# A highly accurate high-order validated method to solve 3D Laplace equation

M.L.Shashikant, Martin Berz and Kyoko Makino Michigan State University, E Lansing, MI, USA

December 19, 2004

#### **Approach**

We present an approach based on high-order quadrature and a high-order finite element method to find a validated solution of the Laplace equation when derivatives of the solution are specified on the boundary

$$\Delta\psi\left(\overrightarrow{r}\right)=0 \text{ in volume } \Omega\left(\mathbf{R}^{3}\right)$$
 
$$\nabla\psi\left(\overrightarrow{r}\right)=\overrightarrow{f}\left(\overrightarrow{r}\right) \text{ on surface } \partial\Omega\left(\mathbf{R}^{3}\right)$$

#### Where do we want to use this approach?

In accelerator/spectrometer magnets where the magnet manufacturer provides only discrete field data in the volume of interest

MAGNEX: A large acceptance MAGNetic spectrometer for EXcyt beams, at the Laboratori Nazionali del Sud - Catania (Italy).

(Fringe fields, high aspect ratio, discrete data)



## What do we expect from this method/tool?

- Provide validated local expansion of the field (  $\psi\left(\overrightarrow{r}\right)$  and  $\partial_{x_{i}}^{n}\psi\left(\overrightarrow{r}\right)$ )
- Highly accurate (work for case with high aspect ratio)
- Computationally inexpensive
- Provide information about the field quality and if possible reduce noise in experimentally obtained field data

#### **Note about Laplace Equation**

- Existence and uniqueness of the solution for 3D case can be shown using Green's formula
- Integral kernels that provides interior fields in terms of the boundary fields or source are smoothing
  - Interior fields will be analytic even if the field/source on the surface data fails to be differentiable
- Analytic closed form solution can be found for few problems with certain regular geometries where separation of variables method can be applied

#### Numerical methods to solve Laplace equation

- Finite Difference, Method of weighted residuals and Finite element methods
  - Numerical solution as data set in the region of interest
  - Relatively low approximation order
  - Prohibitively large number of mesh points and careful meshing required
- Boundary integral methods or Source based field models

- Field inside of a source free volume due to a real sources outside
  of it can be exactly replicated by a distribution of fictitious sources
  on its surface. Error due to discretization of the source falls off
  rapidly as the field point moves away from the source.
  - \* Image charge method
    - Choose planes/grids to place point charges (or Gaussian dist)
    - · Solve a large least square fit problem to find the charges
    - Lot of guess work and computation time involved in getting the solution
  - \* Methods using Helmholtz' theorem
    - Helmholtz' theorem is used to find electric or magnetic field directly from the surface field data

· In our approach we make use of the Taylor model frame work to implement this

#### Helmholtz' theorem

Any vector field  $\overrightarrow{B}$  that vanishes at infinity can be written as the sum of two terms, one of which is irrotational and the other, solenoidal

$$\overrightarrow{B}(\vec{x}) = \overrightarrow{\nabla} \times \overrightarrow{A}_t(\vec{x}) + \overrightarrow{\nabla}\phi_n(\vec{x})$$

$$\phi_n(\vec{x}) = \frac{1}{4\pi} \int_{\partial\Omega} \frac{\vec{n}(\vec{x}_s) \cdot \overrightarrow{B}(\vec{x}_s)}{|\vec{x} - \vec{x}_s|} ds - \frac{1}{4\pi} \int_{\Omega} \frac{\overrightarrow{\nabla} \cdot \overrightarrow{B}(\vec{x}_v)}{|\vec{x} - \vec{x}_v|} dV$$

$$\overrightarrow{A}_t(\vec{x}) = -\frac{1}{4\pi} \int_{\partial\Omega} \frac{\vec{n}(\vec{x}_s) \times \overrightarrow{B}(\vec{x}_s)}{|\vec{x} - \vec{x}_s|} ds + \frac{1}{4\pi} \int_{\Omega} \frac{\overrightarrow{\nabla} \times \overrightarrow{B}(\vec{x}_v)}{|\vec{x} - \vec{x}_v|} dV$$

