Higher Order Univariate AD

Object is one vector with (n + 1) entries, where n is the order.
Coeflicients of vector are Taylor coefficients

_10'f
4l o7
(Could also use derivatives directly, but with Taylor coefficients, subsequent

arithmetic is simpler)
Addition: merely component-wise.

Multiplication:
i
C;, — Zaj . bi_j
§=0

Very straightforward, easy to program.

a;



Higher Order Univariate AD - Intrinsics

Various methods. For example,

sin ((ag, a1, ..., a,)) = sin ((ay, 0, ...
= sin(ay, 0, ...
= (sin(ay), 0, ...
+ (cos(ayp), 0, ...

= (sin(ay), 0, ...

+ (cos(ayp), 0, ...

,0) -+ (0, ai, ag, ..., an))

,0) - cos(0, ay, ag, ..., a,) + cos(ag, 0, ...

ey )

,0) - sin(0, aq,



Higher Order Univariate AD - Intrinsics

Thus, used addition theorem to split off constant part a, use (finite) power
series for non-constant part b.
Can be used in many cases:

cos(a + b) = cos(a) - cos(b) — sin(a) - sin(b)
exp(a + b) = exp(a) - exp(b)

log(a 4+ b) = log(a) + log (1 + é) if a # 0
a

1 1 b\
=_—. (14— if
(a+b) a (+a> ifa70
va+b=+/a- 1+éifa7€()
a

etc etc

The required sums usually have n terms.
Other method: Use Newton method with zeroth-order solution as start
value. This usually requires less iterations, namely about log,(n)



Higher Order Coefficient Combinatorics

How many monomials are there up to order n in v variables? Write them
11 19 13 iv
T kXS kT kL kT

3

with 47 + ... + 7, < n. Consider 27 * 73 x 3 * ... * 7> Code it as

i1:2 i2:3 i3:1 iUZB n—z'l—...—iv
11 111 %~ 1 ... 111 % 111

Each monomial is uniquely represented in such a way. Observe total
number of 1’s is n, total number of *'s is v. So, total length of string is
(n 4 ).

The placement of the *'s determines everything. Apparently there are

N(n,v) = (“ : ”)

ways to arrange them.



Higher Order Coefficient Combinatorics - More

How many monomials are there of exact order n? Code them as

11=2 19=3 13=1 1y=3

n+v—1
v—1
Number of possible products of two monomials of total order up to n? Code
them as

Thus there are

i1=2 =3  j1=3 R S Sy
I w0 111 % 111 % ... 1111 % 11

Length of string is (n + 2v), and the number of *’s is 2v. Thus number of

possible products is
n + 2v
20 )



Multivariate from Univariate AD (Griewank, 1992)

Idea: compute many univariate derivatives in different "directions", de-
termine the higher mixed partials from linear algebra.

f(z,y) =c+ (b1, b2) - (:?j) +%($’y>‘ (ZE ZZ) | Gj)

Want all partial derivatives up to order 2. Determine derivatives in x-
direction (directional derivatives in direction (1,0))

(Ca b1, h11)

Derivatives in y-direction (directional derivatives in direction (0, 1) )

(¢, b2, ha)
Directional derivatives in direction d = (1,1). We have
1
f(hd) = ¢+ by +bo) + Sh™(hus + o + bz + hoa),
so directional derivative has form

(C, b1 + by, h11 + 2h19 + hgg)

Thus, we can reconstruct all partials up to order 2.



Multivariate from Univariate AD - Properties

Higher orders and more variables: Linear algebra needed to obtain mixed
partials from suitable univariate directional partials
Advantages:

e Conceptually simple - requires only univariate AD

e No complicated addressing schemes

Possible Limitations:

e Requires multiple passes

e Linear Algebra becomes potentially unwieldy, ill-conditioned

e Can not easily accommodate sparsity in derivatives, i.e. treat only the
nonzero ones (see below)

e Can not be used with Taylor models (see below)



Multivariate AD - Direct Method (Berz, 1985)

Idea: accumulate all Taylor coeflicients simultaneously.
Key Problem: Determine a particular arrangement of all derivatives.
Advantages:

e Can be combined with sparsity treatment

e No need for repeated sweeps

e No need for linear algebra

e If done right, requires fewer operations

e Can be used with Taylor models (see below)

Possible Limitations:

e Requires sophisticated addressing scheme for multiplication

e Efficiency limited by that of multiplication



Storage and Addition

Each nonzero derivative is represented by its Taylor coefficients and sev-
eral coding integers
Ciy N14 M2,y ...

