoclinic points seem to extend far spatially

Current work with M. Berz, K. Makino, J. Grote:
Likely that we can prove that this structure exists and give a lower
bound for the topological entropy.
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Topological Entropy h(f ) of a map f : X → X :
Let n ∈ N, x ∈ X .
An n − orbit O(x , n) is a sequence x , fx , . . . , f n−1x
For ε > 0, the n−orbits O(x , n),O(y , n) are ε−different if there is a
j ∈ [0, n − 1) such that

d(f jx , f jy) > ε

Let r(n, ε, f ) = maximum number of ε−different n−orbits. (≤ eαn ∃α)
Set

h(ε, f ) = lim sup
n→∞

1

n
log r(n, ε, f )

(entropy of size ε)
and

h(f ) = lim
n→∞

h(ε, f ) = sup
ε>0

h(ε, f )

(topological entropy of f ) [ε small =⇒ f has ∼ eh(f )n ε− different orbits]
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Properties of Topological Entropy

Dynamical Invariant: f ∼ g=⇒h(f ) = h(g)

Monotonicity of sets and maps:

Λ ⊂ X , f (Λ) ⊂ Λ,=⇒h(f,Λ) ≤ h(f )
(g ,Y ) a factor of f : ∃π : X → Y with gπ = πf =⇒h(f ) ≥ h(g)

Power property: h(f n) = nh(f ) for N ∈ N.
h(f t) = | t |h(f 1) for flows

f : M → M C∞ map =⇒
h(f ) = maximum volume growth of smooth disks in M

h : D∞(M2) → R is continuous (in general usc for C∞ maps)

Variational Principle:

h(f ) = sup
µ∈M(f )

hµ(f )
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Examples of Calculation of Topological Entropy

Topological Markov Chains TMC (subshifts of finite type SFT)
First, the full N − shift:
Let J = {1, . . . ,N} be the first N integers, and let

ΣN = JZ = {a = (. . . , a−1a0a1 . . .), ai ∈ J}

with metric

d(a,b) =
∑
i∈Z

| ai − bi |
2| i |

This is a compact zero dimensional space (homeomorphic to a Cantor set)
Define the left shift by

σ(a)i = ai+1

This is a homeomorphism and h(σ) = log N.
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Let A be an N × N 0-1 matrix and consider

ΣA = {a ∈ ΣN : Aaiai+1 = 1 ∀i}

Then, σ(ΣA) = ΣA and (σ, ΣA) is a TMC.
One has

h(σ, ΣA) = log sp(A) (sp(A) : spectral radius of A)

Definition. A subshift of f is an invariant subset Λ such that
(f ,Λ) ∼ (σ, ΣA) for some 0-1 matrix A.

Theorem. (Katok) Let f : M2 → M2 be a C 2 diffeomorphism of a
compact surface with h(f ) > 0. Then,

h(f ) = sup
subshifts Λ of f

h(f ,Λ).

So, to estimate entropy on surfaces, we should look for subshifts
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Length Growth of f on Λ

I = [0, 1] = closed unit real interval.
Let γ : I → M be a C∞ map (i.e. smooth curve in M)
For any measurable subset E ⊂ I , and m = Lebesgue measure on I , set

| γ | E | =
∫

E
| Dγ(t) |)dm(t)

This is the arclength of γ restricted to E .
For a diffeomorphism f : M → M, an open neighborhood U of Λ, a curve
γ : I → U, and n ∈ N, let

E = En,γ,f ,U = {t ∈ I : f j ◦ γ(t) ∈ U ∀0 ≤ j < n}

| γ |n,U,f = | f n−1 ◦ γ | E |

G (γ, f ,U) = lim supn→∞
1
n log+ | γ |n,U,f .

