
Higher Order Univariate AD
Object is one vector with (n + 1) entries, where n is the order.
Coefficients of vector are Taylor coefficients

ai =
1

i!

∂if

∂xi

(Could also use derivatives directly, but with Taylor coefficients, subsequent
arithmetic is simpler)
Addition: merely component-wise.
Multiplication:

ci =
iX

j=0

aj · bi−j

Very straightforward, easy to program.



Higher Order Univariate AD - Intrinsics
Various methods. For example,

sin ((a0, a1, ..., an)) = sin ((a0, 0, ..., 0) + (0, a1, a2, ..., an))

= sin(a0, 0, ..., 0) · cos(0, a1, a2, ..., an) + cos(a0, 0, ..., 0) · sin(0, a1, a

= (sin(a0), 0, ..., 0) ·
∞X
i=1

(−1)i
(2i)!

(0, a1, a2, ..., an)
2i

+ (cos(a0), 0, ..., 0) ·
∞X
i=1

(−1)i
(2i + 1)!

(0, a1, a2, ..., an)
2i+1

= (sin(a0), 0, ..., 0) ·
[n/2]X
i=1

(−1)i
(2i)!

(0, a1, a2, ..., an)
2i

+ (cos(a0), 0, ..., 0) ·
[n/2]X
i=1

(−1)i
(2i + 1)!

(0, a1, a2, ..., an)
2i+1



Higher Order Univariate AD - Intrinsics
Thus, used addition theorem to split off constant part a, use (finite) power
series for non-constant part b.
Can be used in many cases:

cos(a+ b) = cos(a) · cos(b)− sin(a) · sin(b)
exp(a+ b) = exp(a) · exp(b)
log(a+ b) = log(a) + log

µ
1 +

b

a

¶
if a 6= 0

1

(a+ b)
=
1

a
·
µ
1 +

b

a

¶−1
if a 6= 0

√
a+ b =

√
a ·
r
1 +

b

a
if a 6= 0

etc etc

The required sums usually have n terms.
Other method: UseNewton method with zeroth-order solution as start
value. This usually requires less iterations, namely about log2(n)



Higher Order Coefficient Combinatorics
How many monomials are there up to order n in v variables? Write them
as

xi11 ∗ xi22 ∗ xi33 ∗ ... ∗ xivv
with i1 + ... + iv ≤ n. Consider x21 ∗ x32 ∗ x3 ∗ ... ∗ x3v. Code it as

i1=2z}|{
11 ∗

i2=3z}|{
111 ∗

i3=1z}|{
1 ∗ ... ∗

iv=3z}|{
111 ∗

n−i1−...−ivz}|{
111

Each monomial is uniquely represented in such a way. Observe total
number of 10s is n, total number of ∗0s is v. So, total length of string is
(n + v).

The placement of the ∗0s determines everything. Apparently there are
N(n, v) =

µ
n+ v

v

¶
ways to arrange them.



Higher Order Coefficient Combinatorics - More
How many monomials are there of exact order n? Code them as

i1=2z}|{
11 ∗

i2=3z}|{
111 ∗

i3=1z}|{
1 ∗ ... ∗

iv=3z}|{
111

Thus there are µ
n + v − 1
v − 1

¶
Number of possible products of two monomials of total order up to n? Code
them as

i1=2z}|{
11 ∗ ... ∗

iv=3z}|{
111 ∗

j1=3z}|{
111 ∗ ... ∗

iv=4z}|{
1111 ∗

n−i1−...−iv−j1−...−jvz}|{
11

Length of string is (n + 2v), and the number of ∗’s is 2v. Thus number of
possible products is µ

n + 2v

2v

¶
.