More about the meaning of coding integers n later. All these are sorted,
first by value of n;, and then by value of ny, etc
Addition: Go through both sorted lists with pointers p; and po

e If coding integers of both lists agree, add coefficients.

— If result is zero, increment p; and ps.

— f result is nonzero, increment pointer of result p,, copy coeflicient sum
and coding integers, increment p; and ps.

e If coding integers do not agree, copy term with integers that come first,
increment its pointer, and p,



Multiplication

Given two Taylor polynomials with coefficients (a;) and (b;) and exponents
(ni;) and (m; ;). Suppose the N = (n + v)!/n!/v! monomials are arranged
in a certain order in vector of derivatives.

Most intuitive way:

Let M;: monomial stored in 1th component, and let 1;; denote the position
of the monomial M.

Coefticient of component ¢ of result is given by

= 2, ah

But: very difficult to determine all contrlbutlng factors M, and M, with
M = M, - My online. Even if they are pre-stored for every ,this can not
easily take care of sparsity.

Better way:

Multiply each nonzero monomial in first vector with all those nonzero
monomials in the second vector.

Naturally avoids vanishing coefficients.



Multiplication - Single Stage Coding
Let M = 2! - ...- 2%, then n.(M) is defined as follows:
ne(M) = n(zt - ... - )

(%

=i -+ 1) +ig-(n+ 1)+ iy (1)L

So exponents become “digits” in a base (n+1) representation. Since i, < n,
the function M — n(M) is injective and hence the coding is unique.

No coding exceeds (n + 1)”, but not all such codings occur.

Now want to multiply two monomials M and /N and retain terms less than
order n. Since multiplication corresponds to addition of the exponents, it
follows that

ne(M - N) =n. M)+ n.(N).
To find of the desired coordinate position [, of the product of two mono-
mials, need a lookup array p that has the property

]M — p(nc(M))

Has to be computed only once for given order n and number of variables v.
Disadvantage: since codings are bounded by (n + 1)", the array needs
to have at least this length. n =9, v = 10 leads to length 10%.



Multiplication - Multi-Stage Coding

Two-Stage Coding: Define two coding integers

ni(zt - ) =iy - (n+1)° +iy - (n 4 1)
_|_..._|_Z'% : (n_|_1)(%_1)
no(zth - - xy) =izsr- (n+1)° +izio - (n+ 1)

v_

oty (n+ )67
Sort the N(n,v) monomials first by value of ny, and then by value of n..
Observe that

nl(M . N) — nl(M) + n1<N)
RQ(M . N) — RQ(M> + RQ(N)
Introduce “inverse” arrays p; and p, in the following way: For all n; and
n9 that appear as valid coding integers, we set
p1(n1) = (I of first monomial M with first coding integer n,) and
pa(ng) = (I of first monomial M with second coding integer ny) — 1.

Again p; and py can be generated once during initial setup process. Can
now calculate address of product as

Inr.y = prma(Lar) +na(Iy)] + palna(Lar) + no(In)).



Multiplication - Multi-Stage Coding, Analysis

In two-stage coding, each address computation requires three integer ad-
ditions and two array lookups.

Advantage: Storage needed for p; and py is now only (n + 1)“/ 2. For
example of n = 9, v = 10 leads to length 10°.

Can be generalized to s > 2 stages: exponents grouped into s blocks, and
arranged such that block s takes precedence over block s — 1, which takes
precedence over that of block s — 2, etc.

Fach monomial is assigned s coding integers n,...ns, and there are s “in-
verse” arrays pi...ps. Address computation:

Iy = pi[na(D) +ra(In)]+palna(Da) +no(In)] + ..+ palne (D) + 1y (1))

Required storage: only (n + 1)2.