G (f ,Λ) = infU⊃Λ supγ G (γ, f ,U).
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Entropy and Arclength, Subshift Entropy

Theorem(S.N.-Yomdin) For a C∞ surface diffeomorphism and compact
invariant set Λ, one has

h(f ,Λ) = G (f ,Λ) = maximal length growth of smooth curves

Theorem(S.N.) If f is an area decreasing C∞ diffeomorphism of a
compact two manifold M with boundary ∂M, then

h(f ) = G (∂M, f ).

Theorem(Katok)For a C 1+α surface diffeomorphism with compact
invariant set Λ,

h(f ) = sup
subshifts Λ1⊂Λ

h(f ,Λ1)
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Fact: For a polynomial diffeomorphism H(x , y) = (P(x , y),Q(x , y)) with
max(deg(P), deg(Q)) ≤ d , and any compact invariant set Λ,

h(f ,Λ) ≤ log d .

In particular, for the Henon family, H, h(H,Λ) ≤ log 2.
Yomdin upper bound:
f real analytic on square I 2 with complex extension into open set U of
diameter hc , and | Df | U | ≤ L.
Then, for Λ ⊂ I 2 compact, f−invariant,

h(f ,Λ) ≤ h(f , ε, Λ) + Err(ε)

Err(ε) = 4 log L log(log(hc/ε))/ log(hc/ε)
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Numerical Estimation of Entropy on Surfaces:
Henon map with a ≈ 1.4, b ≈ 0.3—Yomdin error not too good for current
software
ε = 10−10, Err ≈ 0.816, ε = 10−16, Err ≈ 0.593,
ε= 10−32,Err ≈ 0.357

Maybe extended precision would make this useful.
h(H) > 0 simply from transverse homoclinic points
Interval arithmetic:
• Galias-Zgliczynski (2001): specific subshifts geometrically via interval

bounds, best lower bound: h(H) > 0.430, via subshift-29 symbols
• attempts to estimate Nn(H) –up to order 30. h(H) ≈ 0.464.
• Day, Frongillo, Trevino (Conley index): h(H) ≥ 0.432
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Galias’ Subshift:

-1.0 0.0 1.0
-0.5

0.0

0.5

Figure 2: Enclosure of the nonwandering part of [−1, 2] ×
[−2, 2]

dynamics is defined. Since the nonwandering part is com-
posed of 8 connected subsets, we choose 8 quadrangles (see
Fig. 3(a)). There are only four covering relations between
these sets. The transition matrix is almost empty and hence
there is no interesting symbolic dynamics on these sets. We
modify the position of the rectangles by hand, so that a large
number of covering relations hold. The improved sets and
their images under the Hénon map are shown in Fig. 3(b).

Finally, we check rigorously the existence of covering re-
lations between the chosen sets. The coverings correspond to
the symbolic dynamics on eight symbols with the following
transition matrix:

A =

























1 1
1 1

1
1

1 1
1
1

1

























. (7)

It follows that the symbolic dynamics with the transition ma-
trix (7) is embedded in h and that the topological entropy of
the Hénon map is bounded by H(h) > 0.382. This is better
than the best estimate known to date (H(h) > 0.338, see [3]).

We have performed several other attempts to find complex
symbolic dynamics for the Hénon map. The largest bound
for the topological entropy H(h) > 0.430 was obtained for
the sets shown in Fig. 3(c). This bound is close to the non-
rigorous estimation of topological entropy based on the num-
ber of low-period cycles H(h) ≈ 0.465 (see [2]).
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Figure 3: (a) Symbolic dynamics on 8 symbols, initial quad-
rangles, (b) Symbolic dynamics on 8 symbols, improved
quadrangles, (c) Symbolic dynamics on 29 symbols

Figure: Galias Subshift with h(H) > 0.430, 29 symbols
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Galias-Zgliczynski periodic table:

930 Z Galias and P Zgliczyński

Table 7. Periodic orbits for the Hénon map belonging to the trapping region. Qn, number of
periodic orbits with period n; Pn, number of fixed points of hn; Hn(h) = n−1 log(Pn), estimation
of topological entropy based on Pn.

