
Complexity-theoretic barriers to
validated solution of
initial value problems

Aki KAWAMURA
www.cs.toronto.edu/˜kawamura/

Department of Computer Science
University of Toronto

May 23, 2008

The problem

The initial value problem:
given g : [0, 1] × R → R, find h : [0, 1] → R such that

h(0) = 0, h′(t) = g
(
t , h(t)

)
.

Question: How computationally complex is h?

To discuss computational complexity of real functions,
we use the framework of Computable Analysis:

I computability (Grzegorczyk 1955);
I polynomial-time computability (Ko–Friedman 1981).

(henceforth PTIME)

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?

2. Complexity of IVPs: How complex can h be
when g is PTIME computable?

I Lipschitz IVP is PSPACE complete
I Analytic IVP is PTIME computable

3. Discussion

1.ä Complexity of real functions: How do we define
(PTIME) computability of real functions?

2. Complexity of IVPs: How complex can h be
when g is PTIME computable?

I Lipschitz IVP is PSPACE complete
I Analytic IVP is PTIME computable

3. Discussion

The “digital” computer

Computers (= Turing machines) manipulate bits.

Objects (integers, graphs, . . .) must be encoded
by bit strings.

Machine

input string output string

User

But real numbers cannot be named by bit strings,
because there are uncountably many.

Representing real numbers

Represent real numbers by string-to-string functions.

Definition
Function ϕ : {0, 1}∗ → {0, 1}∗ represents t ∈ R if
for each n ∈ N, the value ϕ(0n) is (the binary notation of)
either bt · 2nc or dt · 2ne. We also say ϕ is a name of t .

0 1 2 3

ϕ(ε) = 10
ϕ(0) = 100
ϕ(00) = 101
ϕ(000) = 1001
ϕ(0000) = 10011

...

t

Thus, each ϕ(0n) gives a 2−n-approximation of t .

Computing real functions
Use Oracle Turing Machines.

Definition (Grzegorczyk 1955)

A machine computes
function f : [0, 1] → R if,
given any name of
any t ∈ [0, 1] as oracle,
it computes some name of f (t).

Oracle

Machine

0n 2−n-approximation of t

0m 2−m-approximation of f(t)

In other words:
I The machine Turing-reduces f (t) to t .
I The machine produces approximations of f (t) of any

precision the user desires,
assuming that the user supplies the machine with
approximations of t of any precision it desires.

Computing real functions
Use Oracle Turing Machines.

Definition (Grzegorczyk 1955)

A machine computes
function f : [0, 1] → R if,
given any name of
any t ∈ [0, 1] as oracle,
it computes some name of f (t).

Oracle

Machine

0n 2−n-approximation of t

0m 2−m-approximation of f(t)

PTIME means that the machine halts after
polynomially many steps in m.

I A polynomial p and a PTIME algorithm ĥ such that
u ∈ {bt · 2p(m)c, dt · 2p(m)e}

=⇒ ĥ(0m, u) ∈ {bh(t) · 2mc, dh(t) · 2me}.

In other words:

I The machine Turing-reduces f (t) to t .
I The machine produces approximations of f (t) of any

precision the user desires,
assuming that the user supplies the machine with
approximations of t of any precision it desires.

Example 1
Addition + : [0, 1] × [0, 1] → R is PTIME computable.

Given (functions representing) t , t ′ as oracles,
compute a 2−m-approximation of the sum t + t ′.

Oracle Oracle

Machine

0n2−n-approximation of t 0n′
2−n′

-approximation of t′

0m 2−m-approximation of t + t′

Get 2−m−2-approximations of t and t ′,
compute their sum (a rational number), and
output the closest 2−m-approximation.

Example 2

The function exp : [0, 1] → R is PTIME computable.

To 2−m-approximate

exp t =
1
0!

+
t
1!

+
t2

2!
+

t3

3!
+ · · · ,

it suffices to 2−m/2-approximate
the sum of the first m + 2 terms
(the remaining terms add up to < 2−m/2).

