Recent Advances in the Rigorous Integration of Flows of ODEs with Taylor Models

Kyoko Makino and Martin Berz

Department of Physics and Astronomy
Michigan State University

Outline

1. Review of the old version of COSY-VI
2. The Reference Trajectory and the Flow Operator
3. Step Size Control
4. Error Parametrization of Taylor Models
5. Dynamic Domain Decomposition
6. Examples

To transport a large phase space volume with validation,

Over Estimation has to be controlled.

Review of the Old Version of COSY-VI

Version 2 (2004)

Key Features and Algorithms of COSY-VI

- High order expansion not only in time t but also in transversal variables \vec{x}.
- Capability of weighted order computation, allowing to suppress the expansion order in transversal variables \vec{x}.
- Shrink wrapping algorithm including blunting to control ill-conditioned cases.
- Pre-conditioning algorithms based on the Curvilinear, QR decomposition, and blunting pre-conditioners.
- Resulting data is available in various levels including graphics output.

The Volterra Equation

Describe dynamics of two conflicting populations

$$
\frac{d x_{1}}{d t}=2 x_{1}\left(1-x_{2}\right), \quad \frac{d x_{2}}{d t}=-x_{2}\left(1-x_{1}\right)
$$

Interested in initial condition

$$
x_{01} \in 1+[-0.05,0.05], \quad x_{02} \in 3+[-0.05,0.05] \quad \text { at } t=0 .
$$

Satisfies constraint condition

$$
C\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} e^{-x_{1}-2 x_{2}}=\mathrm{Constant}
$$

Integration of the Volterra eq. COSY-VI and AWA

2 Rössler equations

The Rössler equations are given by

$$
\begin{align*}
x^{\prime} & =-(y+z) \\
y^{\prime} & =x+0.2 y \tag{4}\\
z^{\prime} & =0.2+z(x-a)
\end{align*}
$$

where a is a real parameter. We focus here at the value of $a=5.7$, where numerical simulations suggest an existence of a strange attractor.

On section $x=0$ we consider the following initial condition $(y, z) \in(-8.38095,0.0295902)+$ $[-\delta, \delta]^{2}$, where δ should be considerably larger than 10^{-3}. The integration time should be around $T=6$.

AWA Integration of the Roessler eqs.

COSY-VI Integration of the Roessler eqs.

AWA Integration of the Roessler eqs.

COSY-VI Integration of the Roessler eqs.

The Henon Map

Henon Map: frequently used elementary example that exhibits many of the well-known effects of nonlinear dynamics, including chaos, periodic fixed points, islands and symplectic motion. The dynamics is two-dimensional, and given by

$$
\begin{aligned}
& x_{n+1}=1-\alpha x_{n}^{2}+y_{n} \\
& y_{n+1}=\beta x_{n} .
\end{aligned}
$$

It can easily be seen that the motion is area preserving for $|\beta|=1$. We consider

$$
\alpha=2.4 \text { and } \beta=-1,
$$

and concentrate on initial boxes of the from $\left(x_{0}, y_{0}\right) \in(0.4,-0.4)+[-d, d]^{2}$.

Henon system, $x n=1-2.4^{\star} x^{\wedge} \mathbf{2}+y, y n=-x$, the positions at each step

Henon system, $\mathrm{xn}=1-2.4^{\star} \mathbf{x}^{\wedge} 2+\mathrm{y}, \mathrm{yn}=-\mathrm{x}$, corner points $(+-0.01)$ the first 5 steps

Henon system, $x n=1-2.4^{*} x^{\wedge} 2+y, y n=-x$, corner points (+-0.01) the first 120 steps

Henon system, $\mathrm{xn}=\mathbf{1 - 2 . 4 *} \mathbf{x}^{\wedge} \mathbf{2}+\mathrm{y}, \mathrm{yn}=-\mathrm{x}, \mathrm{NO}=1, \mathrm{SW}$

Henon system, $x n=1-2.4^{*} x^{\wedge} \mathbf{2 + y}, y n=-x, N O=20, S W$

Henon system, $x n=1-2.4^{*} x^{\wedge} \mathbf{2 + y}, y n=-x, N O=20, S W$

Review of the New Features

- The Reference Trajectory and the Flow Operator
- Step Size Control
- Error Parametrization of Taylor Models
- Dynamic Domain Decomposition