n Qn Pn Hn(h)

1 1 1 0.000 00
2 1 3 0.549 31
3 0 1 0.000 00
4 1 7 0.486 48
5 0 1 0.000 00
6 2 15 0.451 34
7 4 29 0.481 04
8 7 63 0.517 89
9 6 55 0.445 26

10 10 103 0.463 47
11 14 155 0.458 49
12 19 247 0.459 12
13 32 417 0.464 08
14 44 647 0.462 31
15 72 1 081 0.465 71
16 102 1 695 0.464 71
17 166 2 823 0.467 39
18 233 4 263 0.464 32
19 364 6 917 0.465 35
20 535 10 807 0.464 40
21 834 17 543 0.465 35
22 1 225 27 107 0.463 98
23 1 930 44 391 0.465 25
24 2 902 69 951 0.464 81
25 4 498 112 451 0.465 21
26 6 806 177 375 0.464 85
27 10 518 284 041 0.465 07
28 16 031 449 519 0.464 85
29 24 740 717 461 0.464 95
30 37 936 1139 275 0.464 86

which were checked by means of interval arithmetic.
Let us consider two covering sequences satisfying conditions (55). They must start at P4

as for the other sets all coverings involve the same iterate. We have to show that coverings
starting with

• P4
h⇒ P4 and P4

h3⇒ P5

are separated. This cannot be done directly because h2(P4) ∩ P5 �= ∅. We consider two
subcases:

• P4
h⇒ P4

h⇒ P4 and P4
h3⇒ P5—separated as dist(h(P4), P5) > 0,

• P4
h⇒ P4

h3⇒ P5 and P4
h3⇒ P5—separated as dist(h(P5), P5) > 0.

From lemmas 5 and 3 it follows that the topological entropy of the Hénon map is

H(h) � log λ > 0.3381. (66)

Figure: Galias Periodic Table
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Comments on Numerical Methods for Computing Invariant
Manifolds

Two dimensional manifolds, one dimensional stable and unstable curves

Graph Transform not generally used: have formula
f2(1, g) ◦ [f1(1, g)]−1. So, need to do an inversion.

You-Kostelich-Yorke Method ( also D. Hobson): compute iterates of
short line segment near unstable eigendirection. Not rigorously
justified in the relevant papers.

Parametrization Method: Goes back to Poincare, Lyapunov, etc.
Francescini-Russo, Gavosto-Fornaess, J. Hubbard, see survey of
Cabré, Fontich, de la Llave JDE: 2005,

Bisection Method, like a newton method, completely rigorous, not
really used in most programs

new implementation using COSY and so-called Taylor models

Remark Using shadowing ideas and volume estimates, all of these can be
made rigorous in the C 0 (i.e., enclosure) sense.
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Test for point x being very close to W s(p).
Let λu ≈ −1.92, λs ≈ 0.15 be the eigenvalues of the right fixed point p.
For ε > 0 be small,

dist(
⋂

0≤k≤n

f −kBε(p) , W s(p)) ≤ C | λu |−n

Shadowing: There is a constant C = C (Lip(f ), Lip(f −1)) such that for
δ << ε small, any numerical δ − precision orbit

x0, x1, . . . , xn−1 in Bε(p)

corresponds to a real orbit

x , f (x), . . . , fn−1(x) in Bε(p)

with

d(x , x0) < C · δ
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— The Parametrization Method(Hubbard)
Strong Unstable Manifold, Global

