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Abstract. The COSY Infinity software package by Berz et al. is widely
used in the beam physics community. We report execution-based test-
ing of its interval and Taylor model arithmetics. The testing strategy is
careful to avoid contamination by inevitable rounding errors. Tests were
ported to Sun’s F95 and INTLAB. In each package, we uncovered vio-
lations of containment which have all been corrected by their authors.
We encourage users of COSY and most other software packages to check
author/vendor web sites regularly for possible updates and patches.

1 Testing COSY’s Interval Arithmetic

During Spring 2002, the reliable computing email list reliable computing@
interval.louisiana.edu had an active discussion of COSY Infinity [1,9] (Berz
et al., available from http://cosy.pa.msu.edu [2]). COSY Infinity is an arbi-
trary order package for multivariate automatic differentiation and interval and
Taylor model arithmetic. It can be used in an interpreted version, which we
tested, in a compiled version from Fortran 77 and C programs, or through objects
in Fortran 90 and C++. The reliable_computing discussions raised concerns
about the reliability of interval and Taylor model arithmetics, so Berz commis-
sioned the execution-based testing of COSY interval arithmetic we report here.
We also applied our tests to Sun Microsystems’ Fortran 95 [10] and Rump’s
INTLAB for MATLAB [13,14,15].

Testing software is challenging. Myers summarizes testing philosophy, “The
purpose of testing is to find errors” [11]. Kit [8], Kaner et al. [6], or Whittaker [16]
offer best practice in industrial software quality assurance.

Authors of many packages for interval arithmetic have tested their work, but
there is little literature describing those tests. In TOMS 737 [7], Kearfott et
al. tested their Fortran 77 INTLIB arithmetic operations with a combination
of specially constructed and randomly generated arguments. Corliss [4] gave a
suite of programs for “testing” environments for interval arithmetic for usability
and speed. Sun Microsystems says their Fortran 95 interval elementary function
library has undergone exhaustive testing, which is confidential.

The focus of this paper is on the testing of COSY’s interval and Taylor model
arithmetic. Since we found little methodological discussion in the literature, we
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developed testing methods that could be applied more generally. Besides the
testing of COSY, we applied our methods also to Sun’s F95 and INTLAB pri-
marily to validate our testing methods. The testing methods have wider utility,
but our focus is execution-based testing of COSY.

2 What Is “Correct?”

The fundamental tenet of the interval community is, “Thou shalt not lie!” It is
an error to i) violate containment or ii) assert a mathematical falsehood. Our
testing exposed violations of containment for

1. COSY: power when the exponent is not an integer, but very close to it.
2. COSY: (with warning) tan when the interval argument crosses discontinuity.
3. INTLAB: sqrt for most arguments.
4. Sun F95: tanh for many negative arguments.
5. COSY Taylor models: sin, asin, and acos.

We give details of errors we found in Sects. 5 and 9. On the other hand, questions
of appropriate domains for interval operations, tightness of enclosures, speed,
and ease of use are not considered errors, but may represent opportunities for
improved performance. We raise some of those issues in Sects. 6, 7, and 8.

3 Test Strategy

To complete the testing in a timely manner, we accepted a very narrow scope.
We tested the arithmetic operations unary and binary addition and subtraction,
multiplication, and division, and the intrinsic functions power, sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, log, exp, sqrt. sqr, and isqrt. Our goal is to
identify i) violations of containment or ii) assertions of mathematical falsehood.
We developed a set of test cases consisting of an interval vector [x] and an
expression f(x). Expected results are computed a posteriori in Maple. We did
not attempt testing of other features of COSY including its linear dominated
bounder, shrink-wrapping, or ODE solving.

We denote by ̂[f([x])] the result of challenging the interval arithmetic to
evaluate f on the interval [x]. We seek examples x ∈ [x] for which f(x) is not in

̂[f([x])]. We do not need to know the true containment set of f([x]). Instead, we
use Maple as the “referee” of containment. We

1. Read each test case into a COSY driver;
2. Construct COSY intervals for the arguments;
3. Evaluate the expression using COSY interval arithmetic;
4. Write binary values of the arguments and the COSY result;
5. Read the binary arguments and COSY results into Maple;
6. Perform many point evaluations f(x) for x ∈ [x];
7. Compare Maple’s f(x) with COSY enclosure.