Multivariate from Univariate AD (Griewank, 1992)
Idea: compute many univariate derivatives in different "directions", de-
termine the higher mixed partials from linear algebra.

f(x, y) = c + (b1, b2) ·
µ
x
y

¶
+
1

2
(x, y) ·

µ
h11 h12
h12 h22

¶
·
µ
x
y

¶
Want all partial derivatives up to order 2. Determine derivatives in x-
direction (directional derivatives in direction (1, 0))

(c, b1, h11)

Derivatives in y-direction (directional derivatives in direction (0, 1) )

(c, b2, h22)

Directional derivatives in direction d = (1, 1).We have

f(hd) = c + h(b1 + b2) +
1

2
h2(h11 + h12 + h12 + h22),

so directional derivative has form

(c, b1 + b2, h11 + 2h12 + h22)

Thus, we can reconstruct all partials up to order 2.



Multivariate from Univariate AD - Properties
Higher orders and more variables: Linear algebra needed to obtain mixed
partials from suitable univariate directional partials
Advantages:

• Conceptually simple - requires only univariate AD
• No complicated addressing schemes
Possible Limitations:

• Requires multiple passes
• Linear Algebra becomes potentially unwieldy, ill-conditioned
• Can not easily accommodate sparsity in derivatives, i.e. treat only the
nonzero ones (see below)

• Can not be used with Taylor models (see below)



Multivariate AD - Direct Method (Berz, 1985)
Idea: accumulate all Taylor coefficients simultaneously.
Key Problem: Determine a particular arrangement of all derivatives.
Advantages:

• Can be combined with sparsity treatment
• No need for repeated sweeps
• No need for linear algebra
• If done right, requires fewer operations
• Can be used with Taylor models (see below)
Possible Limitations:

• Requires sophisticated addressing scheme for multiplication
• Efficiency limited by that of multiplication



Storage and Addition
Each nonzero derivative is represented by its Taylor coefficients and sev-
eral coding integers

ci, n1,i n2,i, ...

More about the meaning of coding integers n later. All these are sorted,
first by value of n1, and then by value of n2, etc
Addition: Go through both sorted lists with pointers p1 and p2
• If coding integers of both lists agree, add coefficients.
— If result is zero, increment p1 and p2.
— f result is nonzero, increment pointer of result pr, copy coefficient sum
and coding integers, increment p1 and p2.

• If coding integers do not agree, copy term with integers that come first,
increment its pointer, and pr



Multiplication

Given two Taylor polynomials with coefficients (ai) and (bi) and exponents
(ni,j) and (mi,j). Suppose the N = (n + v)!/n!/v! monomials are arranged
in a certain order in vector of derivatives.
Most intuitive way:
LetMi: monomial stored in ith component, and let IM denote the position
of the monomial M .
Coefficient of component i of result is given by

ci =
X

0 ≤ ν, µ ≤ N
Mν ·Mµ = Mi

aν · bµ.

But: very difficult to determine all contributing factors Mν andMµ with
M = Mν ·Mµ online. Even if they are pre-stored for every i,this can not
easily take care of sparsity.
Better way:
Multiply each nonzero monomial in first vector with all those nonzero
monomials in the second vector.
Naturally avoids vanishing coefficients.



Multiplication - Single Stage Coding
Let M = xi11 · ... · xivv , then nc(M) is defined as follows:

nc(M) = nc(x
i1
1 · ... · xivv )

= i1 · (n + 1)0 + i2 · (n + 1)1 + ... + iv · (n+ 1)v−1.
So exponents become “digits” in a base (n+1) representation. Since iν ≤ n,
the functionM → n(M) is injective and hence the coding is unique.
No coding exceeds (n + 1)v, but not all such codings occur.
Nowwant to multiply twomonomialsM andN and retain terms less than
order n. Since multiplication corresponds to addition of the exponents, it
follows that

nc(M ·N) = nc(M) + nc(N).

To find of the desired coordinate position IM of the product of two mono-
mials, need a lookup array p that has the property

IM = p(nc(M)).

Has to be computed only once for given order n and number of variables v.
Disadvantage: since codings are bounded by (n + 1)v, the array needs
to have at least this length. n = 9, v = 10 leads to length 1010.



