
1'

&

$

%

Jacobians by Vertex Elimination and
Inner Products

ADFest, Univ Hertfordshire, Nov 2004
John Pryce, RMCS, Cranfield University

j.d.pryce@cranfield.ac.uk

with the help of Shaun Forth & Mohamed Tadjouddine

This work is about using AD to generate Jacobian code, to compute
Jacobian matrix J = J(x) = f ′(x) of a vector function y = f(x).

2'

&

$

%

• Using source text translation approach.

• Applies to code with no loops or branches. May sound trivial but

– There are many ‘flux functions’ in CFD that are like this and
are invoked once per mesh cell each time global flux-function
is required — millions of times per run.

– For other computations, think of basic blocks in the code.

3'

&

$

%

This is an alternative way to implement the Vertex Elimination
method (VE) of Griewank and Reese (1991). Standard
implementations produce code with many, short, statements. This
way produces fewer, longer statements of inner-product form

cij := cij +
∑

k∈K

cikckj.

Produces generally faster code than produced by other VE
approaches, and more human-readable.

We view the problem in terms of sparse linear algebra. The method
is based on the well-known equivalence of Gaussian Elimination with
Crout-Doolittle “compact” LU factorization.

4'

&

$

%

Simple example

Illustrate by a simple function y = f(x) with three inputs and two
outputs. Left column: code list for f , in Matlab-like notation.
Right column: the basic linear relations of AD, obtained by
differentiating the code line-by-line:

function [y1,y2] = f(x1,x2,x3)

v1 = x1*x2 dv1 = x2 dx1 + x1 dx2

v2 = sin(v1) dv2 = cos(v1) dv1

v3 = 2*v2 dv3 = 2 dv2

v4 = v3-x1 dv4 = dv3 − dx1

y1 = x3*v4 dy1 = x3 dv4 + v4 dx3

y2 = 3*v4 dy2 = 3 dv4

(1)

d’s mean “derivatives wrt. whatever independent variables we are
interested in”.

5'

&

$

%

Eliminate intermediate dvk to get the dyi as linear combinations of
the dxj:

dyi =
∑

j

Jij dxj

This gives J = [Jij], the desired Jacobian matrix.

In classical Forward AD, d means “gradient wrt. the independent
variables”. Here,

d =

(

∂

∂x1

,
∂

∂x2

,
∂

∂x3

)

Eliminate the dvk by forward substitution, taking no account of
sparsity in the row vectors on the right.

6'

&

$

%

For the example:

Initialize with
dx1 = (1 0 0)
dx2 = (0 1 0)
dx3 = (0 0 1)

and continue
dv1 = x2 dx1 + x1 dx2 = (x2 x1 0)
dv2 = cos(v1) dv1 = (cos(v1) x2 cos(v1) x1 0)
dv3 = 2 dv2 = . . .

dv4 = dv3 − dx1 = . . .

and output
dy1 = x3 dv4 + v4 dx3 = . . .

dy2 = 3 dv4 = . . .

(2)

(Of course do it numerically, not symbolically.)

If straightforwardly done, costs 12 adds and 24 mults.

7'

&

$

%

Matrix view.

The relations in (1) constitute a sparse linear system

0 =



















x2 x1 0 −1 0 0 0 0 0

0 0 0 cos(v1) −1 0 0 0 0

0 0 0 0 2 −1 0 0 0

−1 0 0 0 0 1 −1 0 0

0 0 v4 0 0 0 x3 −1 0

0 0 0 0 0 0 3 0 −1













































dx1

dx2

dx3

dv1

dv2

dv3

dv4

dy1

dy2



























(3)

=

n p m
[]

p B L − I 0

m R T −I







dx

dv

dy






, in Griewank’s notation (4)

8'

&

$

%

That is

B dx + (L − I) dv = 0

R dx + T dv − dy = 0

Solving,

dy =
(

R + T (I − L)−1B
)

dx,

hence Jacobian is given by

J = R + T (I − L)−1B (5)

9'

&

$

%

Vertex Elimination (VE)

Griewank–Reese–Naumann define VE in terms of the Computational
Graph, but it is equivalent to the following process on the matrix

C =

p n
[]

p L − I B

m T R
(6)

Algorithm 0.1 (Vertex Elimination)
for each intermediate-variable row i = 1, . . . , p, in some order,
the pivot order
- Remove multiples of row i from later rows, to zero

all entries in column i

- Delete row and column i

10'

&

$

%

This is just Gaussian Elimination (GE) on the matrix after
permuting rows and columns into pivot order. GE is known to be
equivalent to Crout–Doolittle compact LU factorization. Hence, VE
can be implemented by LU factorizing, “to p stages only”,

C∗ =

p n
[]

p P (L − I)P T PB

m TP T R
producing

p n








p ∗ ∗

m ∗
J ends
up here

(7)

where P is a permutation matrix describing the pivot order

In AD applications, many original entries are constants, e.g. the
local derivatives for x ± y are 1,±1. In addition to using LU-style,
the right hand column shows the shorter code that can be produced
using this fact.