Example 3

Comparison ≤ : [0, 1]2 → R is not computable:

≤(t , t ′) =

{
1 if t ≤ t ′

0 if t > t ′

Computable functions are continuous

Theorem

I Every computable function is continuous.
I Every PTIME computable function has

polynomial modulus of continuity.

Modulus of continuity p:
|t − t ′| < 2−p(n)

=⇒ |f (t) − f (t ′)| < 2−n 2−n

2−p(n)

t

y
y = f(t)

1

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?

2.ä Complexity of IVPs: How complex can h be
when g is PTIME computable?

I Lipschitz IVP is PSPACE complete
I Analytic IVP is PTIME computable

3. Discussion

Summary
Let g : [0, 1] × [−1, 1] → R and h : [0, 1] → R satisfy

h(0) = 0, h′(t) = g
(
t , h(t)

)
.

and suppose that g is PTIME computable. Then
I there may be infinitely many solutions h, none of

which is computable (Pour-El 1979, Ko 1983);
I if we simply assume that h is the unique solution,

then it is computable but can take arbitrarily long time
(Miller 1970, Ko 1983);

I if we further assume that g is Lipschitz continuous,
then the (unique) solution h is PSPACE computable
and can be PSPACE complete;

I if we further assume that g is analytic, then the
(unique) solution h is PTIME computable.

red: new results

Summary
Let g : [0, 1] × [−1, 1] → R and h : [0, 1] → R satisfy

h(0) = 0, h′(t) = g
(
t , h(t)

)
.

and suppose that g is PTIME computable. Then
I there may be infinitely many solutions h, none of

which is computable (Pour-El 1979, Ko 1983);
I if we simply assume that h is the unique solution,

then it is computable but can take arbitrarily long time
(Miller 1970, Ko 1983);

I if we further assume that g is Lipschitz continuous,
then the (unique) solution h is PSPACE computable
and can be PSPACE complete;

I if we further assume that g is analytic, then the
(unique) solution h is PTIME computable.

red: new results

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?

2. Complexity of IVPs: How complex can h be
when g is PTIME computable?

Iä Lipschitz IVP is PSPACE complete
I Analytic IVP is PTIME computable

3. Discussion

PSPACE completeness

Theorem
There is a PTIME computable, Lipschitz continuous g
such that the solution h is PSPACE complete.

I.e., h is the “hardest” among PSPACE solvable problems:
for any PSPACE predicate L, there are a
polynomial p and PTIME computable functions r ,
s such that if s(u) ∈ {bt · 2p(n)c, dt · 2p(n)e} and
v ∈ {bh(t) · 2nc, dh(t) · 2ne}, then r(v) = L(u).

L //
s ²²

ĥ
//
r
OO

Building blocks
It suffices to construct gu : [0, 1] × [−1, 1] → R and
hu : [0, 1] → R for each string u (with gu uniformly
Lipschitz and PTIME computable from u) such that

hu(0) = 0, h′
u(t) = gu

(
t , hu(t)

)
and

hu(1) =

{
2−poly(|u|) if L(u),

0 otherwise.

Once this is done, gu ’s can be put into one function g:

t

y
a copy of gu

another copy of gu with opposite sign

2−poly(|u|)

y = h(t)

1

L(u) not L(u′)

An attempt: discrete IVP
We want hu such that:

t

y

y D hu.t/

1

I its slope is PTIME
computed using
the current value;

I hu(1) encodes the
answer L(u).

Every PSPACE computation has the following description:

� � �

0
2
0
8
1
3
2

5
7
3
9
2
0

6
0
0
1
3
7

5
9
8
9
0
1

5
1
9
7
8
3

4
3
4
2
3
2

3
3
1
9
1
1

2
2
1
1
0
1

1
6
2
3
1
5
L.u/

poly
in

ju
j

2poly.juj/

I each cell is PTIME
computed from
the previous cell;

I the last cell has
the answer L(u).

An attempt: use values of hu to encode this table.
But this does not give Lipschitz continuous g.

