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Approach

We present an approach based on high-order quadrature and a high-order
finite element method to find a validated solution of the Laplace equation
when derivatives of the solution are specified on the boundary

∆ψ
¡−→r ¢ = 0 in volume Ω

³
R3
´

∇ψ ¡−→r ¢ = −→f ¡−→r ¢ on surface ∂Ω ³
R3
´

Where do we want to use this approach?

In accelerator/spectrometer magnets where the magnet manufacturer pro-
vides only discrete field data in the volume of interest

MAGNEX: A large acceptance MAGNetic spectrometer for EXcyt beams, at the Labora-

tori Nazionali del Sud - Catania (Italy).

(Fringe fields, high aspect ratio, discrete data)
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What do we expect from this method/tool ?

• Provide validated local expansion of the field ( ψ ¡−→r ¢ and ∂nxiψ ¡−→r ¢)
• Highly accurate (work for case with high aspect ratio)

• Computationally inexpensive

• Provide information about the field quality and if possible reduce noise
in experimentally obtained field data



Note about Laplace Equation

• Existence and uniqueness of the solution for 3D case can be shown

using Green’s formula

• Integral kernels that provides interior fields in terms of the boundary
fields or source are smoothing

Interior fields will be analytic even if the field/source on the surface

data fails to be differentiable

• Analytic closed form solution can be found for few problems with

certain regular geometries where separation of variables method can

be applied



Numerical methods to solve Laplace equation

• Finite Difference, Method of weighted residuals and Finite element
methods

— Numerical solution as data set in the region of interest

— Relatively low approximation order

— Prohibitively large number of mesh points and careful meshing re-

quired

• Boundary integral methods or Source based field models



— Field inside of a source free volume due to a real sources outside
of it can be exactly replicated by a distribution of fictitious sources

on its surface. Error due to discretization of the source falls off

rapidly as the field point moves away from the source.

∗ Image charge method
· Choose planes/grids to place point charges (or Gaussian dist)

· Solve a large least square fit problem to find the charges

· Lot of guess work and computation time involved in getting
the solution

∗ Methods using Helmholtz’ theorem
· Helmholtz’ theorem is used to find electric or magnetic field

directly from the surface field data



· In our approach we make use of the Taylor model frame work
to implement this



Helmholtz’ theorem

Any vector field
−→
B that vanishes at infinity can be written as the sum of

two terms, one of which is irrotational and the other, solenoidal

−→
B (�x) = �∇× �At (�x) + �∇φn (�x)

φn (�x) =
1

4π

Z
∂Ω

�n (�xs) ·−→B (�xs)

|�x− �xs| ds− 1

4π

Z
Ω

�∇ ·−→B (�xv)

|�x− �xv| dV

�At (�x) = − 1

4π

Z
∂Ω

�n (�xs)×−→B (�xs)

|�x− �xs| ds+
1

4π

Z
Ω

�∇×−→B (�xv)

|�x− �xv| dV



For a source free volume we have, �∇×−→B (�xv) = 0 and �∇ ·−→B (�xv) = 0

Volume integral terms vanish, φn (�x) and �At (�x) are completely determined

from the normal and the tangential magnetic field data on surface ∂Ω

φn (�x) =
1
4π

R
∂Ω

�n(�xs)·−→B (�xs)
|�x−�xs| ds �At (�x) = − 1

4π

R
∂Ω

�n(�xs)×−→B (�xs)
|�x−�xs| ds

�B is Electric or Magnetic field
∂Ω is a surface which bounds volume Ω
�xs and �xv denote points on ∂Ω and within Ω
�∇ denote the gradient with respect to �xv
�n is a unit normal vector pointing away from ∂Ω



Implementation using Taylor Models

• Split domain of integration ∂Ω in to smaller regions Γi

• Expand them to higher orders in surface variables �rs and the volume

variables �r

— Expanded in �rs about the center of each surface element

— Expanded in �r about the center of each volume element

— Field is chosen to be constant over each surface element



Z xNx

x0

Z yNy

y0
g (x, y) dxdy =

ix=Nx−1,iy=Ny−1,kx=∞,ky=∞X
ix=0,iy=0,kx=0,ky=0

h2kx+1x

(2kx + 1)! · 22kx
h
2ky+1
y

(2ky + 1)! · 22ky

g2kx,2ky
Ã
xix+1 + xix

2
,
yiy+1 + yiy

2

!