Multiplication - Multi-Stage Coding

Two-Stage Coding: Define two coding integers

n1(x
i1
1 · · · · · xivv ) =i1 · (n + 1)0 + i2 · (n+ 1)1

+ · · · + iv
2
· (n + 1)(v2−1)

n2(x
i1
1 · · · · · xivv ) =iv2+1 · (n+ 1)0 + iv

2+2
· (n + 1)1

+ · · · + iv · (n+ 1)(v2−1).
Sort the N(n, v) monomials first by value of n1, and then by value of n2.
Observe that

n1(M ·N) = n1(M) + n1(N)

n2(M ·N) = n2(M) + n2(N).

Introduce “inverse” arrays p1 and p2 in the following way: For all n1 and
n2 that appear as valid coding integers, we set
p1(n1) = (IM of first monomial M with first coding integer n1) and
p2(n2) = (IM of first monomial M with second coding integer n2)− 1.
Again p1 and p2 can be generated once during initial setup process. Can
now calculate address of product as

IM ·N = p1[n1(IM) + n1(IN)] + p2[n2(IM) + n2(IN)].



Multiplication - Multi-Stage Coding, Analysis

In two-stage coding, each address computation requires three integer ad-
ditions and two array lookups.
Advantage: Storage needed for p1 and p2 is now only (n + 1)v/2. For
example of n = 9, v = 10 leads to length 105.
Can be generalized to s > 2 stages: exponents grouped into s blocks, and
arranged such that block s takes precedence over block s− 1, which takes
precedence over that of block s− 2, etc.
Each monomial is assigned s coding integers n1...ns, and there are s “in-
verse” arrays p1...ps. Address computation:

IM ·N = p1[n1(IM)+n1(IN)]+p2[n2(IM)+n2(IN)]+ ...+px[nx(IM)+nx(IN)]

Required storage: only (n + 1)
v
2 .

Maximally compact, and maximally costly, at s = v : Storage for reverse
array only (n+ 1), but v + 1 integer additions
Practically Relevance: For most problems, two stage scheme is opti-
mal because of intrinsic limitations due to cost of (dense) multiplicationµ

n + 2v

2v

¶
.



Multiplication - Two Stage Coding, Example

Consider case n = 3, v = 4

# I1 I2 I3 I4 ORDER N1 N2 # P1 P2
1 0 0 0 0 0 0 0 0 1 0
2 1 0 0 0 1 1 0 1 2 10
3 0 1 0 0 1 4 0 2 4 22
4 2 0 0 0 2 2 0 3 7 31
5 1 1 0 0 2 5 0 4 3 16
6 0 2 0 0 2 8 0 5 5 25
7 3 0 0 0 3 3 0 6 8 32
8 2 1 0 0 3 6 0 7 0 0
9 1 2 0 0 3 9 0 8 6 28
10 0 3 0 0 3 12 0 9 9 33
11 0 0 1 0 1 0 1 10 0 0
12 1 0 1 0 2 1 1 11 0 0
13 0 1 1 0 2 4 1 12 10 34
14 2 0 1 0 3 2 1
15 1 1 1 0 3 5 1
16 0 2 1 0 3 8 1



17 0 0 0 1 1 0 4
18 1 0 0 1 2 1 4
19 0 1 0 1 2 4 4
20 2 0 0 1 3 2 4
21 1 1 0 1 3 5 4
22 0 2 0 1 3 8 4
23 0 0 2 0 2 0 2
24 1 0 2 0 3 1 2
25 0 1 2 0 3 4 2
26 0 0 1 1 2 0 5
27 1 0 1 1 3 1 5
28 0 1 1 1 3 4 5
29 0 0 0 2 2 0 8
30 1 0 0 2 3 1 8
31 0 1 0 2 3 4 8
32 0 0 3 0 3 0 3
33 0 0 2 1 3 0 6
34 0 0 1 2 3 0 9
35 0 0 0 3 3 0 12



Multiplication - Weighting
Sometimes important: Carry different variables xi to different orders wi.

Can be achieved by simply "seeding" original variables as

P (x) = (xw11 , x
w2
2 , ..., x

wv
v ).