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

The Reference Trajectory

First Step: Obtain Taylor expansion in time of solution of ODE of center point c, i.e. obtain

$$
c(t)=c_{0}+c_{1} \cdot\left(t-t_{0}\right)+c_{2} \cdot\left(t-t_{0}\right)^{2}+\ldots+c_{n} \cdot\left(t-t_{0}\right)^{n}
$$

Very well known from day one how to do this with automatic differentiation. Rather convenient way: can be done by n iterations of the Picard Operator

$$
c(t)=c_{0}+\int_{0}^{t} f\left(r\left(t^{\prime}\right), t\right) d t^{\prime}
$$

in one-dimensional Taylor arithmetic. Each iteration raises the order by one; so in each iteration i, only need to do Taylor arithmetic in order i. In either way, this step is cheap since it involves only one-dimensional operations.

The Nonlinear Flow

Second Step: The goal is to obtain Taylor expansion in time to order n and initial conditions to order k. Note:

1. This is usually the most expensive step. In the original Taylor model-based algorithm, it is done by n iterations of the Picard Operator in multi-dimensional Taylor arithmetic, where c_{0} is now a polynomial in initial conditions.

2 . The case $k=1$ has been known for a long time. Traditionally solved by setting up ODEs for sensitivities and solving these as before.
3. The case of higher k goes back to Beam Physics (M. Berz, Particle Accelerators 1988)
4. Newest Taylor model arithmetic naturally supports different expansions orders k for initial conditions and n for time.

Goal: Obtain flow with one single evaluation of right hand side.

The Nonlinear Relative ODE

We now develop a better way for second step.
First: introduce new "perturbation" variables \tilde{r} such that

$$
r(t)=c(t)+A \cdot \tilde{r}(t)
$$

The matrix A provides preconditioning. ODE for $\tilde{r}(t)$:

$$
\tilde{r}^{\prime}=A^{-1}\left[f(c(t)+A \cdot \tilde{r}(t))-c^{\prime}(t)\right]
$$

Second: evaluate ODE for \tilde{r}^{\prime} in Taylor arithmetic. Obtain a Taylor expansion of the ODE, i.e.

$$
\tilde{r}^{\prime}=P(\tilde{r}, t)
$$

up to order n in time and k in \tilde{r}. Very important for later use: the polynomial P will have no constant part, i.e.

$$
P(0, t)=0 .
$$

Reminder: The Lie Derivative

Let

$$
r^{\prime}=f(r, t)
$$

be a dynamical system. Let g be a variable in state space, and let us study $g(r(t))$, i.e. along a solution of the ODE. We have

$$
\frac{d}{d t} g(t)=f \cdot \nabla g+\frac{\partial g}{\partial t}
$$

Introducing the Lie Derivative $L_{f}=f \cdot \nabla+\partial / \partial t$, we have

$$
\frac{d^{n}}{d t^{n}} g=L_{f}^{n} g \text { and } g(t) \approx \sum_{i=0}^{n} \frac{\left(t-t_{0}\right)^{i}}{i!} L_{f}^{i} g /_{t=t_{0}}
$$

Differential Algebras on Taylor Polynomial Spaces

Consider space ${ }_{n} D_{v}$ of Taylor polynomials in v variables and order n with truncation multiplication. Formally: introduce equivalence relation on space of smooth functions

$$
f={ }_{n} g
$$

if all derivatives from 0 to n agree at 0 . Class of f is denoted $[f]$. This induces addition, multiplication and scalar multiplication on classes. The resulting structure forms an algebra.

An algebra is a Differential Algebra if there is an operation ∂, called a derivation, that satisfies

$$
\begin{aligned}
\partial(s \cdot a+t \cdot b) & =s \cdot \partial a+t \cdot \partial b \text { and } \\
\partial(a \cdot b) & =a \cdot(\partial b)+(\partial a) \cdot b
\end{aligned}
$$

for any vectors a and b and scalars s and t. Unfortunately, the natural partial derivative operations $[f] \rightarrow\left[\partial_{i} f\right]$ does not introduce a differential algebra, because of loss of highest order.

Differential Algebras on Taylor Polynomial Spaces

However, consider the modified operation

$$
\partial_{f} \text { with } \partial_{f} g=f \cdot \nabla g
$$

If f is origin preserving, i.e. $f(0)=0$, then ∂_{f} is a derivation on the space ${ }_{n} D_{v}$. Why?