Discrete Lipschitz IVP

A discrete problem simulable by Lipschitz IVP:

� � �

� � �

� � �

:::
:::

:::

0

C2

2

�1

1

C2

3

�3

0

C8

8

�1

7

�2

5

�4

1

�1

0

C3

the answer L.u/

0

C3

3

C3

6

C3

9

�1

8

�4

4

C2

6

�2

4

C1

5

˙0

5

C3

0

C4

4

�3

1

C1

2

C2

4

C1

5

�5

0

C7

7

�2

5

�2

3

C1

Each increment is
PTIME computed
from (u and) the
upper left number.

By a more elaborate
reduction, any
PSPACE predicate
can be simulated by
this table also.

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?

2. Complexity of IVPs: How complex can h be
when g is PTIME computable?

I Lipschitz IVP is PSPACE complete
Iä Analytic IVP is PTIME computable

3. Discussion

PTIME computable Taylor coefficients

Lemma
Let f be a real analytic function on
a compact subset of Rm around the origin:

f (x) =
∑
µ∈Nm

aµxµ0
0 · · · xµm−1

m−1 .

Then f is PTIME computable if and only if
the sequence (aµ)µ∈Nm is.

Machine

0n, 0µ0 , . . . , 0µm−1 2−n-approximation of aµ

Solution by Taylor series

Substitute
g(t , y) =

∑
i∈N

∑
j∈N

aij t iy j , h(t) =
∑
i∈N

bi t i

into h′(t) = g
(
t , h(t)

)
and compare coefficients.

Theorem
If (aij)(i,j)∈N2 is PTIME computable, so is (bi)i∈N.

Corollary

If an analytic function g is PTIME computable, so is h.

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?

2. Complexity of IVPs: How complex can h be
when g is PTIME computable?

I Lipschitz IVP is PSPACE complete
I Analytic IVP is PTIME computable

3.ä Discussion

Algorithms and complexity

I The Church–Turing Thesis:
I effective

= computed by a Turing machine
I feasible

= computed by a Turing machine in polynomial time

I In discrete problems, hardness results sometimes
give useful information for algorithm design.

I What about numerical problems?

Results (again)
Let g : [0, 1] × [−1, 1] → R and h : [0, 1] → R satisfy

h(0) = 0, h′(t) = g
(
t , h(t)

)
.

and suppose that g is PTIME computable. Then
I there may be infinitely many solutions h, none of

which is computable (Pour-El 1979, Ko 1983);
I if we simply assume that h is the unique solution,

then it is computable but can take arbitrarily long time
(Miller 1970, Ko 1983);

I if we further assume that g is Lipschitz continuous,
then the (unique) solution h is PSPACE computable
and can be PSPACE complete;

I if we further assume that g is analytic, then the
(unique) solution h is PTIME computable.

red: new results

What do the positive results imply?

I unique solution =⇒ computable
I Lipschitz =⇒ PSPACE computable
I analytic =⇒ PTIME computable

What do these mean for numerical solution of IVPs?
—Not much: Just because easy g gives rise to easy h
does not mean that it is easy to compute g 7→ h.

The first result (computability) can be strengthened nicely
to a computability result of the operator g 7→ h.

Open question:
How should we formulate PTIME computable operators?

What do the negative results imply?

I non-computable solution
I arbitrarily long time, even if unique
I PSPACE-complete, even if Lipschitz

Though we have no definition of “easy operators”,
they certainly should not take easy functions to hard ones.

The last result (say) implies: Unless PTIME = PSPACE,
any efficient algorithm for Lipschitz IVP must fail
on some g (and in particular on the one we constructed).

Complexity-theoretic barriers to
validated solution of
initial value problems

Aki KAWAMURA
www.cs.toronto.edu/˜kawamura/

Department of Computer Science
University of Toronto

May 23, 2008

	Complexity of real functions
	Complexity of IVPs
	Lipschitz IVP is PSpace complete
	Analytic IVP is PTime computable

	Discussion

