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A Simple 1D Example
Approximate the cos function by its power series to order 60:

f(x) =
30X
i=0

(−1)i x
2i

(2i)!
.

Several nice properties:

1. Properties of the function are well known

2. Dependency increases with x from very small to very large

3. Periodicity allows the study of the same functional behavior with varying
amounts of dependency

4. Study at points with both non-stationary and stationary points is pos-
sible

Study results for expansion points x0 = n · π/4 for
n = 1, 5, 9, 13 and n = 0, 4, 8, 12.

For each of these points, domains are x0 + [−2−j, 2−j] for j = 1, ..., 8.
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Implementation of TM Arithmetic
Validated Implementation of TM Arithmetic exists. The following points
are important

• Strict requirements for underlying FP arithmetic

• Taylor models require cutoff threshold (garbage collection)
• Coefficients remain FP, not intervals
• Package quite extensively tested by Corliss et al.
For practical considerations, the following is important:

• Need sparsity support
• Need efficient coefficient addressing scheme
• About 50, 000 lines of code
• Language Independent Platform, coexistence in F77, C, F90, C++
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Ordered LDL (Extended Cholesky) Decomposition

Given Quadratic Form with symmetric H

Q(x) =
1

2
xt ·H · x + a · x + b

We determine Ordered LDL Decomposition (L: lower diagonal with unit
diagonal, D: diagonal) as follows

1. Pre-sort rows and columns by the size of their diagonal elements

2. Successively execute conventional LtDL decomposition step in interval
arithmetic, beginning by representing every element ofH by a thin interval;
in step i:

(a) I f l (D (i, i )) > 0 pro ceed to the next row and column.

(b) I f u (D (i, i )) < 0 exchange row and column i with row and column
i + 1, i + 2, ...  If a p ositive element is found, increment i and rep eat.
If none is found, stop.

Note: Correction Matrix In case 0 ∈ D (i, i ), apply small
correction C to H, i.e. study H + C instead of H, such that all elements of
D are clearly positive or negative. |C| is lumped into the remainder bound
of the original problem.



Ordered LDL Decomposition - Result

Have obtained representation of H as LDL composition

PtHP = LtDL

• First p elements of D satisfy l(D(i, i)) > 0

• Remaining (n− p) elements of D will satisfy u(D(i, i)) < 0

Proposition: Sufficiently near a local minimizer, D will contain only pos-
itive elements. Furthermore, in the wider vicinity of the local minimizer,
the number of negative elements in D will decrease as the minimizer is ap-
proached.
Simply follows from continuity of the matrix D as a function of position



The QDB (Quadratic Dominated Bounder) Algorithm

1. Let u be an external cutoff. Initialize u = min(u,Q(C)). Initialize list
with all 3n surfaces for study.

2. If no boxes are remaining, terminate. Otherwise select one surface S of
highest dimension.

3. On S, apply LDB. If a complete rejection is possible, strike S from the list
and proceed to step 2. If a partial rejection is possible, strike the respective
surfaces of S from the list and proceed to step 2.

4. Determine the definiteness of the Hessian of Q when restricted to S

5. If the Hessian is not p.d. strike S from the list and proceed to step 2.

6. If the Hessian is p.d., determine the corresponding critical point c.

7. If c is fully inside S, strike S and all surfaces of S from the list, update u
= min(u,Q(c)),and proceed to step 2

8. If c not inside S, strike S. If certain components of c lie between −1 and
+1, strike the corresponding surfaces and proceed to step 2



The QDB Algorithm - Properties

The QDB algorithm has the following properties.

1. The quadratic bounder QDB has the third order approximation property.

2. The effort of finding the minimum requires the study of at most 3n surfaces.

3. In the p.d. case, the computational effort requires at most the study of 2n

surfaces

4. Because of extensive box striking, in practice, the numbers of boxes to
study is usually much much less.



The QDB Algorithm - Properties

The QDB algorithm has the following properties.

1. The quadratic bounder QDB has the third order approximation property.

2. The effort of finding the minimum requires the study of at most 3n surfaces.

3. In the p.d. case, the computational effort requires at most the study of 2n

surfaces

4. Because of extensive box striking, in practice, the numbers of boxes to
study is usually much much less.

But s till, it is desirable to have something FASTER.



The QFB (Quadratic Fast Bounder) Algorithm

Let P + I be a given Taylor model. Idea. Decompose into two parts

P + I = (P −Q) + I +Q and observe

l(P + I) = l(P −Q) + l(Q) + l(I)

Choose Q such that

1. Q can be easily bounded from below

2. P −Q is sufficiently simplified to allow bounding above given cutoff.

First possibility: Let H be p.d. part of P, set

Q = xtHx

Then l(Q) = 0. Removes all second order parts of P (!) Better yet:

Qx0 = (x− x0)
tH(x− x0)

Allows to manipulate linear part. Works for ANY x0 in domain. Still
l(Qx0) = 0.
Which choices for x0 are good?



