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Review of the Old Version of COSY-VI

Version 2 (2004)



Key Features and Algorithms of COSY-VI

• High order expansion not only in time t but also in transversal variables
�x.

• Capability of weighted order computation, allowing to suppress the ex-
pansion order in transversal variables �x.

• Shrink wrapping algorithm including blunting to control ill-conditioned
cases.

• Pre-conditioning algorithms based on the Curvilinear, QR decomposi-
tion, and blunting pre-conditioners.

• Resulting data is available in various levels including graphics output.



The Volterra Equation
Describe dynamics of two conflicting populations

dx1
dt
= 2x1(1− x2),

dx2
dt
= −x2(1− x1)

Interested in initial condition

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.

Satisfies constraint condition

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant
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• heteroclinic connection in Jupiter region T = 1.3, any initial condition
from the following list (Xi = (x, ẋ))

X0 = (0.9522928423486199945, 1.23 · 10−5)
X1 = (0.921005737890425169, 0.0005205932817646883714)
X2 = (0.957916338594066441, 0.02191497366476494527)
X3 = (1.030069865952822683, 0.00330658676251664686)
X4 = (0.967306682018305608, 0.003703230165036550462)
X5 = (1.040628850444842879, 0.02317063455298806404)
X6 = (1.081670357450509545, 0.0005918226490172379421)
X7 = (1.046819673646057103, 2.13365065043902489 · 10−5)

can you handle the set larger than 10−5 in diameter ?

2 Rössler equations

The Rössler equations are given by

x′ = −(y + z)
y′ = x + 0.2y (4)
z′ = 0.2 + z(x− a),

where a is a real parameter. We focus here at the value of a = 5.7, where
numerical simulations suggest an existence of a strange attractor.

On section x = 0 we consider the following initial condition (y, z) ∈ (−8.38095, 0.0295902)+
[−δ, δ]2, where δ should be considerably larger than 10−3. The integration time
should be around T = 6.

3 C1-computation

In all cases listed above it will be also interesting if you will try to solve not
only for x but also for ∂ϕ

∂x , where ϕ(t, x) is a flow defined by an ODE.
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The Henon Map
Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

xn+1 = 1− αx2n + yn
yn+1 = βxn.

It can easily be seen that the motion is area preserving for |β| = 1.We
consider

α = 2.4 and β = −1,
and concentrate on initial boxes of the from (x0, y0) ∈ (0.4, −0.4)+[−d, d]2.
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Henon system, xn = 1-2.4*x^2+y, yn = -x, the positions at each step
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Henon system, xn = 1-2.4*x^2+y, yn = -x, NO=20, SW
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Review of the New Features

• The Reference Trajectory and the Flow Operator
• Step Size Control
• Error Parametrization of Taylor Models
• Dynamic Domain Decomposition
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The Reference Trajectory
First Step:Obtain Taylor expansion in time of solution of ODE
of center point c, i.e. obtain

c(t) = c0 + c1 � (t� t0) + c2 � (t� t0)2 + ::: + cn � (t� t0)n

Very well known from day one how to do this with automatic
di¤erentiation. Rather convenient way: can be done by n iterations
of the Picard Operator

c(t) = c0 +

Z t

0

f (r(t0); t)dt0

in one-dimensional Taylor arithmetic. Each iteration raises the
order by one; so in each iteration i, only need to do Taylor arith-
metic in order i. In either way, this step is cheap since it involves
only one-dimensional operations.



The Nonlinear Flow
Second Step: The goal is to obtain Taylor expansion in time
to order n and initial conditions to order k. Note:

1. This is usually the most expensive step. In the original Taylor
model-based algorithm, it is done by n iterations of the Picard
Operator in multi-dimensional Taylor arithmetic, where c0 is
now a polynomial in initial conditions.

2. The case k = 1 has been known for a long time. Tradition-
ally solved by setting upODEs for sensitivities and solving
these as before.