• f : Cm → Cm analytic, f (0) = 0, spec(Df (0)) = S1
⊔

S2,
• spectral gap: 1 < r2 < r1

S1 ⊂ {z ∈ C : | z | > r1}, S2 ⊂ {z ∈ C : | z | < r2},
• Let Cm = V1 ⊕ V2 be the spectral decomposition of Df (0) with

associated sets S1,S2

Then, ∃ a polynomial diffeomorphism g : Cm → Cm with g(0) = 0 such
that
• g(S1) = S1, γ = limn→∞ f ng−n | V1 exists (uniformly),
• f ◦ γ = γ ◦ g , g(S1) = invariant manifold
• If dim V1 = 1, then g can be taken linear

So, for m = 2, p hyperbolic, Df (p) has eigenvalues | λ1 | > 1 > | λ2 |,
eigenspaces V1,V2, v = unit vector in V1, then
• γ(t) = limn→∞ f n(p + λ−n

1 tv) exists,
is entire, and parametrizes W u(p)
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S = Stable and unstable manifold pieces computed with Hubbard method
for the Henon Map H(x , y) = (1 + y − ax2, bx), a = 1.4, b = 0.3
Curves are plotted points, not line segments
p ≈ (0.63135, .18940) = right fixed point

max{d(H i (z), p), z ∈ S , 15 ≤ i ≤ 25} ∼ 3.8749E − 4

Figure: Numbers are rectangles for the estimation of entropy
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Trellises and Associated Subshifts.
Let f : M → M be a smooth surface diffeomorphism
Let P be finite invariant set of hyperbolic saddle orbits with associated
stable and unstable manifolds W u(p),W s(p), p ∈ P
For each p ∈ P, let W u

1 (p) ⊂ W u(p),W s
1 (p) ⊂ W s(p) be a compact,

connected relative neighborhoods of p in W u(p), W s(p), resp.
Set T u =

⋃
p∈P W u

1 (p),T s =
⋃

p∈P W s
1 (p)

The pair T = (T u,T s) is a Trellis if f (T u) ⊃ T u, f (T s) ⊂ T s

An associated rectangle R for the trellis T = (T u,T s) is the (open)
component of the complement of T u

⋃
T s whose boundary is a Jordan

curve which is an ordered union of exactly four curves Cu
1 ,C s

2 ,Cu
3 ,C s

3 with
Cu

i ⊂ T u, C s
i ⊂ T s .

Set ∂u(R)
def
= Cu

1

⋃
Cu

3 , ∂s(R)
def
= Cs

2

⋃
C s

4
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R
1

R2 R3

R4

p

Figure: A Horseshoe Trellis

Trellises: studied by R. Easton, Garrett Birkhoff
Pieter Collins: Studied relation to Bestvina-Handel, Franks-Misiurewicz
methods for forcing orbits and isotopy classes mod certain periodic orbits
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For a rectangle R with ∂u(R) = Cu
1

⋃
Cu

3 , ∂s(R) = C s
2

⋃
C s

4 , define
an R−u-disk = topological closed 2-disk D with int(D) ⊂ R,

∂D ⊂ W u(p)
⋃

W s(p), and ∂D meeting both parts of ∂s(R).
an R−s-disk in R = topological closed 2-disk D with int(D) ⊂ R,

∂D ⊂ W u(p)
⋃

W s(p), and ∂D meeting both parts of ∂u(R).

Figure: u-disk
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Given a Trellis T , we obtain a SFT as follows.
Let R(T ) denote the collection of all associated rectangles:

R(T ) = {R1,R2, . . . ,Rs}

We say that Ri ≺f Rj if
• f (Ri )

⋂
Rj contains an Rj−u-disk, and

• Ri
⋂

f −1(Rj) contains an Ri−s-disk.
Define the incidence matrix A of the trellis T = 0-1 matrix such that

Aij = 1 iff Ri ≺ Rj . Set (σ, ΣA) = associated SFT.

Theorem Let T be a trellis for C∞ surface diffeomorphism f with
associated SFT (σ, ΣA). Then,

h(f ) ≥ h(σ, ΣA).
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• Idea of Proof: If Ri ≺f Rj and Rj ≺f Rk , then Ri ≺f 2 Rk .