Then in all subsequent operations, only multiples of wi appear as powers
of xi. Optimal reduction of speed by sparsity, but suboptimal memory use.
Use weighted coding:

n1(x
i1
1 · · · · · xivv ) =

i1
w1
+

i2
w2
·
µ·

n

w1

¸
+ 1

¶
+

i3
w3
·
µ·

n

w1

¸
+ 1

¶
·
µ·

n

w2

¸
+ 1

¶
+ · · · + iv

2

wv
2

·
v
2−1Y
k=1

µ·
n

wk

¸
+ 1

¶
n2(x

i1
1 · · · · · xivv ) =

iv
2+1

wv
2+1
+ · · · + iv

wv
·

v−1Y
k=v

2+1

µ·
n

wk

¸
+ 1

¶
.

"[ ]": Gauss bracket. So, exponents are divided by their weighting factor,
and resulting quotients are "digits" in a "variable-base" representation.



Multiplication - Weighting, Example
Consider case n = 5, v = 3. Tables without weighting:

j i1 i2 i3 n1 n2 Order n p1 p2
********************************** **************
1 0 0 0 0 0 0 0 1 0
2 1 0 0 1 0 1 1 2 21
3 0 1 0 6 0 1 2 4 36
4 2 0 0 2 0 2 3 7 46
5 1 1 0 7 0 2 4 11 52
6 0 2 0 12 0 2 5 16 55

... continues ... .. continues ..
53 0 0 4 0 4 4 28 0 0
54 1 0 4 1 4 5 29 0 0
55 0 1 4 6 4 5 30 21 0
56 0 0 5 0 5 5

There are 56 monomials, and the reverse addressing arrays need to have
at least length 30.



Multiplication - Weighting, Example
Now consider weighting w1 = 5, w2 = 1, w3 = 2. Again we have

n1(M ·N) = n1(M) + n1(N), n2(M ·N) = n2(M) + n2(N).

j i1 i2 i3 n1 n2 Order n p1 p2
********************************** **************
1 0 0 0 0 0 0 0 1 0
2 0 1 0 2 0 1 1 6 7
3 0 2 0 4 0 2 2 2 11
4 0 3 0 6 0 3 3 0 0
5 0 4 0 8 0 4 4 3 0
6 5 0 0 1 0 5 5 0 0
7 0 5 0 10 0 5 6 4 0
8 0 0 2 0 1 2 7 0 0
9 0 1 2 2 1 3 8 5 0
10 0 2 2 4 1 4 9 0 0
11 0 3 2 6 1 5 10 7 0
12 0 0 4 0 2 4
13 0 1 4 2 2 5



Multiplication - Weighting, Example

Examples for storage costs. Consider various choices for n and v, and
different weighting.
In all examples, w1 = 1, and other weights are w.

dim order max number of monomials size of the inverse integer lists
v n no weighting w = 3 w = 5 no weighting w = 3 w = 5
8 10 43758 375 81 13310 640 270
8 12 125970 825 153 26364 1500 324
8 18 1562275 5577 705 123462 6174 1152
10 10 184756 638 110 146410 2560 810
10 12 646646 1573 220 342732 7500 972
10 18 13123110 14014 1210 2345778 43218 4608
12 10 646646 1001 143 1610510 10240 2430
12 12 2704156 2730 299 4455516 37500 2916
12 18 86493225 30940 1911 47045880 302526 18432



Checkpointing and Composition
Reverse AD thrives from the fact that dependence of later intermediate
variables on earlier intermediate variables is very sparse. See "cheap gradi-
ent theorem" etc etc.
How can this be used for higher order AD?

1. Compute high-order dependence of suitable subsequent intermediates on
earlier intermediates. Will exhibit similar sparsity as in first order case.

2. Patch together such dependencies through composition.

Composition operation: Let us assume multivariate functions f at some
point x0 has Taylor polynomial Pf, and multivariate function g at f(x0) has
Taylor polynomial Pg. Then, Taylor polynomial of g ◦ f is obtained from

Pg◦f = Pg(Pf),

i.e. by evaluating the known Taylor polynomial of g with the "seed" Pf.
Can often be used very beneficially to perform side calculations to lower
dimension. For example, in Beam Physics, motion computation has v = 6,
but field computation has v = 3.