Maximally compact, and maximally costly, at s = v : Storage for reverse
array only (n + 1), but v + 1 integer additions

Practically Relevance: For most problems, two stage scheme is opti-
mal because of intrinsic limitations due to cost of (dense) multiplication

n + 2v
v )



Multiplication - Two Stage Coding, Example

=4

Consider case n = 3, v

ORDER N1 N2 P1 P2

# I1 I2 I3 I4

1

0
1

O 0 0 O

1

10
22
31

O 0 O

2

2 0 0 O

4

16
25
32

2
3

O 2 0 O

6
7

3 0 0 O

28
33

3

3
1

2 0 O
2

1

12

O 3 0 O

10
11

10
11
12

O 0 1 O

1

O 1 O

12
13
14
15
16

34

10

3

2 0 1 0

0

1

0 2



1
1
1
1

O 0 O
1

17
18
19
20
21

O O

O 1 O
2 0 O

1

O 2 O
O 0 2 O
1

22
23

2
3
3

O 2 O

24
25
26
27
28
29
30

O 1 2 O

2
3
3
3

O 0 0 2

1

O 0 2

O 1 0 2
O 0 3 O

31

32

1
2

O 0 2

33
34

35

1
O 0 0 3

O O

12

3



Multiplication - Weighting

Sometimes important: Carry different variables x; to different orders w;.

Can be achieved by simply "seeding" original variables as
P(z) = (7", k52, ..., T").
Then in all subsequent operations, only multiples of w; appear as powers
of z;. Optimal reduction of speed by sparsity, but suboptimal memory use.

Use weighted coding:

e (2] (B (2]

n :L.Zl ..... T __
1( 1 v) W, W, W,
PR
v n
SRR — | +1
2 k=1
1o41 - n
. . £_|_
TLQ(ZE? ..... .T?UU)ZQ _|__|__U H ([—]‘1_1)
Wyt Wy bt Wk
)

"[ |": Gauss bracket. So, exponents are divided by their weighting factor,
and resulting quotients are "digits" in a "variable-base" representation.



Multiplication - Weighting, Example

Consider case n = 5, v = 3. Tables without weighting;:

j 11 i2 i3 nl n2  Order n pl p2
sk sk sk 3k sk sk ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok sk sk ok
1 O O O o) o) o) o) 1 o)
2 1 0 O 1 0 1 1 2 21
3 O 1 O 6 o) 1 2 4 36
4 2 0 O 2 0 2 3 4 46
S} 1 1 O 4 o) 2 4 11 52
6 O 2 O 12 o) 2 5 16 55
... continues ... .. continues ..
53 O O 4 o) 4 4 28 o) o)
o4 1 0 4 1 4 5 29 o) o)
00 O 1 4 6 4 5 30 21 o)
56 O O b o) S} S}

There are 56 monomials, and the reverse addressing arrays need to have
at least length 30.



Multiplication - Weighting, Example

Now consider weighting w; = 5, we = 1, w3 = 2. Again we have
ni(M - N)=mn1(M)+ni(N), no(M - N) =no(M)+ ns(N).

j 11 i2 i3 nl n2  Order n pl p2
sk ok ok ok sk ok ok sk ok sk ok sk ok sk sk ok sk ok sk sk sk ok ok ok sk sk ok ok ok ok sk ok ok sk ok ok ok sk ok sk ok ok sk ok ok ok ok
1 0 0 O 0 0 0 0 1 0
2 0 1 0 2 0 1 1 6 7
3 0 2 O 4 0 2 2 2 11
4 0 3 O 6 0 3 3 0 0
5 0 4 O 3 0 4 4 3 0
6 5 0 O 1 0 5 5 0 0
7 0 5 O 10 0 5 6 4 0
3 0 0 2 0 1 2 7 0 0
9 0 1 2 2 1 3 3 5 0
10 0 2 2 4 1 4 9 0 0
11 0 3 2 6 1 5 10 7 0
12 0 0 4 0 2 4
13 0 1 4 2 2 5



Multiplication - Weighting, Example

Examples for storage costs. Consider various choices for n and v, and
different weighting.
In all examples, w; = 1, and other weights are w.

dim | order | max number of monomials | size of the inverse integer lists
v n | no weighting | w = 3| w = 5| no weighting| w=3| w=>5
8 10 43758 | 375 81 13310 640 270
8 12 125970 825 153 26364| 1500 324
8 18 1562275 | 5577 705 123462 | 6174 1152

10 10 184756 638 110 146410 2560 810
10 12 646646 | 1573 220 342732 7500 972
10 18 13123110| 14014| 1210 2345778 | 43218| 4608
12 10 646646 1001| 143 1610510 10240 2430
12 12 2704156 2730 299 4455516 | 37500, 2916
12 18 86493225 | 30940 | 1911 47045880 | 302526 | 18432




Checkpointing and Composition

Reverse AD thrives from the fact that dependence of later intermediate
variables on earlier intermediate variables is very sparse. See "cheap gradi-
ent theorem" etc etc.