- Each derivative operation in the gradient ∇g looses the highest order;
- but since $f(0)=0$, the missing order in ∇g does not matter since it does not contribute to the product $f \cdot \nabla g$.

Polynomial Flow from Lie Derivative

Remember the ODE for \tilde{r}^{\prime} :

$$
\tilde{r}^{\prime}=P(\tilde{r}, t)
$$

up to order n in time and k in \tilde{r}. And remember $P(0, t)=0$. Thus we can obtain the n-th order expansion of the flow as

$$
\tilde{r}(t)=\sum_{i=0}^{n} \frac{\left(t-t_{0}\right)^{i}}{i!} \cdot\left(P \cdot \nabla+\frac{\partial}{\partial t}\right)^{i} \tilde{r}_{0} /{ }_{t=t_{0}}
$$

- The fact that $P(0, t)=0$ restores the derivatives lost in ∇
- The fact that $\partial / \partial t$ appears without origin-preserving factor limits the expansion to order n.

Performance of Lie Derivative Flow Methods

Apparently we have the following:

- Each term in the Lie derivative sum requires $v+1$ derivations (very cheap, just re-shuffling of coefficients)
- Each term requires v multiplications
- We need one evaluation of f in ${ }_{n} D_{v}$ (to set up ODE)

Compare this with the conventional algorithm, which requires n evaluations of the function f of the right hand side. Thus, roughly, if the evaluation of f requires more than v multiplications, the new method is more efficient.

- Many practically appearing right hand sides f satisfy this.
- But on the other hand, if the function f does not satisfy this (for example for the linear case), then also P will be simple (in the linear case: P will be linear), and thus less operations appear

Step Size Control

Step size control to maintain approximate error ε in each step.
Based on a suite of tests:

1. Utilize the Reference Orbit. Extrapolate the size of coefficients for estimate of remainder error, scale so that it reaches and get Δt_{1}. Goes back to Moore in 1960s. This is one of conveniences when using Taylor integrators.
2. Utilize the Flow. Compute flow time step with Δt_{1}. Extrapolate the contributions of each order of flow for estimate of remainder error to get update Δt_{2}.
3. Utilize a Correction factor c to account for overestimation in TM arithmetic as $c=\sqrt[n+1]{|R| / \varepsilon}$. Largely a measure of complexity of ODE. Dynamically update the correction factor.
4. Perform verification attempt for $\Delta t_{3}=c \cdot \Delta t_{2}$

Roessler $\mathrm{NO}=18$, (new code: eps=1e-13, old code: $\mathrm{TOL=1e}-9$)

Error Parametrization of Taylor models

Motivation: Is it possible to absorb the remainder error bound intervals of Taylor models into the polynomial parts using additional parameters?

Phrase the question as the following problem:

1. Have Taylor models with 0 remainder error interval, which depend on the independent variables \vec{x} and the parameters $\vec{\alpha}$.

$$
\vec{T}_{0}=\vec{P}_{0}(\vec{x}, \vec{\alpha})+\overrightarrow{[0,0]}
$$

2. Perform Taylor model arithmetic on \vec{T}_{0}, namely $\vec{F}\left(\vec{T}_{0}\right)$

$$
\vec{F}\left(\vec{T}_{0}\right)=\vec{P}(\vec{x}, \vec{\alpha})+\vec{I}_{F}, \text { where } \vec{I}_{F} \neq \overrightarrow{[0,0]}
$$

3. Try to absorb \vec{I}_{F} into the polynomial part that depends on $\vec{\alpha}$

$$
\begin{equation*}
\vec{P}(\vec{x}, \vec{\alpha})+\vec{I}_{F} \subseteq \vec{P}^{\prime}(\vec{x}, \vec{\alpha})+\overrightarrow{[0,0]} \tag{A}
\end{equation*}
$$

Observe

$$
\vec{P}(\vec{x}, \vec{\alpha})=\underbrace{\vec{P}(\vec{x}, 0)}_{\vec{\alpha} \text {-indep. }}+\underbrace{\vec{P}(\vec{x}, \vec{\alpha})-\vec{P}(\vec{x}, 0)}_{\vec{\alpha} \text {-dependent }}=\vec{P}(\vec{x}, 0)+\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})
$$

The size of $\vec{P}(\vec{x}, 0)$ is much larger than the rest, because the rest is essentially errors. The process of (A) does not alter $\vec{P}(\vec{x}, 0)$, so set the $\vec{\alpha}$-independent part $\vec{P}(\vec{x}, 0)$ aside from the whole process, which helps the numerical stability of the process.