The most challenging aspect of conducting the tests was to prevent inevitable
roundoff errors from contaminating our results.
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3.1 Roundoff Errors

Suppose we wish to test sin on [0.1, 0.6] on an IEEE arithmetic machine. Fun-
damentally, it is impossible, since 0.1 and 0.6 are not exactly representable. We
cannot even express the question, “What is sin [0.1, 0.6]?”

Roundoff errors may be introduced into tests of interval software when we

1. Read test cases into the test driver;
2. Construct interval(s) for the arguments;
3. Extract interval bounds from arguments and results;
4. Write arguments and results to a file;
5. Read arguments and results into Maple;
6. Construct Maple variable precision representations;
7. Perform Maple operations;
8. Report from Maple.

Table 1 suggests the schematic flow of the testing process. It shows the commu-
nication from COSY to Maple of both the exact (binary) argument(s) used to
challenge each arithmetic operation or intrinsic function and the exact (binary)
result computed by COSY. We consider each potential source of roundoff error
in turn. The issue is not with Maple. Issues 1 - 3 concern COSY. Issues 4 - 6
concern communication between any pair of dissimilar software packages.

Table 1. Schematic of the flow of testing

COSY Maple referee
Enter [0.1, 0.6]

⇓ round near
[ internal IEEE 754 ] =⇒ [ · · · ]

⇓ INTV round out ⇓ multiprecision
INTV( · · · ) x ∈ [ · · · ]
⇓ f round out ⇓ f multiprecision

⇓ f(x)
funct(· · ·) =⇒ enclosed in?

Read Test Cases into the Test Driver. We must separate the testing of
the input and output routines from the testing of the operations. Our goal is
to test the operations of interval arithmetic. We read files of test cases into a
test driver. We view the internal binary values as truth, while the ASCII values
in the file are viewed as approximations. In the few cases where the difference
matters, we use test arguments that are exactly representable in binary, and we
check whether they are read exactly.

Construct an Interval. COSY’s interval constructor INTV() by default adds
one ULP outward to its arguments to compensate for assumed possible inward
rounding in assigning their values. We tested COSY using the INTV() construc-
tor to model usual use. Using INTV() prevented us from testing cases such as
asin([1, 1]) because INTV(1.0, 1.0) contains points at which asin is not defined.
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Extract Interval Bounds. After challenging COSY’s interval arithmetic, we
write the challenge arguments and the COSY results to a file. We use the COSY
functions INL() and INU() to extract the lower and upper bounds, respectively,
of the COSY intervals. We verified by both execution testing and by direct code
inspection that INL() and INU() return their respective values with no rounding.

Write Arguments and Results to a File. To avoid roundoff in writing the
challenge arguments and COSY’s results to a file for reading by Maple, we write
them in binary form, either big endian or little endian, depending on the host
testing platform.

Read Arguments and Results into Maple. We read binary representations
of the challenge arguments and the COSY results into Maple. The binary rep-
resentation is system dependent, so we used different functions to read binary
files written in big or little endian formats. We verified the correct transmission
of values by comparing HEX dumps from COSY, Maple, and DOS’s debug.

Construct Maple Variable Precision Representations. We read the bi-
nary file into Maple using 900 decimal digit arithmetic. Maple’s binary read and
convert to decimal is not accurate (previously known), so we wrote our own bi-
nary read in Maple, reading each byte as an integer and reassembling the IEEE
representation using Maple’s 900 decimal digit arithmetic.

Perform Maple Operations. We used 900 decimal digits to ensure that the
full dynamic range of 53 bit mantissa IEEE double precision numbers is exactly
representable in the decimal form used by Maple’s variable precision arithmetic.
Even if Maple’s variable precision arithmetic were not accurate in the last few
digits, we are safe, since we are detecting violation of containment errors in about
the 14 - 17 th decimal digit.

Is 900 decimal digits “large?” No. In order for our logic to hold, we must
ask Maple to evaluate the sin at exactly the same endpoints with which we
challenged COSY. We have “exact” in the form of binary values. 53 binary
digit numbers can be exactly representable in a finite number (56) of decimal
digits (not the other way around). Representing the full range of IEEE double
precision numbers, about 10−308 to 10308, requires another 617 decimal digits.
To get Maple to evaluate sin at INF(X) and SUP(X) as evaluated by COSY,
we must use at least 673 decimal digits in Maple. 900 gives a margin of error in
case Maple’s last few digits might be in error, of which we saw no evidence. In
practice, we saw some incorrectly diagnosed “failures” using 100 decimal digits,
but not with 200 digits.