In a word Ri0Ri1 . . .Rik of R ′i s, get pieces of disjoint parts of ∂u(Ri ) whose
f k−images stretch across Rik .

So, get curves whose length growth ≥ h(σ, ΣA).

• Remark. Since R ′i s not disjoint, may not have (σ, ΣA) as a factor.

May have other SFT’s with entropy near h(σ, ΣA) as factors.
Remark. Given rectangles associated with a trellis, we can consider
subcollections of them and first return maps to induce various SFT’s
which give lower bounds for entropy.
Next, we consider some good pieces of W u(p),W s(p) for estimation of
h(H)
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Figure: Stable and unstable pieces in the trellis

Sheldon E.Newhouse (Mathematics MSU) Introduction
February 10, 2006/ Fields Institute 49 /

75



Let p ≈ (0.63135, 18940) = right fixed point of

H(x , y) = (1 + y − 1.4 ∗ x2, 0.3 ∗ x)

Let T = (T u,T s) be the ”first trellis” of H2: i.e., ”D” shaped trellis
containing p for H2.
Using rectangles obtained from the piece of T u and H−jT s , 0 ≤ j ≤ 7, we
constructed the 14x14 matrix A whose entries are 0’s, 1’s, 2’s which
corresponds to above figure.
The first return times to D are given in the vector

r1 = [2, 2, 2, 2, 5, 5, 6, 5, 2, 2, 6, 7, 6, 6]

Using this, we obtain an associated 58x58 incidence matrix A1 (i.e.,
adding images up to the returns and getting rid of the 2’s), so that the
associated SFT (σ, ΣA1) has entropy

h(H) ≥ h(σ, ΣA1) ≈ 0.46469926019046 ≈ 0.4647

Here the ≈ means up to the numerical calculation of the spectral radius of
A1
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Galias-Zgliczynski periodic table:

930 Z Galias and P Zgliczyński

Table 7. Periodic orbits for the Hénon map belonging to the trapping region. Qn, number of
periodic orbits with period n; Pn, number of fixed points of hn; Hn(h) = n−1 log(Pn), estimation
of topological entropy based on Pn.

n Qn Pn Hn(h)

1 1 1 0.000 00
2 1 3 0.549 31
3 0 1 0.000 00
4 1 7 0.486 48
5 0 1 0.000 00
6 2 15 0.451 34
7 4 29 0.481 04
8 7 63 0.517 89
9 6 55 0.445 26

10 10 103 0.463 47
11 14 155 0.458 49
12 19 247 0.459 12
13 32 417 0.464 08
14 44 647 0.462 31
15 72 1 081 0.465 71
16 102 1 695 0.464 71
17 166 2 823 0.467 39
18 233 4 263 0.464 32
19 364 6 917 0.465 35
20 535 10 807 0.464 40
21 834 17 543 0.465 35
22 1 225 27 107 0.463 98
23 1 930 44 391 0.465 25
24 2 902 69 951 0.464 81
25 4 498 112 451 0.465 21
26 6 806 177 375 0.464 85
27 10 518 284 041 0.465 07
28 16 031 449 519 0.464 85
29 24 740 717 461 0.464 95
30 37 936 1139 275 0.464 86

which were checked by means of interval arithmetic.
Let us consider two covering sequences satisfying conditions (55). They must start at P4

as for the other sets all coverings involve the same iterate. We have to show that coverings
starting with

• P4
h⇒ P4 and P4

h3⇒ P5

are separated. This cannot be done directly because h2(P4) ∩ P5 �= ∅. We consider two
subcases:

• P4
h⇒ P4

h⇒ P4 and P4
h3⇒ P5—separated as dist(h(P4), P5) > 0,

• P4
h⇒ P4

h3⇒ P5 and P4
h3⇒ P5—separated as dist(h(P5), P5) > 0.

