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1st example: the Brezis-Nirenberg eigenvalue problem

In a joint work with Filippo Gazzola, Hans-Christoph Grunau and
Edoardo Sassone (The second bifurcation branch for radial
solutions of the Brezis-Nirenberg problem in dimension four,
NoDEA OnLine First), we study the equation

−∆u = λu + u3

in the unit ball of R4 under homogeneous Dirichlet boundary
conditions. We consider the branch of radial solutions bifurcating
from the second (radial) eigenvalue of −∆.



1st example: the Brezis-Nirenberg eigenvalue problem

The problem becomes an ordinary differential equation. More
precisely, we set r := |x | (so that 0 < r < 1) and assuming that
u = u(r), the equation reads

u′′(r) +
3

r
u′(r) + λu(r) + u3(r) = 0

with boundary conditions u′(0) = u(1) = 0.



1st example: the Brezis-Nirenberg eigenvalue problem

We overdetermine the problem by adding the “shooting condition”
u(0) = ω. In general, the equation admits no solution since it
involves 3 boundary conditions. However, for any ω > 0 and for a
suitable λ = λ(ω), there exists a solution uω with precisely one
zero in [0, 1), the second zero being at r = 1. We are interested in
studying the behaviour of the map ω 7→ λ(ω).

Theorem

Let λ(ω) be defined as above. Then, for all ω > 0 we have
λ(ω) > µ1 (the first eigenvalue of −∆).



1st example: the Brezis-Nirenberg eigenvalue problem

Second bifurcation branch for n = 3, 4, 5, 6.



1st example: the Brezis-Nirenberg eigenvalue problem

Sketch of the sketch of the proof.

Use analytical estimates for ω > 359 and ω ∈ (0, 5.87 . . . ).

Partition the interval [5, . . . , 359] in small intervals.

Use a computer assisted proof to prove the statement in the
small intervals.



2nd example: the biharmonic equation

In a joint work with Filippo Gazzola and Hans-Christoph Grunau
(Entire solutions for a semilinear fourth order elliptic problem with
exponential nonlinearity, J. Diff. Eq. 230 (2006) 743-770) we
studied entire regular radial solutions of the semilinear supercritical
biharmonic equation

∆2u = λeu in Rn, n ≥ 5, λ > 0 ,

i.e. in solutions u(x) = ũ(|x |), which exist for all x ∈ Rn.



2nd example: the biharmonic equation

The function ũ(r) satisfies the ordinary differential equation

u(4)(r) +
2(n − 1)

r
u′′′(r) +

(n − 1)(n − 3)

r2
u′′(r)

−(n − 1)(n − 3)

r3
u′(r) = λeu(r)

when r > 0 and with initial conditions u(0) = 1, u′′(0) = β and
u′(0) = u′′′(0) = 0.



2nd example: the biharmonic equation

Finite time blow up, entire and infinite time blow down solution
with n = 5.



2nd example: the biharmonic equation

Thanks to scaling it is enough to consider just one value of the
parameter λ. It turns out that

λ = 8(n − 2)(n − 4).

is particularly convenient. For this value of λ the equation admits
the singular solution x 7→ −4 log |x |.



2nd example: the biharmonic equation

If s = log r and w(s) := u(es) + 4s, then the equation becomes

d4w

ds4
+ 2(n−4)

d3w

ds3
+ (n2−10n + 20)

d2w

ds2
−2(n−2)(n−4)

dw

ds
=

λ
(

ew(s) − 1
)

Set w = (w ,w ′,w ′′,w ′′′); then the singular solution of corresponds
to the stationary solution w0(s) ≡ 0.



Representation of functions analytic in a disk

Let R > 0, let HR be the space of analytic functions in the open
disk DR = {z ∈ C : |z | < R} and let XR be the subspaces of HR

with finite norm

‖u‖XR
=
∞∑

k=0

|uk |Rk

where

u(t) =
∞∑

k=0

uktk (1)

and uk ∈ R.
The space XR is a Banach algebra.



Representation of functions analytic in a disk

We wish to make the computer handle functions in XR in the most
transparent way.
It is well known that a main issue for computer assisted proofs is to
have the computer manipulate real numbers. This problem is
usually addressed by Interval Arithmetics. The main point of
Interval Arithmetics is the representation of real numbers by means
of intervals, whose extrema are representable numbers, i.e. number
that can be exactly expressed by the arithmetics used by the
computer, e.g. according to the IEEE standard.



Representation of functions analytic in a disk

Obviously, it is also essential to teach the computer how to handle
these “numbers”, how to perform basic arithmetics and how to
compute all kind of functions we may need. Nowadays there exists
plenty of packages that provide such technique.
We refer to the surrogate of real numbers provided by intervals as
std(R). Our purpose is to create std(XR) with the same properties.