Violations of containment are detected in Maple by comparing Maple’s 900
digit evaluation of f(x) with COSY’s enclosure. If a violation of containment
were due to a rounding error in Maple’s evaluation, the failure of containment
would be in the last few of the 900 digits, and increasing to 1000 or more digits
would resolve them. In all violations of containment we observed, the failure was
of approximately the accuracy of double precision computation, and increasing
the number of digits had no effect.
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In each violation of containment detected by Maple, careful human exam-
ination of the test case confirms that reported violations of containment truly
represent a failure of the software under test. We used Maple for its arbitrary
precision capabilities to detect the errors, but once found, errors are visible to
the reader in this paper or in COSY execution with no need to rely on Maple.

Report from Maple. Values printed by Maple are subject to rounding error
on output, but all of our conclusions have been drawn using internal Maple
representations. Any Maple output rounding has no effect on our conclusions.

3.2 Test Cases

We tested 30 multi-operation expressions, but if an arithmetic package gets indi-
vidual operations and intrinsic functions right, it will get complicated expressions
right, too. Hence, we tested primarily 2,600+ expressions composed of a single
operation or intrinsic function.

For elementary operations, no matter how wide the arguments, extrema occur
at the endpoints, except for division by intervals containing zero. Similarly for
intrinsic functions, extrema are always at the endpoints, except for a modest set
of exceptions (e.g., sin and cos for arguments that span π or π/2), which we
enumerate and test. Hence, we are most likely to find violations of containment
at endpoints of the challenge arguments.

Our Maple “referee” checks interior points, but we observed no failures at
interior points. For each test case, we have Maple evaluate the expression under
test at 11 points in the challenge argument interval using 900 decimal digit
approximate arithmetic, as illustrated in the pseudo-code below. All errors we
found would have been detected using only two points in the challenge interval.
If f(x) is not in COSY’s result interval, we have a likely violation of containment,
which we verify by human inspection of results as described in Sect. 5.

for (i = 0; i <= 10; i++) {
y = INF(X) + (SUP(X) - INF(X)) * i/10.0
fx = f(y)
ERROR if fx is outside COSY result

}

We might look at extrema of the function, check at randomly chosen points,
or at far more points. There are separate test cases to challenge evaluation within
one ULP of extrema, so checking at extrema is already covered. Random tests
are rarely as effective at uncovering errors as carefully constructed challenges;
our test cases uncovered all the errors we found. None of our 500,000 random
tests uncovered an error. Similarly, we had checked at 10,000 points (vs. 11)
early in our testing, but all the errors we found at endpoints.

Most of our test cases came from TOMS 737 [7]. Kearfott et al. tested their
Fortran 77 INTLIB interval arithmetic operations with a combination of spe-
cially constructed and randomly generated arguments. We added a few specially
constructed arguments of our own and 30 multi-operation expressions taken from
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tests of a validated quadrature package by Corliss and Rall [3]. In general, we
expect interval arithmetic most likely to fail for very large or very small (in either
absolute or relative terms) domain or range values, near boundaries of domains,
or near underflow or overflow.

To increase the coverage of our tests of binary operations, each pair of argu-
ments was used in several combinations. For example for addition and subtrac-
tion, argument intervals [a] and [b] give test cases

– [a] + [b], [a] − [b], [−a] + [b], [−a] − [b]
– [−a] + [−b], [−a] − [−b], [a] + [−b], [a] − [−b]
– [b] + [a], [b] − [a], [−b] + [a], [−b] − [a]
– [−b] + [−a], [−b] − [−a], [b] + [−a], [b] − [−a]

For multiplication, with 0 ≤ [a, a] and 0 ≤ [
b, b

]
, we test 16 combinations:

– [a, a] × [
b, b

]
, [−a, a] × [

b, b
]
, [−a,−a] × [

b, b
]
, [−a, a] × [

b, b
]

– [a, a] × [−b, b
]
, [−a, a] × [−b, b

]
, [−a,−a] × [−b, b

]
, [−a, a] × [−b, b

]

– [a, a] × [−b, −b
]
, [−a, a] × [−b, −b

]
, [−a,−a] × [−b, −b

]
, [−a, a] × [−b, −b

]