3. The case of higher k goes back to Beam Physics (M. Berz,
Particle Accelerators 1988)

4. Newest Taylor model arithmetic naturally supports di¤erent
expansions orders k for initial conditions and n for time.

Goal: Obtain �ow with one single evaluation of right hand
side.



The Nonlinear Relative ODE
We now develop a better way for second step.
First: introduce new "perturbation" variables ~r such that

r(t) = c(t) + A � ~r(t):
The matrix A provides preconditioning. ODE for ~r(t):

~r0 = A�1 [f (c(t) + A � ~r(t))� c0(t)]
Second: evaluate ODE for ~r0 in Taylor arithmetic. Obtain a
Taylor expansion of the ODE, i.e.

~r0 = P (~r; t)

up to order n in time and k in ~r: Very important for later use:
the polynomial P will have no constant part, i.e.

P (0; t) = 0:



Reminder: The Lie Derivative
Let

r0 = f (r; t)

be a dynamical system. Let g be a variable in state space, and let
us study g(r(t)); i.e. along a solution of the ODE. We have

d

dt
g(t) = f � rg + @g

@t

Introducing the Lie Derivative Lf = f � r + @=@t; we have

dn

dtn
g = Lnfg and g(t) �

nX
i=0

(t� t0)i
i!

Lifg
�
t=t0



Di¤erential Algebras on Taylor Polynomial Spaces

Consider space nDv of Taylor polynomials in v variables and or-
der n with truncation multiplication. Formally: introduce equiv-
alence relation on space of smooth functions

f =n g

if all derivatives from 0 to n agree at 0: Class of f is denoted [f ]:
This induces addition, multiplication and scalar multiplication on
classes. The resulting structure forms an algebra.
An algebra is a Di¤erential Algebra if there is an operation
@; called a derivation, that satis�es

@(s � a + t � b) = s � @a + t � @b and
@(a � b) = a � (@b) + (@a) � b

for any vectors a and b and scalars s and t. Unfortunately, the
natural partial derivative operations [f ] ! [@if ] does not
introduce a di¤erential algebra, because of loss of highest order.



Di¤erential Algebras on Taylor Polynomial Spaces

However, consider the modi�ed operation

@f with @fg = f � rg
If f is origin preserving, i.e. f (0) = 0; then @f is a derivation on
the space nDv. Why?

� Each derivative operation in the gradientrg looses the highest
order;

� but since f (0) = 0; the missing order inrg does not matter
since it does not contribute to the product f � rg:



Polynomial Flow from Lie Derivative
Remember the ODE for ~r0:

~r0 = P (~r; t)

up to order n in time and k in ~r: And remember P (0; t) = 0: Thus
we can obtain the n-th order expansion of the �ow as

~r(t) =

nX
i=0

(t� t0)i
i!

�
�
P � r + @

@t

�i
~r0

,
t=t0

� The fact that P (0; t) = 0 restores the derivatives lost in r
� The fact that @=@t appears without origin-preserving factor
limits the expansion to order n:



Performance of Lie Derivative Flow Methods

Apparently we have the following:
� Each term in the Lie derivative sum requires v + 1 derivations
(very cheap, just re-shu­ ing of coe¢ cients)

� Each term requires v multiplications
�We need one evaluation of f in nDv (to set up ODE)
Compare this with the conventional algorithm, which requires n
evaluations of the function f of the right hand side. Thus, roughly,
if the evaluation of f requires more than v multiplications, the new
method is more e¢ cient.
�Many practically appearing right hand sides f satisfy this.
� But on the other hand, if the function f does not satisfy this
(for example for the linear case), then also P will be simple
(in the linear case: P will be linear), and thus less operations
appear



Step Size Control
Step size control to maintain approximate error " in each step.
Based on a suite of tests:

1. Utilize the Reference Orbit. Extrapolate the size of coe¢ -
cients for estimate of remainder error, scale so that it reaches
and get �t1. Goes back to Moore in 1960s. This is one of
conveniences when using Taylor integrators.

