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Approach

We present an approach based on high-order quadrature and a high-order
finite element method to find a validated solution of the Laplace equation
when derivatives of the solution are specified on the boundary

At (7°) = 0 in volume Q (R3)
Vi (7)) = 7 (7") on surface 9% (R3)

Where do we want to use this approach?

In accelerator/spectrometer magnets where the magnet manufacturer pro-
vides only discrete field data in the volume of interest

MAGNEX: A large acceptance MAGNetic spectrometer for EXcyt beams, at the Labora-
tori Nazionali del Sud - Catania (ltaly).

(Fringe fields, high aspect ratio, discrete data)






What do we expect from this method/tool ?
e Provide validated local expansion of the field (¢ (77) and 9% (7))
e Highly accurate (work for case with high aspect ratio)
e Computationally inexpensive

e Provide information about the field quality and if possible reduce noise
in experimentally obtained field data



Note about Laplace Equation

e Existence and uniqueness of the solution for 3D case can be shown
using Green’s formula

e Integral kernels that provides interior fields in terms of the boundary
fields or source are smoothing

Interior fields will be analytic even if the field /source on the surface
data fails to be differentiable

e Analytic closed form solution can be found for few problems with
certain regular geometries where separation of variables method can
be applied



Numerical methods to solve Laplace equation
e Finite Difference, Method of weighted residuals and Finite element
methods
— Numerical solution as data set in the region of interest
— Relatively low approximation order
— Prohibitively large number of mesh points and careful meshing re-

quired

e Boundary integral methods or Source based field models



— Field inside of a source free volume due to a real sources outside
of it can be exactly replicated by a distribution of fictitious sources
on its surface. Error due to discretization of the source falls off
rapidly as the field point moves away from the source.

* Image charge method
- Choose planes/grids to place point charges (or Gaussian dist)

- Solve a large least square fit problem to find the charges

- Lot of guess work and computation time involved in getting
the solution

x Methods using Helmholtz’ theorem

- Helmholtz' theorem is used to find electric or magnetic field
directly from the surface field data



- In our approach we make use of the Taylor model frame work
to implement this



Helmholtz’ theorem
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Any vector field B that vanishes at infinity can be written as the sum of
two terms, one of which is irrotational and the other, solenoidal
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For a source free volume we have, V x B (Zy) =0and V- B (Zy) =0

Volume integral terms vanish, ¢, (Z) and A; (Z) are completely determined
from the normal and the tangential magnetic field data on surface 02
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B is Electric or Magnetic field
OS2 is a surface which bounds volume (2
Zs and I, denote points on 0f2 and within Q

V denote the gradient with respect to Ty
7 is a unit normal vector pointing away from 0X2



Implementation using Taylor Models
e Split domain of integration 02 in to smaller regions [';
e Expand them to higher orders in surface variables s and the volume
variables 7
— Expanded in 75 about the center of each surface element

— Expanded in 7 about the center of each volume element

— Field is chosen to be constant over each surface element
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We can obtain:

Scalar potential ¢n, (7) if we choose g(x,y) = 7is - q(ﬁi)|

|
Vector potential A; () if we choose g(z,y) = s X -



e — Benefits

*x The dependence on the surface variables are integrated over sur-
face sub-cells I';, which results in a highly accurate integration
formula

x The dependence on the volume variables are retained, which
leads to a high order finite element method

x By using sufficiently high order, high accuracy can be achieved
with a small number of surface elements

e Depending on the accuracy of the computation needed, we choose
step sizes, order of expansion in r (x,y, 2) and order of expansion in

T's (m57 Ys, ZS)



Validated Integration in COSY
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This method has following advantages:

* No need to derive quadrature formulas with weights, support points x;,
and an explicit error formula

* High order can be employed directly by just increasing the order of the
Taylor model limited only by the computational resources

* Rather large dimensions are amenable by just increasing the dimensionality
of the Taylor models, limited only by computational resources



An Analytical Example: the Bar Magnet

r1 <z < oy, ly| > o, 21 < z< 2

As a reference problem we consider the magnetic field of rectangular iron
bars with inner surfaces (y = +yg) parallel to the mid-plane (y = 0)



From this bar magnet one can obtain analytic solution for the magnetic
field B (z,y, z) of the form

B 0 X.. 7. X.. 7.
By (z,y,2) = =0 37 (—=1)"7 |arctan : ZL + arctan S

B | (Z;+R:
By (2,y,2) = —2 > (—1)7 ln( ’ 1’)
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where 7,7 = 1,2,

X; = x — x;, YL =yo L, Zi =z — z;

1
and Ry = (XZ+ Y2+ 23)3

We note that only even order terms exist in the Taylor expansion of this
field about the origin.
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Results

1. To study the dependency of the Interval part of the potentials and B
field on the surface element length

e All of the volume is considered as just one volume element

e Examine contributions of each surface element towards the total
integral

— Expansion is done at 7= (.1,.1,.1) and

— Plot of interval width VS surface element length for scalar po-
tential

— Plot of interval width VS surface element length for vector po-
tential (x component)



e Plot of interval width VS Order for different surface element length
for x component of Magnetic field



Interval Width VS Surface Element Length for Scalar Potential
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Interval Width VS Surface Element Length for X Vector Potential
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Figure 2: Integration over single surface element (for A;)



Interval Width VS Order for different stepsize
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2 Study the dependency of the Polynomial part and Interval part of the
B field on the volume element length

e The surface element length is locked at 1/128

e Plot of the error calculated for the polynomial part VS the volume
element length

e Plot of interval width VS volume element length for y component
of Magnetic field



Interval Width VS Length of Volume Element for Scalar Potential
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Figure 4: Interval width VS Volume element length (for ¢)



Interval Width VS Length of Volume Element for X Component of Vector Potential
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Figure 5: Interval width VS Volume element length (for A;)



Error VS Volume element length
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Figure 6: Error VS Volume element length for polynomial part (for By)



Interval Width VS Surface Element Length for Y Component of Magnetic Field
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Figure 7: Interval width VS Volume element length for By



Summary

e Helmholtz' theorem implemented using the Taylor Model tools provide
a promising approach to find local expansion of the field in the volume
of interest

e Accuracy achieved is very high compared to conventional numerical
field solvers

e Provides a good way to check the field quality

e [his method can be extended for PDE's