– [a, a] × [−b, b
]
, [−a, a] × [−b, b

]
, [−a,−a] × [−b, b

]
, [−a, a] × [−b, b

]

and similarly for division. In addition, we constructed more than 500,000 random
tests that discovered no additional errors:

loops for i and j
a = RAND(); b = RAND();
x1 := +- 0.a * 2ˆ+-i;
x2 := +- 0.b * 2ˆ+-j;
[X] := [x1, x2];
expr(X);

4 Test Environment

Our tests of COSY and INTPAK were executed on an HP notebook PC N5270
with a 700 MhZ Pentium III processor, 128 MB RAM, and a 20 GB hard disk
under Microsoft Windows ME. The tests were replicated on a Toshiba Satellite
4090XDVD with an Intel Celeron at 400 Mhz, 128 MB RAM, running Windows
98. Our tests of Sun Workshop 6 were conducted on a Sun Enterprise 250,
UltraSPARC 3 with one CPU at 450 Mhz with 512 Mb RAM. We tested

– COSY version 8.1 (updated June 8, 2002) downloaded from
www.cosy.pa.msu.edu on June 25, 2002. The tests were repeated on
a modified version of COSY provided on May 2, 2003.

– Sun WorkShop 6 update 1 Fortran 95 6.1 2000/09/11 (from f95 -V . . .). The
tests were repeated with a patched version released in September, 2002.

– INTPAK version 4.0, www.ti3.tu-harburg.de/˜rump/intlab downloaded
on January 15, 2003. The tests were repeated on Version 4.1.1 downloaded
on January 22, 2003.

www.cosy.pa.msu.edu
www.ti3.tu-harburg.de/~rump/intlab
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We used Maple 6 and MATLAB version 5.2. In Maple, we use little beyond the
underlying variable precision arithmetic, so newer versions should have no effect
on our tests. The error in INTPAK was traced to an anomaly in MATLAB which
might be changed in a later version, although Rump observed the same anomaly
in the current MATLAB version as of January, 2003.

5 Test Results

In this section, we report the results of our tests. In Sect. 3.2, we claimed to
have verified suspected errors by human inspection. In this section, we offer the
errors for inspection by the reader. Maple found the errors, but the reader can
see them with no dependence on Maple.

5.1 COSY: POWER Near an Integer

Test case (ASCII): [2.0, 2.0]1.00000000001

As presented to COSY: 21.00000000001000000000827... (approximate decimal rep-
resentation of binary value)
COSY result: [1.999999999999999555 . . . , 2.000000000000000444 . . .] (approxi-
mate decimal representation)
Maple’s f(x): 2.0000000000138 . . . (approximate decimal representation),
which violates containment by about 10−11.
Cause: The POWER operator was intended only for internal use by COSY
for integer and half-integer exponents. Exponents within 10−10 of an integer or
a half-integer are rounded to the nearby integer or a half-integer. Exponents
further from an integer or a half-integer are rounded with a warning message.
Solution: COSY authors removed the POWER operator from the list of user
callable operations.

5.2 COSY: TAN Crossing Discontinuity

Test case (ASCII): tan([1.0, 2.0]) or tan([1.0, 1.0E + 30])
COSY result: Print a warning and return [−1.0E+35, 1.0E+35], which violates
containment at points very close to π/2. This is a problem if the user ignores
the warning, or if the warning scrolls off the screen.
Cause: COSY correctly recognized that the challenge argument includes a sin-
gularity, but it returned finite bounds.
Solution: COSY authors modified COSY so that after the warning is printed,
execution halts.

5.3 COSY: ASIN or ACOS at ±1

Test case (ASCII): asin(1), asin([−1.0, 1.0]), or similarly for acos.
COSY result: Messages “asin(1) does not exist, ” and “asin([-1, 1]) does not
exist,” respectively. These assert mathematical falsehoods.
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Cause: COSY’s interval constructor INTV() outwardly rounds the intervals [1,
1] and [-1, 1], even though their endpoints are exactly representable. Hence,
COSY correctly detects that the challenge argument includes points outside
the domain of asin. The default output routines in the test environment round
endpoints as printed in the message, although other environments printed more
digits, so the message was correct as printed.
Solution: COSY authors changed the formating of the message to read, “arcsin
does not exist for the interval [0.999999999999999, 1.000000000000001].”