COSY
Design Features:
1. Uses two-stage coding, sparse storage of derivatives

2. All standard intrinsics as well as Derivation, Antiderivation

3. Highly optimized implementation

4. Can be called fromF77 and C (subroutine calls), F95 and C++ (objects)

5. Language-Independent Platform - only one source code for four lan-
guages

6. Altogether nearly 1000 registered users, development almost 20 years,
$5M in funding

Existing Application Packages:
1. COSY INFINITY (Beam Physics): Currently the main tool for simula-
tion of nonlinear high-order effects in beam dynamics

2. COSY-VI: Validated Integrator, based on Taylor expansion in time AND
initial condition

3. COSY-GO: Validated Global Optimizer, based on Taylor expansion for
dependency suppression and domain reduction



Definitions - Taylor Models and Operations
We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D ⊂ Rv → R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let x0 be a point in D and P the
n-th order Taylor polynomial of f around x0. Let I be an interval such that

f(x) ∈ P (x− x0) + I for all x ∈ D.

Thenwe call the pair (P, I) an n-th order Taylor model of f around x0 onD.

Definition (Addition and Multiplication) Let T1,2 = (P1,2, I1,2) be
n-th order Taylor models around x0 over the domain D. We define

T1 + T2 = (P1 + P2, I1 + I2)

T1 · T2 = (P1·2, I1·2)
where P1·2 is the part of the polynomial P1 · P2 up to order n and

I1·2 = B(Pe) +B(P1) · I2 +B(P2) · I1 + I1 · I2
where Pe is the part of the polynomial P1 · P2 of orders (n + 1) to 2n, and
B(P ) denotes a bound of P on the domain D.We demand that B(P ) is at
least as sharp as direct interval evaluation of P (x− x0) on D.



Implementation of TM Arithmetic
Validated Implementation of TM Arithmetic exists. The following points
are important

• Strict requirements for underlying FP arithmetic

• Taylor models require cutoff threshold (garbage collection)
• Coefficients remain FP, not intervals
• Package quite extensively tested by Corliss et al.
For practical considerations, the following is important:

• Need sparsity support
• Need efficient coefficient addressing scheme
• About 50, 000 lines of code
• Language Independent Platform, coexistence in F77, C, F90, C++



Efficient Taylor Models - Sign Choice
Decompose polynomials to multiply into purely positive one and
purely negative one:

P1,2 = P+1,2 + P−1,2
where all coefficients in P+1,2 are positive, and all coefficients in
P−1,2 are negative. Then execute separately

Q+ = P+1 · P+2 + P−1 · P−2 and
Q− = P+1 · P−2 + P−1 · P+2

Obviously, P1 ·P2 = Q++Q−. But: Q+ andQ− have only positive
and negative coefficients, respectively. This entails:
No need for TM Tallying Variable! Just compute each coeffi-
cient, and account for total error afterwards based on known max
number of contributions.



High Precision Taylor Models - Storage
High precision coefficients are stored as "unevaluated sums of
floating point numbers". Let ε be approximate machine epsilon.
Write each high precision coefficient as

a = a0 + a1 · ε + a2 · ε2
Then each of the ai has similar magnitude.
AND: Introducing one more variable in the polynomial for "pow-
ers of ε" we can utilize completely normal TM polynomial frame-
work.



High Precision Taylor Models - Multiplication

Split each polynomial into two parts:

1. Those coefficients less than ε−1 away from cutoff or accumu-
lated remainder bound

2. Those more away (the "higher precision terms")

Multiply the first polynomials in usual way.
Second polynomials: Pre-split each coefficient into two "half length"
double precision variables as in "two product" algorithm.
Advantage:

1. Such coefficients can be multiplied without any roundoff error.

2. The pre-splitting cost is linear in length of "higher precision
term" polynomials, NOT quadratic




