Complexity-theoretic barriers to
validated solution of
initial value problems

Aki KAWAMURA
www.cs.toronto.edu/ kawamura/

Department of Computer Science
University of Toronto

May 23, 2008

The problem

The initial value problem:
given g : [0,1] x R — R, find h: [0,1] — R such that

h(0) =0, H(t) = g(t, h(t)).

Question: How computationally complex is h?

To discuss computational complexity of real functions,
we use the framework of Computable Analysis:

» computability (Grzegorczyk 1955);

» polynomial-time computability (Ko—Friedman 1981).
(henceforth PTIME)

. Complexity of real functions: How do we define
(PTIME) computability of real functions?
. Complexity of IVPs: How complex can h be
when g is PTIME computable?

» Lipschitz IVP is PSPACE complete

» Analytic IVP is PTIME computable

. Discussion

>

1.

Complexity of real functions: How do we define
(PTIME) computability of real functions?
Complexity of IVPs: How complex can h be
when g is PTIME computable?

» Lipschitz IVP is PSPACE complete

» Analytic IVP is PTIME computable

Discussion

The “digital” computer

Computers (= Turing machines) manipulate bits.

Objects (integers, graphs, ...) must be encoded
by bit strings.

Machine

3

input string output string

v
User

But real numbers cannot be named by bit strings,
because there are uncountably many.

Representing real numbers

Represent real numbers by string-to-string functions.
Definition

Function ¢ : {0,1}* — {0,1}* represents t € R if
for each n € N, the value ¢(0") is (the binary notation of)
either |t-2"] or [t-2™]. We also say ¢ is a name of t.

0 1 2t 3
: > e(e) =10
-— ©(0) = 100
-~ ©(00) = 101
-—> ©(000) = 1001
<

> (0000) = 10011

Thus, each ¢(0") gives a 2~ "-approximation of t.

Computing real functions
Use Oracle Turing Machines.

Oracle
Definition (Grzegorczyk 1955)
A machine computes 0" 2~ "_approximation of ¢
function 1 : [0,1] — R if, !
given any name of _
any t € [0, 1] as oracle, Machine
it computes some name of f(t).]

o™ 2~ ™-approximation of f(t)
v

In other words:
» The machine Turing-reduces f(t) to t.
» The machine produces approximations of f(t) of any
precision the user desires,
assuming that the user supplies the machine with
approximations of t of any precision it desires.

Computing real functions

Use Oracle Turing Machines.

Definition (Grzegorczyk 1955)

A machine computes

function f : [0, 1] — R if,

given any name of

any t € [0, 1] as oracle,

it computes some name of f(t).

O’I’L

Oracle

Y

2 "-approximation of ¢

v

Machine

Om

Y

2~ ™-approximation of f(t)

PTIME means that the machine halts a‘{‘ter

polynomially many steps in m.

» A polynomial p and a PTIME algorithm h such that

uelt- 2P(m)J’ t- 2P(m)1}

— h(O™, u) € {[A(t) - 27], [h(t) - 2]}

Example 1
Addition + : [0,1] x [0,1] — R is PTIME computable.

Given (functions representing) t, t’ as oracles,
compute a 2~-approximation of the sum t + t'.

Oracle

27"-approximation OK o o0 /

! . .
27" -approximation of ¢/

Machine

0’"‘ \Qm—approximation of t +1

Get 2-™—2-approximations of t and t’,
compute their sum (a rational number), and
output the closest 2-™-approximation.

Example 2

The function exp : [0, 1] — R is PTIME computable.

To 2~™-approximate
P TR O
N TR TRETRE TR

it suffices to 2= /2-approximate
the sum of the first m + 2 terms
(the remaining terms add up to < 2-/2).

Example 3

Comparison < : [0,1]> — R is not computable:

1 ift<t
<(t,t) = T
<(t.1) {O if t >t

Computable functions are continuous

Theorem

» Every computable function is continuous.

» Every PTIME computable function has
polynomial modulus of continuity.

yll
Modulus of continuity p:

It — 1] < 2-P(0)
— |f(t) — ()| < 27"

Ty

. Complexity of real functions: How do we define
(PTIME) computability of real functions?
. Complexity of IVPs: How complex can h be
when g is PTIME computable?

» Lipschitz IVP is PSPACE complete

» Analytic IVP is PTIME computable

. Discussion

Summary
Letg:[0,1] x [-1,1] — Rand h: [0, 1] — R satisfy
h(0) = 0, H(t)=g(t h(t)).
and suppose that g is PTIME computable. Then

» there may be infinitely many solutions h, none of
which is computable (Pour-El 1979, Ko 1983);

» if we simply assume that h is the unique solution,
then it is computable but can take arbitrarily long time
(Miller 1970, Ko 1983);

» if we further assume that g is Lipschitz continuous,
then the (unique) solution his PSPACE computable
and can be PSPACE complete;

» if we further assume that g is analytic, then the
(unique) solution his PTIME computable.