5.4 Sun F95: tanh (Negative)

To validate the testing methodology, we re-wrote the same test battery for Sun’s
F95 compiler. For challenge arguments less than about -4, e.g., tanh ([-4.879,
-4.267]), containment fails by 1-2 ULP’s.
Cause: There was a discrepancy between production and development versions.
Solution: Sun corrected the problem within one week, releasing an update.

5.5 INTLAB: sqrt

To further validate the testing methodology, we re-wrote the same test battery
in Matlab for Rump’s INTLAB. For the sqrt function, every degenerate interval
fails by one ULP, and most thick intervals fail.
Cause: MATLAB’s sqrt is not the IEEE sqrt. It uses round to nearest, rather
than the current rounding mode.
Solution: Within a day, Rump posted a corrected version of INTLAB using its
own rounding control for sqrt.

6 Domains: Opportunity for Improvement?

When a package for interval arithmetic encounters arguments outside the math-
ematical domain, it can respond by

1. Continue execution with empty, NAN, over/underflow, or other special value
2. Consider f([x]) as f([x] ∩ domain of f) (Sun’s approach)
3. Halt execution, possibly with an error message (COSY and INTLAB)

As originally tested, COSY was not consistent in its handling of arguments
outside the mathematical domain. Those inconsistencies have been corrected by
the COSY authors.

COSY considers it a fatal error to evaluate outside the domain of an expres-
sion, e.g., asin(1) or sqrt(0). These examples are outside the domain because
COSY enlarges the intervals on construction. Sun’s F95 “handled” many cases
COSY did not. For example, Sun considers sqrt ([-1, 1]) to be [0, 1].

We suggest handling of domains as an opportunity for improvement. We
found no further violations of containment, and we understand why COSY treats
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asin(1) or sqrt(0) as fatal errors. However, we would consider it an improvement
if COSY were able to evaluate such cases correctly.

Sun’s csets (containment sets) represent Sun’s effort to handle domains. Csets
are based on an elegant theory, but their implications are not well understood by
the interval community. For example, Neher has given an example f(x) =

√
x +

1/2 = 0 on [-4, 4]. Naive cset evaluation gives f([−4, 4]) = [1/2, 5/2] ⊂ [−4, 4],
incorrectly suggesting the existence of a fixed point. Cset evaluation appears to
require independent verification of continuity, which is done implicitly in some
systems for interval arithmetic.

7 Tightness: Opportunity for Improvement?

COSY makes many compromises for efficiency over tightness of the intervals.
For example, the COSY interval constructor INTV() rounds endpoints outward,
while Sun’s F95 and Rump’s INTLAB provide interval constructors that accept
strings and round outward only when necessary to guarantee containment.

We compared the excess widths of the COSY, Sun F95, and INTLAB results
across our test cases. Table 2 shows the number of Units in the Last Place
(ULP’s) the interval result is wider than the Maple result, the interval computed
by Maple in 900 decimal digit arithmetic. Compared with IEEE double precision
computed by COSY, the Maple result is a very good approximation to the true
result. We do not have exactly the correct number of ULP’s in every case, but
we do have a reliable measure of excess widths. Suppose (in pseudocode)

tU = Maple upper bound of the result
cU = upper bound computed by COSY (tU ≤ cU )
rU = cU − tU
if tU = 0 then rU = rU ∗ 21022 else rU = rU/|tU | ∗ 252

Similarly for the ULP’s at the lower bound rL

Add rL + rU ULP’s at lower and upper bounds

For example, consider [1, 2] + [3, 4] = [4, 6]. The COSY result is

[FC FF FF FF FF FF 0F 40 08, 04 00 00 00 00 00 18 40 08] (hex)
= [3.999 999 999 999 998 223 ..., 6.000 000 000 000 003 552 ...] ,

which is eight excess ULP’s because the constructors INTV(1.0, 2.0) and INTV
(3.0, 4.0) round out, and the operator ADD rounds out further. Sun’s F95 and
INTLAB give excess widths of zero ULP’s for this example. The excess widths
in ULP’s can be large when the true answer is near the underflow limit.