The QFB Algorithm - Properties

Most critical case: near local minimizer, so H is the entire purely quadratic
part of P.
Theorem: If x0 is the (unique) minimizer of quadratic part of P on the
domain of P + I, then the lower bound of the linear part of (P − Qx0) is
zero. Furthermore, the lower bound of (P −Qx0), when evaluated with plain
interval evaluation, is accurate to order 3 of the original domain box.
Proof: Follows readily from Kuhn-Tucker conditions. If x0 inside, linear
part vanishes completely. Otherwise, wlog if i-th component of x0 is at left
end, i-th partial there must be non-negative, so that we get non-negative
contribution.
Remark: The closer x0 is to the minimizer, the closer we are to order 3
cutoff.
Algorithm: (Third Order Cutoff Test). Let x(n) be a sequence of
points that converges to the minimum x0 of the convex quadratic part P2 In
step n, determine a bound of (P − Qxn) by interval evaluation, and assess
whether the bound exceeds the cutoff threshold. If it does, reject the box and
terminate; if it does not, proceed to the next point xn+1.



The QMLoc Algorithm

Tool to generate efficient sequence x(n). Determine ”feasible descent direc-
tion”

g
(n)
i =


−∂Q

∂xi
if x

(n)
i inside

min
³
−∂Q

∂xi
, 0
´
if x

(n)
i on right

max
³
−∂Q

∂xi
, 0
´
if x

(n)
i on left

Now move in direction of g(n) until we hit box or quadratic minimum along
line. Very fast to do, can change set of active constraints very quickly.
Result: Cheap iterative third order cutoff.



Use of QFB - Example

Let f1(x) =
1
2x

t · Av · x−Av · (a · x) + 1
2a

t ·Av · a with

Av =


2 3 . . . 3
−1 2 . . . 3
... ... . . . ...
−1 −1 . . . 2


known to be p.d. with minimum a. Choose a random vector a, and 5v boxes
around it. Check box rejection with Interval evaluation, Centered Form, QFB.
Output average number of QFB iterations.



Use of QFB - Example

Let f1(x) =
1
2x

t · Av · x−Av · (a · x) + 1
2a

t ·Av · a with

Av =


2 3 . . . 3
−1 2 . . . 3
... ... . . . ...
−1 −1 . . . 2


known to be p.d. with minimum a. Choose a random vector a, and 5v boxes
around it. Check box rejection with Interval evaluation, Centered Form, QFB.
Output average number of QFB iterations.

v N=5^v NI NC NQFB Avg. Iter
2 25 25 8 1 1.1
4 625 625 308 1 0.31



Use of QFB - Example

Let f1(x) =
1
2x

t · Av · x−Av · (a · x) + 1
2a

t ·Av · a with

Av =


2 3 . . . 3
−1 2 . . . 3
... ... . . . ...
−1 −1 . . . 2


known to be p.d. with minimum a. Choose a random vector a, and 5v boxes
around it. Check box rejection with Interval evaluation, Centered Form, QFB.
Output average number of QFB iterations.

v N=5^v NI NC NQFB Avg. Iter
2 25 25 8 1 1.1
4 625 625 308 1 0.31
6 15,625 15,625 12,434 1 0.31
8 390,625 390,625 372,376 1 0.43
10 9,765,625 9,765,625 9,622,750 1 0.55



Moore’s Simple 1D Function

f(x) = 1 + x5 − x4.

Study on [0, 1]. Trivial-looking, but dependency and high order.
Assumes shallow min at 0.8.
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Beale’s 2D and 4D Function

f(x1, x2) = (1.5− x1(1− x2))
2+
¡
2.25− x1(1− x22)

¢2
+
¡
2.625− x1(1− x32)

¢2
Domain [−4.5, 4.5]2. Minimum value 0 at (3, 0.5).
Little dependency, but tricky very shallow behavior.
Generalization to 4D:

f(x1, x2, x3, x4) = (1.5− x1(1− x2))
2 +

¡
2.25− x1(1− x22)

¢2
+
¡
2.625− x1(1− x32)

¢
+ (1 + x3(1− x4))

2 +
¡
3 + x3(1− x24)

¢2
+
¡
7 + x3(1− x34)

¢2
+ (3 + x1(1− x4))

2 +
¡
9 + x1(1− x24)

¢2
+
¡
21 + x1(1− x34)

¢2
+ (0.5− x3(1− x2))

2 +
¡
0.75− x3(1− x22)

¢2
+
¡
0.875− x3(1− x32)

¢2
Domain [0, 4]4. Minimum value 0 at (3, 0.5, 1, 2)



The Beale function. f = [1.5-x(1-y)]^2 + [2.25-x(1-y^2)]^2 + [2.625-x(1-y^3)]^2
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Lennard-Jones Potentials

Ensemble of n particles interacting pointwise with potentials

VLJ(r) =
1

r12
− 2 · 1

r6

-1

0

1

2

3

4

5

1 2 3 4 5r

Has very shallow minimum of −1 at r = 0. Very hard to Taylor expand.
Extremely wide range of function values: VLJ(0.5) ≈ 4000, VLJ(2) ≈ 0.03

V =
nX
i<j

VLJ (ri − rj)

Study n = 3, 4, 5. Pop quiz: What do resulting molecules look like?
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Lennard-Jones Potentials - Results

Find minimum with COSY-GO and Globsol.
Use TMs of Order 5, QFB&LFB.
Use Globsol in default mode.