Representation of functions analytic in a disk

We need a (finite) subset of XR which can efficiently represent the
whole space. We can write functions in XR as follows:

u(t) =
N−1∑
k=0

uktk + tNEu(t) , (2)

where Eu ∈ XR . We can store the N (real) coefficients {uk} and a
bound for the norm of Eu; more precisely, we store 2N + 1
representable numbers. N pairs represent lower and upper bounds
for the value of the coefficients, while the last number is an upper
bound of the norm of Eu.



Representation of functions analytic in a disk

Object oriented programming may be very useful to handle this
kind of representations. It allows to define an object “Taylor
series” with methods corresponding to all the operations we need,
and also we can overload some basic function, e.g. ’+’, ’-’, ’*’, ’/’,
and treat functions in a completely transparent way.



Implementation

We wish to solve

u(4)(t)+
2(n − 1)

t
u′′′(t)+

(n − 1)(n − 3)

t2
u′′(t)−(n − 1)(n − 3)

t3
u′(t)

= λeu(t)

with initial conditions u(0) = 1, u′′(0) = β and u′(0) = u′′′(0) = 0.
As a first step, we wish to have a rigorous estimate of the solution
and its derivatives at a given time t ∈ [0,T ], where T > 0 is as
large as possible.



Implementation

Fix R > 0 and let

X̃R = {u ∈ XR : u(0) = 1, u′′(0) = β} .

Let L : X̃R → HR be defined by

(Lu)(t) = u(4)(t) +
2(n − 1)

t
u′′′(t) +

(n − 1)(n − 3)

t2
u′′(t)

−(n − 1)(n − 3)

t3
u′(t)

and f : X̃R → XR be defined by

f (u) = λeu .



Implementation

The following lemmas are straightforward:

Lemma

The operator L is invertible and solutions of the fourth order
differential equation with the assigned initial conditions correspond
to fixed points of the operator F = (L−1f ) : X̃R → X̃R .

Lemma

Let BK = {u ∈ XR , ||u||XR
≤ K}. The Lipschitz constant of the

function F restricted to BK is at most λeKR4

C(0,n) .



Implementation

Assume that we have an approximate solution ū(t) =
∑N−1

k=0 ūktk ,
where {ūk} are interval values satisfying 1 ∈ ū0 and β/2 ∈ ū2. The
following lemma yields a true solution close to ū:

Lemma

Let ū ∈ ZR , C : ZR → ZR and ε, ρ > 0. If ||C (ū)− ū||ZR
< ε and

the restriction of C to the ball B(ū, ρ) has Lipschitz constant
L(C ) ≤ 1− ε/ρ, then there exists a fixed point of C in B(ū, ρ).



Implementation

By applying the lemmas shown above we can now rigorously
compute u(t) and its derivatives for all t ∈ [0,T ], where
0 < T < R. We remark that, independently of the accuracy of the
computations and of the order N, it is clear that we cannot use
this approach for computing the solution at values of T larger than
the (unknown) radius of analyticity of the solution of the problem.
Nonetheless, since we know the solution at some positive time T ,
we can reiterate the procedure by computing the power expansion
centered at t = T .



Implementation

This is not very convenient from the numerical point of view, since
we would have to compute the power expansion at t = T of the
functions t−1, t−2 and t−3. It is more convenient to set
w(s) = u(es) + 4s, so that w satisfies the autonomous equation

w (4)(s)+2(n−4)w ′′′(s)+(n2−10n+20)w ′′(s)−2(n−2)(n−4)w ′(s)

= λ(ew(s) − 1) ,

for which we may always assume that an initial value problem is
set at s = 0.



A fixed point problem

Our strategy for proving the existence of a fixed point for some
operator F : F → F is as follows. First, we use our best numeric
algorithm in order to find a good approximation u0 of the solution
of the problem. We choose an “finite” approximation M for the
map Id + [DF (u0)− Id]−1, and then we define

C(u) = F (u)−M
[
F (u)− u

]
.

Formally, the map C is close to the Newton map for F . Thus, our
goal is to prove that C is a contraction.



A fixed point result

The necessary conditions are given in the following version of the
Banach theorem:

Lemma

Let u0 be a function in F . Assume that there exists a bounded
linear operator M on F , and constants ε,K > 0, such that M − Id
has a bounded inverse and

‖C(u0)− u0‖ < ε , ‖DC(u)‖ < K , ε+ Kr < r ,

for all functions u in a closed ball B in F of radius r , centered at
u0. Then the function F has a unique fixed point u in B.



Representation of other functional spaces

This technique is not restricted to Taylor series, but, at least in
principle, can be applied to all functional spaces having a “good”
basis. Here the word “basis” is used in a broad sense. Loosely
speaking, a good basis is a finite subset of the functional space
which spans a large portion of the functional space. The technique
has been successfully implemented to Fourier serier and also to
Fourier series with coefficients that are Taylor series or again
Fourier series.