Table 2 shows the number of test cases for which the interval result had
excess widths shown. Smaller excess widths are better, so it is better to have
more test cases with excess widths of 0 - 2 and fewer test cases with larger
excess widths. The first row in Table 2 shows that COSY computed the tightest
possible enclosure (zero excess width) in 33 test cases, while F95 and INTLAB
were as tight as possible in 1277 and 1201 test cases, respectively, from the total



100 G.F. Corliss and J. Yu

Table 2. Excess width in ULP’s

COSY COSY Sun INTLAB
June ’02 May ’03 F95 ver. 4

0 33 33 1277 1201
1 1 1 697 607
2 81 79 251 292

3-4 746 746 26 147
5-8 906 906 1 9

9-16 194 190 0 2
17-32 151 129 0 0
33-64 17 15 0 0

65-128 6 6 0 0
129-256 14 14 0 0
257-512 12 12 0 0

Total 2161 2130 2252 2259

of 2,600 test cases. Test cases with no finite true result, with true result zero,
or with underflow or overflow are excluded, leading to different numbers of total
test cases reported for each package.

Loss of tightness is not an error, but it is an opportunity for improvement,
possibly at the expense of speed or portability. The Sun and INTLAB results in
Table 2 show that increased tightness is achievable.

8 Speed: Opportunity for Improvement?

We prefer fast programs to slow ones, but unbiased, comprehensive speed testing
is difficult and controversial. Speed is not in the scope of our tests, but we have
run programs implementing the same test cases in different environments, and
we suspect some readers might wonder, “How long did each take?” We make no
claim of fair testing of speed. That could be the subject of another paper, but
we report what we observed.

COSY and INTLAB timings were made on a Toshiba Satellite 4090XDVD
with an Intel Celeron at 400 Mhz, 128 Mb RAM, running Windows 98, denoted
by (Win 98) in Table 3. The versions of COSY and INTLAB we tested both run
in an interpreted mode. The Sun F95 timings were made on a Sun Enterprise
250, UltraSPARC 3, 1 CPU at 450 Mhz with 512 Mb RAM, denoted by (SPARC)
in Table 3. The F95 code was compiled, linked, and run. We have not reported
compile and link times.

Table 3 reports CPU time for one million evaluations of the Shekel 5 function,
commonly used to measure a Standard Time Unit (STU) [5]:

f(x) = −
m=5∑

i=1

1
(x − Ai)(x − Ai)T + ci

,
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where Ai denotes the ith row of a given 5 × 5 matrix A, and c is a given vector
of length 5. Evaluation of the Shekel 5 function reflects arithmetic operations,
so we also report CPU time for the evaluation of

f(x) = log10(asin (sin2(x) + cos2(x) − exp(atan (−x2)))) (1)

constructed to reflect executions for intrinsic function evaluations.

Table 3. CPU times in seconds

COSY INTLAB Sun F95
(Win98) (Win98) (SPARC)

1 M evaluations of Shekel 5
Double precision 92 410 25.4
Interval 157 23289 33.2

1 M evaluations Equation (1)
Double precision 7.3 142 2.89
Interval 25.4 41650 13.58

2,600 interval test cases 6.0 19.1 0.3

INTLAB interval times were estimated by timing 10,000 evaluations and
multiplying by 100. Execution of our interval test cases is dominated by disk
I/O. In this environment, interpreted COSY is significantly faster than inter-
preted INTLAB, although recoding either one in a style more appropriate for
its environment may yield significant improvements. We did not attempt to op-
timize the performance, preferring to keep the code for the tests as similar as
possible in each environment. For example, the INTLAB code uses loops rather
than much faster vector operations. The ratio of interval / real times for COSY
are comparable with Sun’s F95, and significantly smaller than INTLAB. Results
in other environments may be markedly different.

Regarding tightness and speed, Martin Berz responds to the results of our tests,
“COSY is designed on the two premises of portability across platforms on

the one hand, and use within the Taylor model framework on the other. The
desired portability is achieved by building interval intrinsics based on F77 in-
trinsics, with the necessary safety factors of around four ULP’s because of the
inherent precision (or rather lack thereof) of the intrinsics. The use in the Tay-
lor model framework entails that in practically relevant calculations, these slight
overestimations usually do not matter since the Taylor model approach is used
for large domain intervals where because of dependency, conventional validated
methods usually have much larger overestimations in all but the simplest cases.
Furthermore, since the vast majority of effort in the Taylor model arithmetic lies
in the floating point coefficient arithmetic which is highly optimized in COSY,
the efficiency of the interval implementation is of secondary significance.”
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We repeated our tests replacing the default safety factor in COSY for inflation
of F77 intrinsics by an inflation of one ULP at each end. We observed reduced
excess widths and no further violations of containment.