How can this be used for higher order AD?

1. Compute high-order dependence of suitable subsequent intermediates on
earlier intermediates. Will exhibit similar sparsity as in first order case.

2. Patch together such dependencies through composition.

Composition operation: Let us assume multivariate functions f at some
point x( has Taylor polynomial Py, and multivariate function ¢ at f(z¢) has
Taylor polynomial P,. Then, Taylor polynomial of g o f is obtained from

PQOf — Pg(Pf>v

i.e. by evaluating the known Taylor polynomial of g with the "seed" P.

Can often be used very beneficially to perform side calculations to lower
dimension. For example, in Beam Physics, motion computation has v = 6,
but field computation has v = 3.



COSY

Design Features:
1. Uses two-stage coding, sparse storage of derivatives
2. All standard intrinsics as well as Derivation, Antiderivation
3. Highly optimized implementation
4. Can be called from F77 and C (subroutine calls), F95 and C++ (objects)

5. Language-Independent Platform - only one source code for four lan-
guages

6. Altogether nearly 1000 registered users, development almost 20 years,
$5M in funding

Existing Application Packages:

1. COSY INFINITY (Beam Physics): Currently the main tool for simula-
tion of nonlinear high-order effects in beam dynamics

2. COSY-VI: Validated Integrator, based on Taylor expansion in time AND
initial condition

3. COSY-GO: Validated Global Optimizer, based on Taylor expansion for
dependency suppression and domain reduction



Definitions - Taylor Models and Operations

We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D C R’ — R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let zy be a point in D and P the
n-th order Taylor polynomial of f around z. Let I be an interval such that

f(z) € P(x —x¢) + 1 forall z € D.
Then we call the pair (P, I') an n-th order Taylor model of f around zy on D.

Definition (Addition and Multiplication) Let 719 = (P2, [1 2) be
n-th order Taylor models around z over the domain . We define

Ti+T=(P+ P, + 1)
Ty - T = (P, I1.0)
where P, 5 is the part of the polynomial P, - P, up to order n and
Lo=B(P.)+B(P) - I+ B(PR) - I+ I - I

where P, is the part of the polynomial P, - P, of orders (n + 1) to 2n, and
B(P) denotes a bound of P on the domain D. We demand that B(P) is at
least as sharp as direct interval evaluation of P(x — z() on D.



Implementation of TM Arithmetic

Validated Implementation of TM Arithmetic exists. The following points
are important

e Strict requirements for underlying FP arithmetic

e Taylor models require cutoff threshold (garbage collection)
e Coefficients remain FP, not intervals

e Package quite extensively tested by Corliss et al.

For practical considerations, the following is important:

e Need sparsity support
e Need efficient coeflicient addressing scheme

e About 50, 000 lines of code
e Language Independent Platform, coexistence in F77, C, F90, C++



Efficient Taylor Models - Sign Choice

Decompose polynomials to multiply into purely positive one and
purely negative one:

_ pt —
Pio= Py + P

where all coefficients in Pfj , are positive, and all coefficients in
Py, are negative. Then execute separately

Q+:P1—|—'P2++P1_'P2_ and
Q_:Pl—l—PQ__FPl_P;
Obviously, P, - P, = Q1T+ Q. But: Q" and ()~ have only positive
and negative coefficients, respectively. This entails:
No need for TM Tallying Variable! Just compute each coeffi-

cient, and account for total error afterwards based on known max
number of contributions.



High Precision Taylor Models - Storage

High precision coefficients are stored as "unevaluated sums of
floating point numbers". Let € be approximate machine epsilon.
Write each high precision coefficient as

a:ao+a1-5+a2-62

Then each of the a; has similar magnitude.

AND: Introducing one more variable in the polynomial for "pow-
ers of £" we can utilize completely normal TM polynomial frame-
work.



High Precision Taylor Models - Multiplication

Split each polynomial into two parts:

1

1. Those coefficients less than £~ away from cutoft or accumu-

lated remainder bound

2. Those more away (the "higher precision terms")

Multiply the first polynomials in usual way.

Second polynomials: Pre-split each coefficient into two "half length"
double precision variables as in "two product" algorithm.

Advantage:

1. Such coefficients can be multiplied without any roundoft error.

2. The pre-splitting cost is linear in length of "higher precision
term" polynomials, NOT quadratic