Problem CPU-time needed Max list Total # of Boxes

n=4, COSY 89 sec 2,866 15,655
n=5, COSY 1,550 sec 6,321 69,001
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Lennard-Jones Potentials - Results

Find minimum with COSY-GO and Globsol.
Use TMs of Order 5, QFB&LFB.
Use Globsol in default mode.

Problem CPU-time needed Max list Total # of Boxes

n=4, COSY 89 sec 2,866 15,655
n=5, COSY 1,550 sec 6,321 69,001

n=4, Globsol 5,833 sec 243,911
n=5, Globsol >60,530 sec

(not finished yet)



The Higher Order Bounder
After removing first and second order part of polynomial, we
have

P (�x− �x0) = P̃ (�x− �xc)

= b +
1

2
(�x− �xc)

T H (�x− �xc) + P̃>2 (�x− �xc) ,

Goal: want to find nonlinear polynomial �T : Rv → Rv such that
with �y = (�x− �x0), we have

1

2
�T (�y)T H �T (�y) =n

1

2
�yTH�y + P̃>2 (�y) ,



The Higher Order Bounder Algorithm

Will do this to arbitrary order, in an order-by-order fashion. Let
�Tm (�y) denote the part of �T (�y) consisting of the terms of them-th
order, so that

�T (�y) =
n−1X
m=0

�Tm (�y) . Let �T≤m (�y) =
mX
l=0

�Tl (�y) .

Note �T1 (�y) = �y. Let us now define a sequence of real-valued
polynomial functions Sm (�y) by
Sm (�y) = P̃≥2 (�y)− 1

2
�T≤m−1 (�y)T H �T≤m−1 (�y) for m = 1, 2, . . . , n.



The Higher Order Bounder II
Assume we have determined �T≤m−1 . We want to determine �Tm.
Note that then, Sm (�y) has only terms of order m+ 1 and higher.
We demand

0 =m+1 P̃≥2 (�y)− 1
2

³
�T≤m−1 (�y) + �Tm (�y)

´T
H
³
�T≤m−1 (�y) + �Tm (�y)

´
=m+1 P̃≥2 (�y)− 1

2
�T≤m−1 (�y)T H �T≤m−1 (�y)

− �T≤m−1 (�y)T H �Tm (�y)− 1
2
�Tm (�y)T H �Tm (�y)

=m+1 Sm−1 (�y)− �T≤m−1 (�y)T H �Tm (�y)
=m+1 Sm−1 (�y)− �yTH �Tm (�y) .
This establishes a requirement for the sought �Tm (�y) .Now note
that each term in Sm−1 contains at least one of the variables
y1, ..., yn comprising �y = (y1, ..., yn).



The Higher Order Bounder III
Now factor out one such term in term in Sm−1, and write

Sm−1 = �yt · I · S̃m−1
Then we can satisfy condition on �Tm (�y) by picking

�Tm (�y) = H−1 · S̃m−1



Example: Smooth Function in 6 Dimensions
Let

f (�x) = − exp
µ
−1
2
g (�x)

¶
+
1

4
exp (−g (�x)) for �x ∈ Bj, where

g (�x) =

Ã
vX

i=1

(R�x)2i

!
+

Ã
exp

Ã
1

2

vX
i=1

(R�x)i

!
− 1
!2

with a v × v rotation matrix R. Has resemblance to a linear
combination of two Gaussian functions.
Choose boxes

Bj = a+ 2−j−1 · [−1, 1]
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Figure 1: Logarithmic plot of the measurements of an upper bound q of the
overestimation in l (f) with different orders n = 3, . . . , 9 of Taylor models.
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Figure 2: Plot of the empirical approximation order (EAO) for different orders
n = 3, . . . , 9 of Taylor model representations.

25



1 2 3 4 5 6 7
−14

−12

−10

−8

−6

−4

−2
3

3

3

3

3

3

3

4

4

4

4

4

4

4

5

5

5

5

5

5

5

6

6

6

6

6

6
6

7

7

7

7

7
7 7

8

8

8

8

8 8 8

9

9

9

9 9 9 9

j

lo
g

10
w

(I
)

3RD ORDER TM
4TH ORDER TM
5TH ORDER TM
6TH ORDER TM
7TH ORDER TM
8TH ORDER TM
9TH ORDER TM

3
4
5
6
7
8
9

Figure 3: Logarithmic plot of the size w (I) of the remainder bounds of Taylor
models of different orders n = 3, . . . , 9.
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Figure 4: Plot of the empirical approximation order (EAO) of w (I) for different
orders n = 3, . . . , 9 of Taylor model representations.
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Figure 5: Logarithmic plot of an upper bound q − w (I) of the overestimation
in l (P ) of Taylor models of orders n = 3, . . . , 9.
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Figure 6: Logarithmic plot of the ratio of q − w (I) to the size w (I) of the
remainder bounds of Taylor models of orders n = 3, . . . , 9.
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