The task is now

$$
\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})+\vec{I}_{F} \subseteq \vec{P}_{\alpha}^{\prime}(\vec{x}, \vec{\alpha})+\overrightarrow{[0,0]} .
$$

We limit $\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})$ to be only linearly dependent on $\vec{\alpha}$.

$$
\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})+\vec{I}_{F}=(\widehat{M}+\widehat{\bar{M}}(\vec{x})) \cdot \vec{\alpha}+\vec{I}_{F}
$$

Express \vec{I}_{F} by the matrix form using additional parameters $\vec{\beta}$

$$
\vec{I}_{F} \subseteq\left(\widehat{I}_{F}+\widehat{\bar{I}}_{F}(\vec{x})\right) \cdot \vec{\beta} .
$$

where $\widehat{\bar{I}}_{F}(\vec{x})=0$ and $\left(\widehat{I}_{F}\right)_{i i}=\left|I_{F i}\right|$.

$$
\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})+\vec{I}_{F} \subseteq(\widehat{M}+\widehat{\bar{M}}(\vec{x})) \cdot \vec{\alpha}+\left(\widehat{I}_{F}+\widehat{\bar{I}}_{F}(\vec{x})\right) \cdot \vec{\beta}
$$

View this as a collection of $2 \cdot v$ column vectors associated to $2 \cdot v$ parameters $\vec{\alpha}$ and $\vec{\beta}$. Recall a matrix, or a collection of v column vectors, represent a parallelepiped. The problem is now to find a set sum of two parallelepipeds.

Psum Algorithm for choosing column vectors

Task: Choose v vectors out of n vectors $\vec{s}_{i}, i=1, \ldots, n, n \geq v$.

1. Choose the longest vector \vec{s}_{k}, and assign it as $\overrightarrow{t_{1}}$. Normalize it as $\vec{e}_{1}=\overrightarrow{t_{1}} /\left|\vec{t}_{1}\right|$.
2. Out of the remaining vectors $\overrightarrow{s_{i}}$, choose the j-th vector $\overrightarrow{t_{j}}=\vec{s}_{k}$ such that

$$
\frac{\left|\vec{s}_{k}\right|^{2}-\sum_{m=1}^{j-1}\left|\vec{s}_{k} \cdot \vec{e}_{m}\right|^{2}}{\left|\vec{s}_{k}\right|^{2 p}}
$$

is largest. Compute \vec{e}_{j}, the orthonormalized vector of \vec{t}_{j} to $\vec{e}_{1}, \ldots, \vec{e}_{j-1}$. (Gram-Schmidt)
3. Repeat the process 2 until $j=v$.

Experimentally, $p=0.5$ is found to be efficient and robust for obtaining a set sum of two parallelepipeds

Psum Algorithm for two parallelepipeds

Task: Obtain a set sum of two parallelepipeds \widehat{M}_{1} and \widehat{M}_{2}.

1. Prepare the basis \widehat{M}_{b} using the Psum algorithm for choosing v column vectors out of $2 \cdot v$ column vectors from \widehat{M}_{1} and \widehat{M}_{2}.
2. Compute conditioned parallelepipeds $\widehat{M}_{b}^{-1} \cdot \widehat{M}_{1}$ and $\widehat{M}_{b}^{-1} \cdot \widehat{M_{2}}$.
3. Confine the conditioned parallelepipeds by bounding them.

$$
\vec{B}_{1}=\operatorname{bound}\left(\widehat{M}_{b}^{-1} \cdot \widehat{M}_{1}\right) \text { and } \vec{B}_{2}=\operatorname{bound}\left(\widehat{M}_{b}^{-1} \cdot \widehat{M}_{2}\right) .
$$

4. Compute the interval sum $\vec{B}=\vec{B}_{1}+\vec{B}_{2} . \vec{B}$ confines the conditioned set sum of the conditioned parallelepipeds.
5. From \vec{B}, set up a parallelepiped as a box $\widehat{B}=\left(\begin{array}{ccc}\left|B_{1}\right| & & 0 \\ & \ddots & \\ 0 & & \left|B_{v}\right|\end{array}\right)$.
6. Compute $\widehat{M_{b}} \cdot \widehat{B}$, which is a set sum of $\widehat{M_{1}}$ and \widehat{M}_{2} under \widehat{M}_{b}.