11'

&

$

%

Code generation for simple example

Entries of matrix are represented by simple variables, e.g. cy1v4 is entry in y1

row, v4 column. Pivot order is 3, 2, 1, 4.
TRADITIONAL VE STYLE
!Input: elementary derivatives
!cv1x1, cv1x2, cv2v1, cv3v2, cv4x1,
!cv4v3, cy1x3, cy1v4, cy2v4
!eliminate v3
cv4v2 = cv4v3 * cv3v2
!eliminate v2
cv4v1 = cv4v2 * cv2v1
!eliminate v1
cv4x1 = cv4x1 + cv4v1 * cv1x1
cv4x2 = cv4v1 * cv1x2
!eliminate v4
cy1x1 = cy1v4 * cv4x1
cy2x1 = cy2v4 * cv4x1
cy1x2 = cy1v4 * cv4x2
cy2x2 = cy2v4 * cv4x2

1 add, 8 mults

LU STYLE+EXPLOITING CONSTS
!Input: non-constant elem derivs
! cv1x1, cv1x2, cv2v1, cy1x3, cy1v4
!Use cv3v2=2, cv4v3=1, cy2v4=3
cv4v1 = 2 * cv2v1
cv4x1 = –1 + cv4v1 * cv1x1
cv4x2 = cv4v1 * cv1x2
cy1x1 = cy1v4 * cv4x1
cy2x1 = 3 * cv4x1
cy1x2 = cy1v4 * cv4x2
cy2x2 = 3 * cv4x2

1 add, 7 mults — cf. costs on Slide 3

At end J is formed from Jij = cyixj. (Note cy1x3 is input, and cy2x3 is 0).

12'

&

$

%

Jacobians by Inner Products (JIP)

JIP is a prototype written in Matlab. Input is (1) a representation
of the Computational Graph G, produced e.g. by EliAD tool’s
Fortran parser; (2) a pivot order π (you choose one of several
heuristics to compute π). Output is code in the above “LU style”.

Tests on real code showed many (even over 50%) statements
generated by this process were simple copies cij = crs or cij = −crs.
JIP exploits this to shorten code further — “alias” feature.

13'

&

$

%

Examples

Roe flux function from CFD. 10 inputs, 5 outputs, 62
intermediates. Best heuristic was “pre-eliminated VLR”, giving
code with 240 lines, 445 add/subtracts, 662 multiplications.
(EliAD: 1222 to 3175 lines depending on pivot order. Slightly
unfair as includes 278 lines elementary derivative and function
code.)

(Derived from) Flow in Channel function from MINPACK test
set. 128 inputs, 34 outputs, 582 intermediates. J is sparse with
342 nonzeros out of possible 4352. We get code with one line
per nonzero, 352 add/subtracts, 494 multiplications. Without
the “alias” feature the code would have been 518 lines longer.

(EliAD: 4420 to 9982 lines.)

14'

&

$

%

Platform

technique W (∇F)/W (F) Ultra10 Alpha AMD

ADIFOR 15.95 17.39 9.74 9.10

FD 12.14 13.32 12.47 9.08

TAMC-ftl 21.18 18.00 10.02 12.34

TAMC-ad 12.69 23.87 8.03 8.97

VE-SLP-R 6.78 9.70 4.24 4.00

VE-SLP-R-DFT 6.78 9.25 4.05 5.69

VE-SLP-Mark 7.35 11.92 4.62 4.17

VE-SLP-VLR 6.60 10.43 4.00 3.90

VE-SLP-VLR-DFT 6.60 8.32 4.36 5.51

LU-SLF ? 9.84 4.92 3.98

LU-SLR ? 8.01 4.62 3.47

LU-SL-Mark ? 9.10 4.44 3.72

LU-SL-VLR ? 8.52 4.06 3.41

LU-SLPF ? 10.52 4.47 3.89

LU-SLPR ? 7.63 3.93 3.38

LU-SLP-Mark ? 8.96 4.40 3.72

LU-SLP-VLR ? 8.80 4.04 3.41

Table 1: Tests on Roe flux

15'

&

$

%

Platform

technique W (∇F)/W (F) Ultra10 Alpha AMD

MINPACK 1.91 13.53 12.55 6.52

HAND-CODED 1.91 9.25 7.17 2.22

HAND-CODED-(UNROLLED) ? 4.75 3.63 1.26

ADIFOR(UNROLLED) 34.42 22.50 42.02 14.59

TAMC-F(UNROLLED) 35.99 21.23 44.38 13.97

TAMC-R 44.64 73.89 73.09 25.87

FD(UNROLLED) 33.73 116.79 172.38 38.49

VE-SL-F 3.49 3.14 3.38 4.92

VE-SL-R 2.25 3.12 3.32 1.82

VE-SLP-F 2.25 3.16 3.33 1.84

VE-SLP-R 2.25 3.14 3.33 1.82

LU-SLF ? 2.98 3.36 1.38

LU-SLR ? 3.09 3.42 1.35

LU-SLMARK ? 3.07 3.37 1.35

LU-SLVLR ? 2.99 3.35 1.37

LU-SLPF ? 3.12 3.34 1.37

LU-SLPR ? 3.10 3.34 1.37

Table 2: Tests on FIC problem

16'

&

$

%

Q & A

What’s this technique good for?
It applies to the same kind of code as EliAD tool handles — say
up to 1000 lines of Fortran. You must unroll any loops. Branches
could, in principle, be handled as EliAD presently does.

The Cranfield AD group intend to include this code generation
method in EliAD in due course.

What are the algorithms?
Standard graph manipulation — which Matlab is good at because
of its sparse matrix features. Combination of symbolic/numerical
linear algebra — done by overloading the Matrix-Multiply operator
on a new data type using Matlab’s OO features.

17'

&

$

%

Can’t compiler optimization “exploit constants and aliases” just as
well?
Our optimizations are fairly specific to AD code. Speed tests on
several workstations showed J-code without “constant and alias”
optimization generally runs a lot slower than J-code with it, even at
highest level of compiler optimization.