Summary
Letg:[0,1] x [-1,1] — Rand h: [0, 1] — R satisfy
h(0) = 0, H(t)=g(t h(t)).
and suppose that g is PTIME computable. Then
» there may be infinitely many solutions h, none of
which is computable (Pour-El 1979, Ko 1983);

» if we simply assume that h is the unique solution,
then it is computable but can take arbitrarily long time
(Miller 1970, Ko 1983);

» if we further assume that g is Lipschitz continuous,
then the (unique) solution his PSPACE computable
and can be PSPACE complete;

» if we further assume that g is analytic, then the
(unique) solution his PTIME computable.

red: new results

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?
2. Complexity of IVPs: How complex can h be
when g is PTIME computable?
» » Lipschitz IVP is PSPACE complete
» Analytic IVP is PTIME computable

3. Discussion

PSPACE completeness

Theorem

There is a PTIME computable, Lipschitz continuous g
such that the solution his PSPACE complete.

l.e., his the “hardest” among PSPACE solvable problems:

for any PSPACE predicate L, there are a
polynomial p and PTIME computable functions r,
s such that if s(u) € {|t-2°P(M], [t-2P(M]} and

v e {|h(t)-2"],[h(t)-2"]}, then r(v) = L(u).

Building blocks
It suffices to construct g, : [0,1] x [-1,1] — Rand
h, : [0,1] — R for each string u (with g, uniformly
Lipschitz and PTIME computable from u) such that

hy(0) = 0, hi;(t) = gu(t; hu(t))

and
2-Polv(lul) if [(u),
h(1) = (),
0 otherwise.
Once this is done, g,’s can be put into one function g:
a copy of g,
Y1 % another copy of g, with opposite sign
9—poly(lul)
y=h()
| 1 ¢

L(u) not L(u')

An attempt: discrete IVP
We want h, such that:
ul > its slope is PTIME
vy = hy,(t) computed using
the current value;
» hy(1) encodes the
1! answer L(u).

Every PSPACE computation has the following description:

opoly(lul) _
oAl > » eachcellis PTIME
SRS E R computed from
Sl b o RS S B N the previous cell;
E [\) fenll BN | LOS 1O) I oy (V)]
T I I A A A A A A A A » the last cell has

L) the answer L(u).

An attempt: use values of h, to encode this table.
But this does not give Lipschitz continuous g.

Discrete Lipschitz IVP

A discrete problem simulable by Lipschitz IVP:

443414241 -547-2-2+1

olalilzlalslol7]s]3 D Each increment is
TR R R R R R R R R PTIME computed
+34+34+3—-1—-4+4+2-2414+0+3 from (U and) the

0(3(6]/9|8]4|6[4|5|5 D upper left number.

By a more elaborate
S RN reduction, any
t2-142-348-1-2-4-1+43 E PSPACE predicate

0(2(1]3(0[8|7[5]1|0 can be simulated by
this table also.

the answer L (u)

1. Complexity of real functions: How do we define
(PTIME) computability of real functions?
2. Complexity of IVPs: How complex can h be
when g is PTIME computable?
» Lipschitz IVP is PSPACE complete
» » Analytic IVP is PTIME computable

3. Discussion

PTIME computable Taylor coefficients

Lemma

Let f be a real analytic function on
a compact subset of R around the origin:
fx)=> aux§®xmy.
pnENM
Then f is PTIME computable if and only if
the sequence (a,),enm is.

Machine

0™, Oro, ..., 0”"11‘ \Q"approximation of a,

Solution by Taylor series

Substitute

aty) =SS aty. ht)= bt

ieN jeN ieN
into H'(t) = g(t, h(t)) and compare coefficients.

Theorem
If (@) jenz is PTIME computable, so is (b;)en.

Corollary

If an analytic function g is PTIME computable, so is h.

. Complexity of real functions: How do we define
(PTIME) computability of real functions?
. Complexity of IVPs: How complex can h be
when g is PTIME computable?

» Lipschitz IVP is PSPACE complete

» Analytic IVP is PTIME computable

. Discussion

Algorithms and complexity

» The Church—Turing Thesis:

» effective
= computed by a Turing machine
» feasible
= computed by a Turing machine in polynomial time

» In discrete problems, hardness results sometimes
give useful information for algorithm design.

» What about numerical problems?

Results (again)
Letg:[0,1] x [-1,1] — Rand h: [0, 1] — R satisfy
h(0) = 0, H(t)=g(t h(t)).
and suppose that g is PTIME computable. Then

» there may be infinitely many solutions h, none of
which is computable (Pour-El 1979, Ko 1983);

» if we simply assume that h is the unique solution,
then it is computable but can take arbitrarily long time
(Miller 1970, Ko 1983);

» if we further assume that g is Lipschitz continuous,
then the (unique) solution his PSPACE computable
and can be PSPACE complete;

» if we further assume that g is analytic, then the
(unique) solution his PTIME computable.

What do the positive results imply?

» unique solution = computable
» Lipschitz — PSPACE computable
» analytic = PTIME computable

What do these mean for numerical solution of IVPs?
—Not much: Just because easy g gives rise to easy h
does not mean that it is easy to compute g — h.

The first result (computability) can be strengthened nicely
to a computability result of the operator g — h.

Open question:
How should we formulate PTIME computable operators?

What do the negative results imply?

» non-computable solution
» arbitrarily long time, even if unique
» PSPACE-complete, even if Lipschitz

Though we have no definition of “easy operators”,
they certainly should not take easy functions to hard ones.

The last result (say) implies: Unless PTIME = PSPACE,
any efficient algorithm for Lipschitz [VP must fail
on some g (and in particular on the one we constructed).

Complexity-theoretic barriers to
validated solution of
initial value problems

Aki KAWAMURA
www.cs.toronto.edu/ kawamura/

Department of Computer Science
University of Toronto

May 23, 2008

	Complexity of real functions
	Complexity of IVPs
	Lipschitz IVP is PSpace complete
	Analytic IVP is PTime computable

	Discussion