9 Testing COSY’s Taylor Model Arithmetic

After testing COSY’s interval arithmetic, we turned to its Taylor model arith-
metic. Revol et al. [12] provide mathematical proofs that the algorithms in COSY
for multiplying a Taylor model by a scalar and for adding or multiplying two
Taylor models return Taylor models satisfying the containment property. We
performed broader, execution-based testing. Revol’s proof of the algorithm and
our execution-based testing are complementary. The proof is more general than
a (large) collection of test cases in the sense that test cases can demonstrate the
existence of an error, but cannot demonstrate absence of errors. Our execution-
based tests might discover implementation errors of a correct algorithm, and we
covered operations and intrinsic functions Revol did not consider.

Given an interval vector [x] and an expression f(x), a Taylor model TMf is

1. p(x), a polynomial in x with floating-point coefficients, and
2. [I], an interval

such that f(x) ∈ TMf (x) = p(x) + I for all x ∈ [x]. The goal of our execution-
based testing was to find examples for which containment of point evaluation
failed, i.e., x ∈ [x] for which f(x) is not in TMf (x). We did not consider the
weaker range bound test: f([x]) ∈ TMf ([x]). By inclusion monotonicity, if f(x) ∈
TMf (x) for all x ∈ [x], then f([x]) ∈ TMf ([x]). The point evaluation challenges
might discover an error which could be masked by even slight interval over-
estimation in the interval evaluation challenge.

9.1 Verification Process

COSY’s Taylor model arithmetic can be verified using COSY’s interval arith-
metic to verify COSY’s Taylor model arithmetic. All the comparison is done
inside COSY. Alternatively, we can use Maple as a referee. Both of the tests are
rigorous. The second test might detect containment failures the first one does
not, but it is difficult to communicate the required information to Maple. We
would have to communicate sparse structure of the Taylor model and binary
values of its coefficients. The first test is much faster, and it is the approach we
used.

Taylor Model Verification:

1. Evaluate the function f over the domain [x].
For example: f = cos(3.14 + 1.57 ∗ x) on [x] = [−1, 1].

2. Construct the Taylor model expression of f (TM EXPR) in COSY.
TM EXPR := COS(-3.14 * TM ONE + (1.57 * TM ONE) * TM INDEP);
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TM ONE is Taylor model for the constant ONE. It is used to convert con-
stants such as -3.14 and 1.57 into Taylor models.
TM INDEP is a Taylor model for the independent variable.

3. Construct the interval expression of f (INL EXPR) in COSY.
IVL EXPR := COS(INTV(-3.14, -3.14) + INTV(1.57, 1.57) * VAR1);
VAR1 is the interval independent variable.

4. Choose a point z ∈ [x] and convert it to a tight interval [z] using COSY’s
interval constructor.

5. Evaluate the polynomial part of the Taylor model expression (TM EXPR)
on the tight interval ([z]) and add the remainder bound.

6. Evaluate the interval expression (IVL EXPR) on the tight interval ([z]).
7. Compare the results of 5) and 6).

If the intervals are disjoint, there is an error.

9.2 Testing Scope

We designed test cases to evaluate the COSY operations of +, −, ×, sin, cos,
tan, asin, acos, atan, sinh, cosh, tanh, log, exp, sqrt, sqr, isqrt, and unary + and
−. Taylor model operations combine their operand polynomials and interval
remainder bounds using floating point arithmetic to the extent possible and
guaranteeing that the resulting Taylor model preserves containment. We tested
Taylor models with both general domains for the independent variables and
domains normalized to [−1, 1]n at dimension 1 (13 expressions): order 1, . . ., 20;
dimension 2 (20 expressions): order 1, . . ., 18; and dimension 7 (21 expressions):
order 1, 2, 3, and 4. “Dimension” denotes the number of independent variables,
and “order” is the order of the Taylor model polynomial. The Taylor models were
challenged at the corner points of n-dimensional boxes and at a few interior
points. As for the interval tests, we expect errors to be most visible at the
boundaries. Here is pseudo-code for these tests:

Loop for general and normalized domain
Dimension = 1; Loop for order = 1, . . ., 20

Loop for 9 challenge points
Loop for Taylor model 1 ... 13

Pass to 149 unary operations
Pass to 69 binary operations

Dimension = 2; Loop for order = 1, . . ., 18
Loop for 25 challenge points

Loop for Taylor model 1 ... 20
Pass to 149 unary operations
Pass to 69 binary operations

Dimension = 7; Loop for order = 1, 2, 3, 4
Loop for 256 challenge points

Loop for Taylor model 1 ... 21
Pass to 149 unary operations
Pass to 69 binary operations
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This represents more than 300,000 Taylor models challenged at a total of over
14 million points. That test suite required about eight hours on the 400 Mhz
Intel Celeron machine described in Sect. 8. In constructing test cases, we consid-
ered order, dimension, normalization, domain, challenge points in the domain,
sparsity, oscillation, simplicity, and special numbers to create at least one test
case from each test case equivalence class. We adopted the same philosophy as in
the interval tests that the test case is the internal binary form of the expression
constructed from approximate ASCII representations.