2. Utilize theFlow. Compute�ow time stepwith�t1:Extrapolate
the contributions of each order of �ow for estimate of remainder
error to get update �t2.

3. Utilize a Correction factor c to account for overestimation
in TM arithmetic as c = n+1

p
jRj=": Largely a measure of com-

plexity of ODE. Dynamically update the correction factor.

4. Perform veri�cation attempt for �t3 = c ��t2
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Error Parametrization of Taylor models
Motivation: Is it possible to absorb the remainder error bound
intervals of Taylor models into the polynomial parts using addi-
tional parameters?

Phrase the question as the following problem:

1. Have Taylor models with 0 remainder error interval, which de-
pend on the independent variables �x and the parameters �α.

�T0 = �P0(�x, �α) +
−−→
[0, 0].

2. Perform Taylor model arithmetic on �T0, namely �F (�T0)

�F (�T0) = �P (�x, �α) + �IF , where �IF 6=
−−→
[0, 0].

3. Try to absorb �IF into the polynomial part that depends on �α

�P (�x, �α) + �IF ⊆ �P 0(�x, �α) +
−−→
[0, 0]. (A)



Observe

�P (�x, �α) = �P (�x, 0)| {z } + �P (�x, �α)− �P (�x, 0)| {z } = �P (�x, 0) + �Pα(�x, �α)

�α-indep. �α-dependent

The size of �P (�x, 0) is much larger than the rest, because the rest
is essentially errors. The process of (A) does not alter �P (�x, 0), so
set the �α-independent part �P (�x, 0) aside from the whole process,
which helps the numerical stability of the process.
The task is now

�Pα(�x, �α) + �IF ⊆ �P 0α(�x, �α) +
−−→
[0, 0].

We limit �Pα(�x, �α) to be only linearly dependent on �α.

�Pα(�x, �α) + �IF =
³cM + c̄M(�x)´ · �α + �IF .



Express �IF by the matrix form using additional parameters �β

�IF ⊆
³bIF + b̄IF (�x)´ · �β.

where b̄IF (�x) = 0 and ³bIF´
ii
= |IFi| .

�Pα(�x, �α) + �IF ⊆
³cM + c̄M(�x)´ · �α + ³bIF + b̄IF (�x)´ · �β.

View this as a collection of 2 · v column vectors associated to 2 · v
parameters �α and �β. Recall a matrix, or a collection of v column
vectors, represent a parallelepiped. The problem is now to find a
set sum of two parallelepipeds.



Psum Algorithm for choosing column vectors

Task: Choose v vectors out of n vectors �si, i = 1, ..., n, n ≥ v.

1. Choose the longest vector �sk, and assign it as �t1. Normalize it
as �e1 = �t1/

¯̄
�t1
¯̄
.

2. Out of the remaining vectors �si, choose the j-th vector �tj = �sk
such that

|�sk|2 −
j−1X
m=1

|�sk · �em|2

|�sk|2p

is largest. Compute �ej, the orthonormalized vector of �tj to
�e1, ..., �ej−1. (Gram-Schmidt)

3. Repeat the process 2 until j = v.

Experimentally, p = 0.5 is found to be efficient and robust for
obtaining a set sum of two parallelepipeds



Psum Algorithm for two parallelepipeds
Task: Obtain a set sum of two parallelepipeds cM1 and cM2.

1. Prepare the basis cMb using the Psum algorithm for choosing v
column vectors out of 2 · v column vectors from cM1 and cM2.

2. Compute conditioned parallelepipeds cM−1
b ·cM1 and cM−1

b ·cM2.

3. Confine the conditioned parallelepipeds by bounding them.

�B1 = bound
³cM−1

b · cM1

´
and �B2 = bound

³cM−1
b · cM2

´
.

4. Compute the interval sum �B = �B1+ �B2. �B confines the condi-
tioned set sum of the conditioned parallelepipeds.

5. From �B, set up a parallelepiped as a box bB =
⎛⎝ |B1| 0

. . .
0 |Bv|

⎞⎠ .