We can obtain:

Scalar potential φn (�r) if we choose g(x, y) = �ns · �f(�rs)
|�r−�rs|

Vector potential �At (�r) if we choose g(x, y) = �ns × �f(�rs)
|�r−�rs|



• — Benefits

∗ The dependence on the surface variables are integrated over sur-
face sub-cells Γi, which results in a highly accurate integration

formula

∗ The dependence on the volume variables are retained, which
leads to a high order finite element method

∗ By using sufficiently high order, high accuracy can be achieved
with a small number of surface elements

• Depending on the accuracy of the computation needed, we choose
step sizes, order of expansion in r (x, y, z) and order of expansion in

rs (xs, ys, zs)



Validated Integration in COSY

xiuZ
xil

f (�x) dxi ∈
³
Pn,∂−1f

³
�x|xi=xiu−xi0

´
− Pn,∂−1f

³
�x|xi=xil−xi0

´
, In,∂−1f

´

This method has following advantages:

* No need to derive quadrature formulas with weights, support points xi,
and an explicit error formula
* High order can be employed directly by just increasing the order of the
Taylor model limited only by the computational resources
* Rather large dimensions are amenable by just increasing the dimensionality
of the Taylor models, limited only by computational resources



An Analytical Example: the Bar Magnet

x1 ≤ x ≤ x2, |y| ≥ y0, z1 ≤ z ≤ z2

As a reference problem we consider the magnetic field of rectangular iron

bars with inner surfaces (y = ±y0) parallel to the mid-plane (y = 0)



From this bar magnet one can obtain analytic solution for the magnetic

field �B (x, y, z) of the form

By (x, y, z) =
B0
4π

X
i,j

(−1)i+j
⎡⎣arctan

⎛⎝ Xi · Zj
Y+ ·R+ij

⎞⎠+ arctan
⎛⎝ Xi · Zj
Y− ·R−ij

⎞⎠⎤⎦
Bx (x, y, z) =
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4π

X
i,j

(−1)i+j
⎡⎣ln

⎛⎝Zj +R−ij
Zj +R+ij
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Bz (x, y, z) =

B0
4π

X
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(−1)i+j
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where i, j = 1, 2 ,

Xi = x− xi, Y± = y0 ± y, Zi = z − zi

and R± =
³
X2
i + Y 2j + Z2±

´1
2

We note that only even order terms exist in the Taylor expansion of this

field about the origin.
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Results

1. To study the dependency of the Interval part of the potentials and �B
field on the surface element length

• All of the volume is considered as just one volume element

• Examine contributions of each surface element towards the total
integral

— Expansion is done at �r = (.1, .1, .1) and

— Plot of interval width VS surface element length for scalar po-
tential

— Plot of interval width VS surface element length for vector po-
tential (x component)



• Plot of interval width VS Order for different surface element length
for x component of Magnetic field
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Figure 1: Integration over single surface element (for φ)
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Figure 2: Integration over single surface element (for Ax)
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2 Study the dependency of the Polynomial part and Interval part of the

B field on the volume element length

• The surface element length is locked at 1/128

• Plot of the error calculated for the polynomial part VS the volume
element length

• Plot of interval width VS volume element length for y component
of Magnetic field
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Figure 4: Interval width VS Volume element length (for φ)
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Figure 5: Interval width VS Volume element length (for Ax)
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Figure 6: Error VS Volume element length for polynomial part (for By)
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Figure 7: Interval width VS Volume element length for By



Summary

• Helmholtz’ theorem implemented using the Taylor Model tools provide
a promising approach to find local expansion of the field in the volume

of interest

• Accuracy achieved is very high compared to conventional numerical
field solvers

• Provides a good way to check the field quality

• This method can be extended for PDE’s