For a source free volume we have,  $\vec{\nabla} \times \overrightarrow{B}(\vec{x}_v) = 0$  and  $\vec{\nabla} \cdot \overrightarrow{B}(\vec{x}_v) = 0$ 

Volume integral terms vanish,  $\phi_n\left(\vec{x}\right)$  and  $\vec{A}_t\left(\vec{x}\right)$  are completely determined from the normal and the tangential magnetic field data on surface  $\partial\Omega$ 

$$\phi_n\left(\vec{x}\right) = \frac{1}{4\pi} \int_{\partial\Omega} \frac{\vec{n}(\vec{x}_s) \cdot \overrightarrow{B}(\vec{x}_s)}{|\vec{x} - \vec{x}_s|} ds \quad \vec{A}_t\left(\vec{x}\right) = -\frac{1}{4\pi} \int_{\partial\Omega} \frac{\vec{n}(\vec{x}_s) \times \overrightarrow{B}(\vec{x}_s)}{|\vec{x} - \vec{x}_s|} ds$$

 $ec{B}$  is Electric or Magnetic field  $\partial\Omega$  is a surface which bounds volume  $\Omega$   $ec{x}_s$  and  $ec{x}_v$  denote points on  $\partial\Omega$  and within  $\Omega$   $\vec{\nabla}$  denote the gradient with respect to  $ec{x}_v$   $ec{n}$  is a unit normal vector pointing away from  $\partial\Omega$ 

#### Implementation using Taylor Models

- ullet Split domain of integration  $\partial\Omega$  in to smaller regions  $\Gamma_i$
- ullet Expand them to higher orders in surface variables  $ec{r}_s$  and the volume variables  $ec{r}$ 
  - Expanded in  $\vec{r}_s$  about the center of each surface element
  - Expanded in  $\vec{r}$  about the center of each volume element
  - Field is chosen to be constant over each surface element

$$\int_{x_0}^{x_{N_x}} \int_{y_0}^{y_{N_y}} g(x, y) dx dy = \sum_{\substack{i_x = N_x - 1, i_y = N_y - 1, k_x = \infty, k_y = \infty \\ i_x = 0, i_y = 0, k_x = 0, k_y = 0}} \frac{\sum_{\substack{i_x = 0, i_y = 0, k_x = 0, k_y = 0 \\ \frac{h_x^{2k_x + 1}}{(2k_x + 1)! \cdot 2^{2k_x}} \frac{h_y^{2k_y + 1}}{(2k_y + 1)! \cdot 2^{2k_y}}}}{\frac{g^{2k_x, 2k_y} \left(\frac{x_{i_x + 1} + x_{i_x}}{2}, \frac{y_{i_y + 1} + y_{i_y}}{2}\right)}}$$

We can obtain:

Scalar potential  $\phi_n\left(\vec{r}\right)$  if we choose  $g(x,y) = \vec{n}_s \cdot \frac{f(\vec{r}_s)}{|\vec{r} - \vec{r}_s|}$ Vector potential  $\vec{A}_t\left(\vec{r}\right)$  if we choose  $g(x,y) = \vec{n}_s \times \frac{f(\vec{r}_s)}{|\vec{r} - \vec{r}_s|}$ 

#### Benefits

- \* The dependence on the surface variables are integrated over surface sub-cells  $\Gamma_i$ , which results in a highly accurate integration formula
- \* The dependence on the volume variables are retained, which leads to a high order finite element method
- \* By using sufficiently high order, high accuracy can be achieved with a small number of surface elements
- Depending on the accuracy of the computation needed, we choose step sizes, order of expansion in r(x, y, z) and order of expansion in  $r_s(x_s, y_s, z_s)$