6. Compute cMb · bB, which is a set sum of cM1 and cM2 under cMb.
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Error Absorption

We now chose a favoured collection of v column vectors bL+ b̄L(�x)
using the Psum algorithm. Collect the left over v column vectors
to bE + b̄E(�x). Associate them to 2 · v parameters �α0 and �β0.

�Pα(�x, �α) + �IF ⊆
³bL + b̄L(�x)´ · �α0 + ³ bE + b̄E(�x)´ · �β0.

Since �α and �β do not appear anymore, we can rename �α0 and �β0

as �α and �β for the simplicity.

�Pα(�x, �α) + �IF ⊆
³bL + b̄L(�x)´ · �α + ³ bE + b̄E(�x)´ · �β

= bL ◦ hbL−1 ◦ ³bL + b̄L(�x)´ · �α + bL−1 ◦ ³ bE + b̄E(�x)´ · �βi
⊆ bL ◦ h³bI + bL−1 ◦ b̄L(�x)´ · �α + bB · �βi

where bB is a diagonal matrix with the i-th element is |Bi| and
�B =bound

³bL−1 ◦ ³ bE + b̄E(�x)´ · �β´ .



If the diagonal terms of
³bI + bL−1 ◦ b̄L(�x)´ are positive,

�Pα(�x, �α) + �IF ⊆ bL ◦ h³bI + bL−1 ◦ b̄L(�x)´ · �α + bB · �αi
= bL ◦ ³bI + bL−1 ◦ b̄L(�x)´ · �α + bL ◦ bB · �α
=
³bL + b̄L(�x) + bL ◦ bB´ · �α.

Note: A modification to use bA instead of bL, when bA ≈ bL, is
done easily. This involves bounding of bA−1 ◦³bL− bA´ · �α and the
diagonal terms to be checked positive are those of

³bI + bA−1 ◦ b̄L(�x)´ .
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Cost of Additional Parameters

For a v dimensional system, we need v parameters �α to absorb
Taylor model remainder error bound intervals. The dependence
on �α is limited to linear. So, we use weighted DA. Choose an
appropriate weight order w for �α.

• The dependence on �α has to be kept linear. Namely 2 ·w > n,
where n is the computational order of Taylor models. Choose

w = Int
³n
2

´
+ 1.

Maximum size necessary for DA and TM for v = 2.

n v DA TM |
13 2 105 140 |
21 2 253 304 |
33 2 595 670 |

v DA TM
2 + 2 2380 2419
2 + 2 12650 12705
2 + 2 66045 66124

⇒
w vw DA TM
7 2 + 2w 161 200
11 2 + 2w 385 440
17 2 + 2w 901 980



Dynamic Domain Decomposition
For extended domains, this is natural equivalent to step size
control. Similarity to what’s done in global optimization.
1. Evaluate ODE for ∆t = 0 for current flow.

2. If resulting remainder boundR greater than ε, split the domain
along variable leading to longest axis.

3. Absorb R in the TM polynomial part using the error parame-
trization method. If it fails, split the domain along variable
leading to largest x dependence of the error.

4. Put one half of the box on stack for future work.
Things to consider:
• Utilize "First-in-last-out" stack; minimizes stack length. Spe-
cial adjustments for stack management in a parallel environ-
ment, including load balancing.

• Outlook: also dynamic order control for dependence on initial
conditions
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The Henon Map

H(x, y) = (1− ax2 + y, bx).

We set the parameters a = 1.4 and b = 0.3, which are originally
considered by Henon. The map H has two fixed points.

�p1 = (0.63135, 0.18940) and �p2 = (−1.13135,−0.33941).
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rhenon: Number of Objects

To carry out multiple mappings of the Henonmap, Taylor model
objects underwent the domain decomposition.

Number of Taylor model objects used for multiple mappings:

n w for 5 steps for 7 steps
box1 33 17 3 1386
box2 21 11 148 1691
box3 33 17 8 2839



Coming very soon...

Dynamic Domain Decomposition for the ODE integrator