Psum of Org Parallelpiped ($0.4,0.15$)-(0.2,0.13) and I-box 0.05-0.05

Psum of Org Parallelpiped ($0.4,0.15$)-(0.2,0.13) and I-box 0.07-0.07

Error Absorption

We now chose a favoured collection of v column vectors $\widehat{L}+\widehat{\bar{L}}(\vec{x})$ using the Psum algorithm. Collect the left over v column vectors to $\widehat{E}+\widehat{\widehat{E}}(\vec{x})$. Associate them to $2 \cdot v$ parameters $\vec{\alpha}^{\prime}$ and $\vec{\beta}^{\prime}$.

$$
\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})+\vec{I}_{F} \subseteq(\widehat{L}+\widehat{\bar{L}}(\vec{x})) \cdot \vec{\alpha}^{\prime}+(\widehat{E}+\widehat{E}(\vec{x})) \cdot \vec{\beta}^{\prime}
$$

Since $\vec{\alpha}$ and $\vec{\beta}$ do not appear anymore, we can rename $\vec{\alpha}^{\prime}$ and $\vec{\beta}^{\prime}$ as $\vec{\alpha}$ and $\vec{\beta}$ for the simplicity.

$$
\begin{aligned}
\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})+\vec{I}_{F} & \subseteq(\widehat{L}+\widehat{\bar{L}}(\vec{x})) \cdot \vec{\alpha}+(\widehat{E}+\widehat{\widehat{E}}(\vec{x})) \cdot \vec{\beta} \\
& =\widehat{L} \circ\left[\widehat{L}^{-1} \circ(\widehat{L}+\widehat{\bar{L}}(\vec{x})) \cdot \vec{\alpha}+\widehat{L}^{-1} \circ(\widehat{E}+\widehat{\widehat{E}}(\vec{x})) \cdot \vec{\beta}\right] \\
& \subseteq \widehat{L} \circ\left[\left(\widehat{I}+\widehat{L}^{-1} \circ \widehat{\bar{L}}(\vec{x})\right) \cdot \vec{\alpha}+\widehat{B} \cdot \vec{\beta}\right]
\end{aligned}
$$

where \widehat{B} is a diagonal matrix with the i-th element is $\left|B_{i}\right|$ and $\vec{B}=\operatorname{bound}\left(\widehat{L}^{-1} \circ(\widehat{E}+\widehat{E}(\vec{x})) \cdot \vec{\beta}\right)$.

If the diagonal terms of $\left(\widehat{I}+\widehat{L}^{-1} \circ \widehat{\bar{L}}(\vec{x})\right)$ are positive,

$$
\begin{aligned}
\vec{P}_{\alpha}(\vec{x}, \vec{\alpha})+\vec{I}_{F} & \subseteq \widehat{L} \circ\left[\left(\widehat{I}+\widehat{L}^{-1} \circ \widehat{\widehat{L}}(\vec{x})\right) \cdot \vec{\alpha}+\widehat{B} \cdot \vec{\alpha}\right] \\
& =\widehat{L} \circ\left(\widehat{I}+\widehat{L}^{-1} \circ \widehat{\bar{L}}(\vec{x})\right) \cdot \vec{\alpha}+\widehat{L} \circ \widehat{B} \cdot \vec{\alpha} \\
& =(\widehat{L}+\widehat{\bar{L}}(\vec{x})+\widehat{L} \circ \widehat{B}) \cdot \vec{\alpha} .
\end{aligned}
$$

Note: A modification to use \widehat{A} instead of \widehat{L}, when $\widehat{A} \approx \widehat{L}$, is done easily. This involves bounding of $\widehat{A}^{-1} \circ(\widehat{L}-\widehat{A}) \cdot \vec{\alpha}$ and the diagonal terms to be checked positive are those of $\left(\widehat{I}+\widehat{A}^{-1} \circ \widehat{\bar{L}}(\vec{x})\right)$.
henon (area preserving). Performance Comparison. TM order 13, IC width 4e-3

Cost of Additional Parameters

For a v dimensional system, we need v parameters $\vec{\alpha}$ to absorb Taylor model remainder error bound intervals. The dependence on $\vec{\alpha}$ is limited to linear. So, we use weighted DA. Choose an appropriate weight order w for $\vec{\alpha}$.