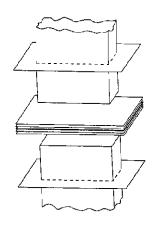
## **Validated Integration in COSY**

$$\int_{x_{il}}^{x_{iu}} f(\vec{x}) dx_i \in \left( P_{n,\partial^{-1}f} \left( \vec{x} |_{x_i = x_{iu} - x_{i0}} \right) - P_{n,\partial^{-1}f} \left( \vec{x} |_{x_i = x_{il} - x_{i0}} \right), I_{n,\partial^{-1}f} \right)$$

#### This method has following advantages:

- \* No need to derive quadrature formulas with weights, support points  $x_i$ , and an explicit error formula
- \* High order can be employed directly by just increasing the order of the Taylor model limited only by the computational resources
- \* Rather large dimensions are amenable by just increasing the dimensionality of the Taylor models, limited only by computational resources

## An Analytical Example: the Bar Magnet



$$x_1 \le x \le x_2, \qquad |y| \ge y_0, \qquad z_1 \le z \le z_2$$

As a reference problem we consider the magnetic field of rectangular iron bars with inner surfaces  $(y=\pm y_0)$  parallel to the mid-plane (y=0)

From this bar magnet one can obtain analytic solution for the magnetic field  $\vec{B}(x,y,z)$  of the form

$$B_{y}(x,y,z) = \frac{B_{0}}{4\pi} \sum_{i,j} (-1)^{i+j} \left[ \arctan\left(\frac{X_{i} \cdot Z_{j}}{Y_{+} \cdot R_{ij}^{+}}\right) + \arctan\left(\frac{X_{i} \cdot Z_{j}}{Y_{-} \cdot R_{ij}^{-}}\right) \right]$$

$$B_{x}(x,y,z) = \frac{B_{0}}{4\pi} \sum_{i,j} (-1)^{i+j} \left[ \ln\left(\frac{Z_{j} + R_{ij}^{-}}{Z_{j} + R_{ij}^{+}}\right) \right]$$

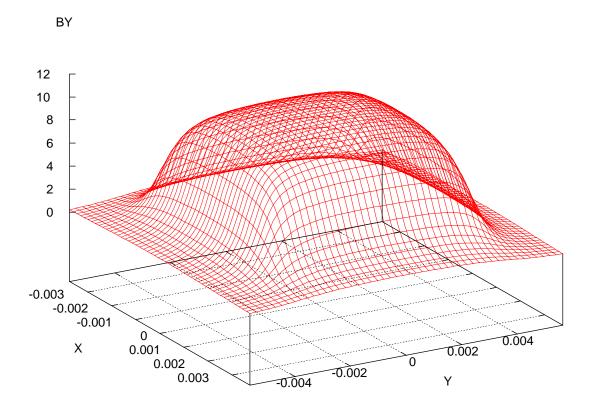
$$B_{z}(x,y,z) = \frac{B_{0}}{4\pi} \sum_{i,j} (-1)^{i+j} \left[ \ln\left(\frac{X_{j} + R_{ij}^{-}}{X_{j} + R_{ij}^{+}}\right) \right]$$

where i, j = 1, 2,

$$X_i = x - x_i, \qquad Y_{\pm} = y_0 \pm y, \qquad Z_i = z - z_i$$

and 
$$R_{\pm} = \left(X_i^2 + Y_j^2 + Z_{\pm}^2\right)^{\frac{1}{2}}$$

We note that only even order terms exist in the Taylor expansion of this field about the origin.



 $B_y$  component of the field on the mid-plane.

# Results

- 1. To study the dependency of the Interval part of the potentials and  $\vec{B}$  field on the surface element length
  - All of the volume is considered as just one volume element
  - Examine contributions of each surface element towards the total integral
    - Expansion is done at  $\vec{r} = (.1, .1, .1)$  and
    - Plot of interval width VS surface element length for scalar potential
    - Plot of interval width VS surface element length for vector potential (x component)

 $\bullet\,$  Plot of interval width VS Order for different surface element length for x component of Magnetic field