A second test suite used 11 expressions such as
1. cos(−3.141592653590006 + 1.570796326794687 x1);
2. sin(−4.712388980384691 + 1.570796326794690 x1);
3. asin (0.0009999999999999983 x1);
4. asin (−0.4935 + 0.003499999999999997 x1);
5. asin (0.0004999999999999989 x1 + 0.0004999999999999989 x2x5);

Loop for general and normalized domain
Dimension = 1; Loop for order = 1, 7, 15, 17, 20

Loop for 8 challenge points
Loop for expression 1 ... 5

Dimension = 2; Loop for order = 1, 7, 15, 17, 18
Loop for 25 challenge points

Loop for expression 1 ... 9
Dimension = 7; Loop for order = 1, 2, 3, 4

Loop for 256 challenge points
Loop for expression 1 ... 11

This represents 228 Taylor models challenged at more than 25,000 points.
This test required about 90 seconds and disclosed violations of containment in
sin and cos and in asin and acos.

9.3 Containment Error in sin and cos

We found a violation of containment error in sin and cos (examples 1 and 2
above) in arguments of dimensions 1 and 2 with order 17 at x1 near -1.
Cause: In the test environment, integer arithmetic used internally by COSY
overflows and wraps from positive to negative with no alert, warning, or trap.
Solution: Replace some integer arithmetic in the sin and cos modules by double
precision. The remaining COSY code was carefully scanned to be sure there were
no similar use of integer arithmetic. The May 2, 2003, version of COSY runs the
test cases as expected.

9.4 Containment Error in asin and acos

We found several violation of containment errors in asin (examples 3 - 5 above).
Cause: In one case in the asin module, some coefficients were multiplied by [0, h]
instead of [−h, h].
Solution: Correct the coding error. The May 2, 2003, version of COSY runs the
test cases as expected.
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10 Conclusions and Extensions

Testing software of this complexity is itself a complex task. One needs to develop
test cases that distinguish subtle errors. For interval packages, one must present
to the software under test cases free from possible roundoff, and one similarly
must guard against roundoff in specifying the expected result.

Effective testing of interval and Taylor model arithmetic in COSY is diffi-
cult because the conservative outward rounding of interval arithmetic can mask
subtle errors. Simple test cases were successful (found errors) where more com-
plicated tests had failed. For example, we found Taylor model errors in sin and
in asin, although extensive sin(asin(x)) and asin(sin(x)) tests had passed. Sim-
ilarly, asymmetric tests seemed to be more powerful. The error in sin and cos
appeared only for order 17 because the remainder has the form [0, δ] rather than
[−δ, δ]. The error is present in other orders, but it is hidden by slight excess
widths introduced by repeated outward roundings.

Although our test suites for both interval and Taylor model arithmetics are
large, they are neither comprehensive nor exhaustive. For example, one might
port Gonnet’s floating point tests from
www.inf.ethz.ch/personal/gonnet/FPAccuracy/Analysis.html. Gonnet’s is
a demanding test for the accuracy of double precision intrinsic functions. He
uses challenge points known to be problematic or for which evaluation values
are known to be problematic. Gonnet’s additional values may disclose errors in
interval or Taylor model evaluation.

Execution based testing cannot show the absence of errors, but can only
demonstrate their presence. While we prefer to see no errors in our programs,
especially in programs that claim to compute with guarantees, we think it speaks
well of the authors of the COSY, Sun F95, and INTLAB packages we tested that
we found relatively few errors. We cannot guarantee that they are now error-free,
but our tests should appreciably raise the level of confidence in their reliability.

Complete software for the testing reported here is available from
www.eng.mu.edu/corlissg/Pubs/COSYtest.

We encourage users of COSY and most other software packages
to check author/vendor web sites regularly for possible updates and
patches.
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