From lemmas 5 and 3 it follows that the topological entropy of the Hénon map is

H(h) � log λ > 0.3381. (66)

Figure: Galias Periodic Table
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Here is the 14× 14 matrix and return vector giving h ≥ 0.4647
Matrix A:

A =



1 1 1 1 1 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 2 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 1
2 2 2 2 2 0 0 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0


Return vector r1 = [2, 2, 2, 2, 5, 5, 6, 5, 2, 2, 6, 7, 6, 6]
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Here is the 14× 14 matrix and return vector giving h ≥ 0.4647
Matrix A:

A =



1 1 1 1 1 1 · · · · 1 1 · ·
· · · · · · · 1 · · · · 1 ·
· · · · · · · · 1 · · · · ·
· · · · · · · · · 1 · · · ·
1 1 2 · · · · · · · · · · ·
1 1 · · · · · · · · · · · ·
1 · · · · · · · · · · · · ·
2 2 2 · · · · · · · · · · ·
· · · · · · · · 1 1 · · · ·
1 1 1 1 1 1 1 1 · · · · · 1
2 2 2 2 2 · · · · · · · · ·
2 2 2 · · · · · · · · · · ·
2 2 2 2 2 · · · · · · · · ·
1 · · · · · · · · · · · · ·


Return vector r1 = [2, 2, 2, 2, 5, 5, 6, 5, 2, 2, 6, 7, 6, 6]
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Geometric Verification of the return matrix A

Figure: 2nd image of rectangle R1, 1 → 1, 2, 3, 4, 5, 6, 11, 12
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Geometric Verification of the return matrix A

Figure: 2nd image of rectangle R2, 2 → 13, 8
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Geometric Verification of the return matrix A

Figure: 2nd image of rectangle R3, 3 → 9

Sheldon E.Newhouse (Mathematics MSU) Introduction
February 10, 2006/ Fields Institute 56 /

75



Geometric Verification of the return matrix A

Figure: 2nd image of rectangle R4, 4 → 10
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Geometric Verification of the return matrix A

Figure: 5th image of rectangle R5, 5 → 1, 2, 3(2)
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Geometric Verification of the return matrix A

Figure: 5th image of rectangle R6, 6 → 1, 2
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Geometric Verification of the return matrix A

Figure: 6th image of rectangle R7, 7 → 1
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Geometric Verification of the return matrix A

Figure: 5th image of rectangle R8, 8 → 1, 2, 3 (all 2′s)
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Geometric Verification of the return matrix A

Figure: 2nd image of rectangle R9, 9 → 9, 10
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Geometric Verification of the return matrix A

Figure: 2nd image of rectangle R10, 10 → 1, 2, 3, 4, 5, 6, 7, 8, 14
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Geometric Verification of the return matrix A

Figure: 6th image of rectangle R11, 11 → 1, 2, 3, 4, 5 (all 2′s)
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Geometric Verification of the return matrix A

Figure: 7th image of rectangle R12, 12 → 1, 2, 3 (all 2′s)

Sheldon E.Newhouse (Mathematics MSU) Introduction
February 10, 2006/ Fields Institute 65 /

75



Geometric Verification of the return matrix A

Figure: 6th image of rectangle R13, 13 → 1, 2, 3, 4, 5 (all 2′s)

Sheldon E.Newhouse (Mathematics MSU) Introduction
February 10, 2006/ Fields Institute 66 /

75



Geometric Verification of the return matrix A

Figure: 6th image of rectangle R14, 14 → 1
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Some good trellises

Some good trellises rigorously computed with COSY
joint with M. Berz, K. Makino, J. Grote (Phys, MSU)

Figure: 7th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 8th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 9th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 10th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 11th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 12th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: 13th backward interate of stable manifold
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Some good trellises

joint with M. Berz, K. Makino, J. Grote (Phys, MSU)
Rigorous computation of stable and unstable manifolds with COSY.

Figure: with longer piece of W u
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