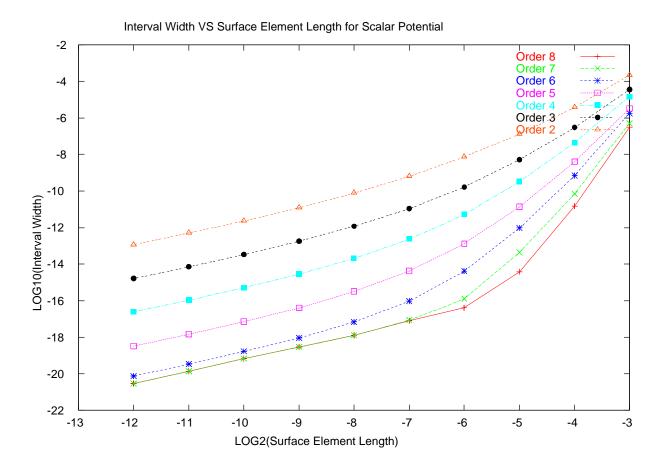


Figure 1: Integration over single surface element (for  $\phi$ )

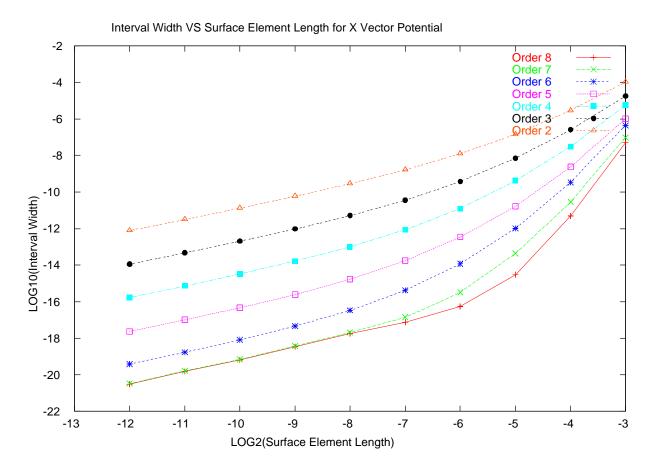


Figure 2: Integration over single surface element (for  $A_x$ )

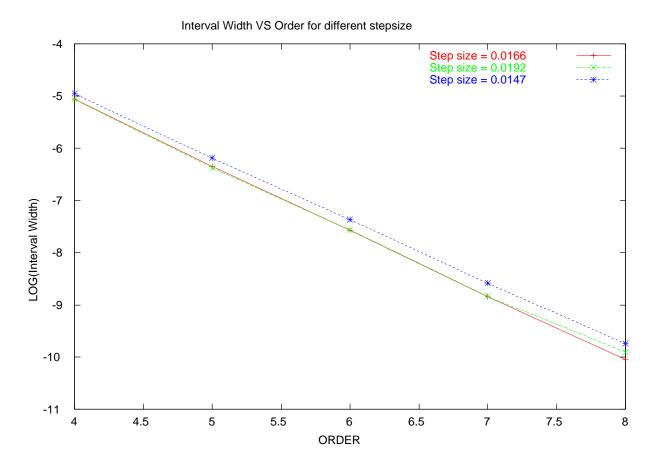


Figure 3: Interval width VS Order (for different step size)

- 2 Study the dependency of the Polynomial part and Interval part of the B field on the volume element length
  - ullet The surface element length is locked at 1/128
  - Plot of the error calculated for the polynomial part VS the volume element length
  - ullet Plot of interval width VS volume element length for y component of Magnetic field

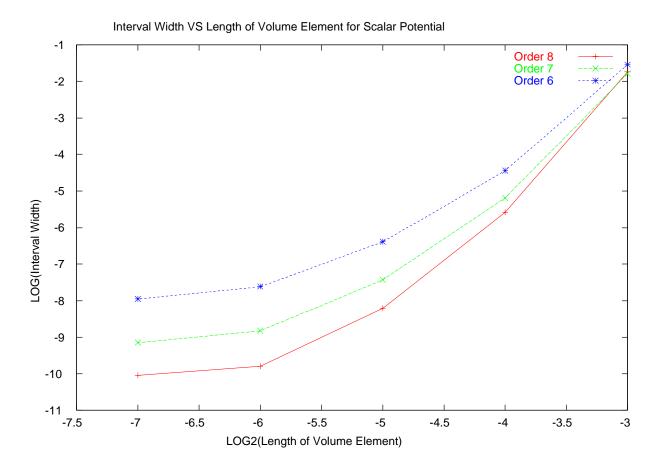


Figure 4: Interval width VS Volume element length (for  $\phi$ )