- The dependence on $\vec{\alpha}$ has to be kept linear. Namely $2 \cdot w>n$, where n is the computational order of Taylor models. Choose

$$
w=\operatorname{Int}\left(\frac{n}{2}\right)+1
$$

Maximum size necessary for DA and TM for $v=2$.

n	v	DA	TM	v	DA	TM					
13	2	105	140	$2+2$	2380	2419					
21	2	253	304	$2+2$	12650	12705					
33	2	595	670	$2+2$	66045	66124	\Rightarrow	w	v_{w}	DA	TM
:---:	:---:	:---:	:---:								
7	$2+2_{w}$	161	200								
11	$2+2_{w}$	385	440								
17	$2+2_{w}$	901	980								

Dynamic Domain Decomposition

For extended domains, this is natural equivalent to step size control. Similarity to what's done in global optimization.

1. Evaluate ODE for $\Delta t=0$ for current flow.

2 . If resulting remainder bound R greater than ε, split the domain along variable leading to longest axis.
3. Absorb R in the TM polynomial part using the error parametrization method. If it fails, split the domain along variable leading to largest x dependence of the error.
4. Put one half of the box on stack for future work.

Things to consider:

- Utilize "First-in-last-out" stack; minimizes stack length. Special adjustments for stack management in a parallel environment, including load balancing.
- Outlook: also dynamic order control for dependence on initial conditions

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathrm{x}^{\wedge} \mathbf{2 + y}, \mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

Henon system, $\mathrm{xn}=1-2.4^{*} \mathbf{x}^{\wedge} \mathbf{2 + y}$, $\mathrm{yn}=-\mathrm{x}, \mathrm{NO}=33 \mathrm{w} 17$

$$
?
$$

henonL: Count of TM Objects, $\mathrm{NO}=33$, Psum0.5, all P splits (e-10,2coins)

henonL: Count of TM Objects, $N O=33$, Psum0.5, all P splits (e-10,2coins)

discrete kepler. 1st revolution, ICw 0.02, NO=13 w7

discrete kepler. 2nd revolution, ICw 0.02, NO=13 w7

discrete kepler. 3rd revolution, ICw 0.02, NO=13 w7

discrete kepler. 4th revolution, ICw 0.02, NO=13 w7

discrete kepler. 5th revolution, ICw 0.02, NO=13 w7

discrete kepler. 1st revolution, ICw 0.1, NO=13 w7

discrete kepler. 2nd revolution, ICw 0.1, NO=13 w7

discrete kepler. $\mathrm{NO}=13 \mathrm{w} 7$

discrete kepler. $\mathrm{NO}=13 \mathrm{w} 7$

discrete kepler. 33 rd revolution, $\mathrm{ICw} 0.02, \mathrm{NO}=13 \mathrm{w} 7$

discrete kepler: Count of TM Objects, ICw 0.02, NO=13, Psum0.5, all P splits (e-10,2coins)

discrete kepler: Count of TM Objects, ICw 0.02, NO=13, Psum0.5, all P splits (e-10,2coins)

The Henon Map

$$
H(x, y)=\left(1-a x^{2}+y, b x\right)
$$

We set the parameters $a=1.4$ and $b=0.3$, which are originally considered by Henon. The map H has two fixed points.

$$
\vec{p}_{1}=(0.63135,0.18940) \quad \text { and } \quad \vec{p}_{2}=(-1.13135,-0.33941)
$$

rhenon. surviving region through 12 mappings

rhenon. surviving region through 12 mappings

rhenon. IC boxes $3 / 3 / 08$

rhenon. step 1. 3/3/08

rhenon. step 2. 3/3/08

rhenon. step 3. 3/3/08

rhenon. step 4. 3/3/08

rhenon. step 4. box1. 3/3/08

rhenon. step 4. box2. 3/3/08

rhenon. step 4. box3. 3/3/08

rhenon. step 5. 3/3/08

rhenon. step 5. box1. 3/3/08

rhenon. step 5. box2. 3/3/08

rhenon. step 5. box3. 3/3/08

rhenon: Number of Objects

To carry out multiple mappings of the Henon map, Taylor model objects underwent the domain decomposition.

Number of Taylor model objects used for multiple mappings:

	n	w	for 5 steps	for 7 steps
box1	33	17	3	1386
box2	21	11	148	1691
box3	33	17	8	2839

Coming very soon...
Dynamic Domain Decomposition for the ODE integrator