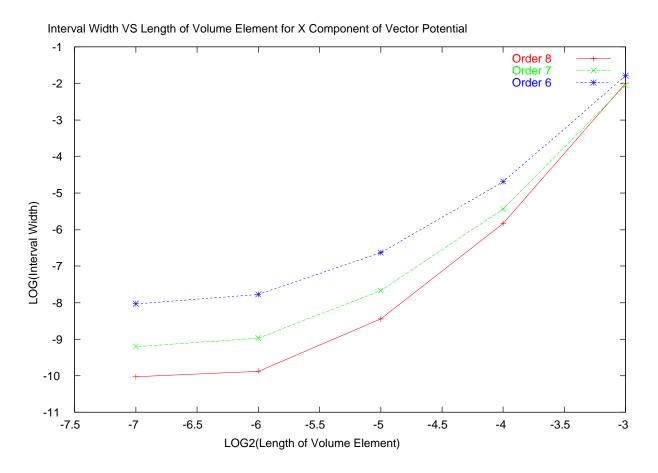


Figure 5: Interval width VS Volume element length (for  $A_x$ )

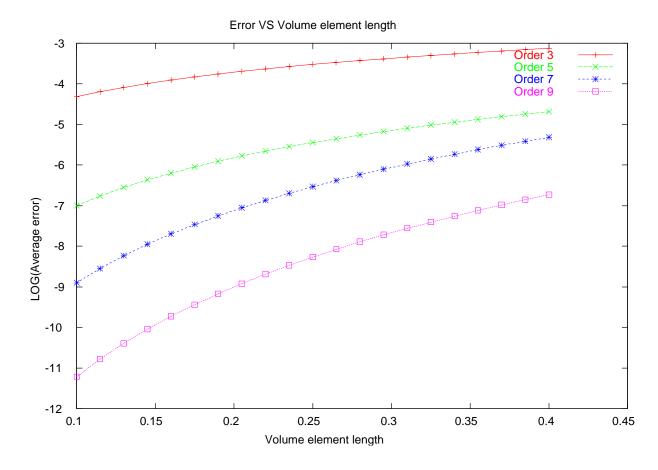


Figure 6: Error VS Volume element length for polynomial part (for  $B_y$ )

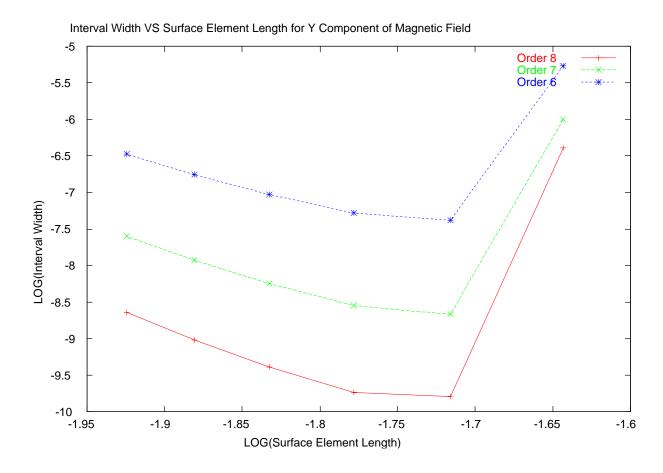


Figure 7: Interval width VS Volume element length for  $B_y$ 

#### **Summary**

- Helmholtz' theorem implemented using the Taylor Model tools provide a promising approach to find local expansion of the field in the volume of interest
- Accuracy achieved is very high compared to conventional numerical field solvers
- Provides a good way to check the field quality
- This method can be extended for PDE's