/ Jacobians by Vertex Elimination and \
Inner Products

ADFest, Univ Hertfordshire, Nov 2004
JOHN PRYCE, RMCS, Cranfield University

j.d.pryce@cranfield.ac.uk
with the help of Shaun Forth & Mohamed Tadjouddine

This work is about using AD to generate Jacobian code, to compute
Jacobian matrix J = J(x) = f’(x) of a vector function y = f(x).

N /

4 N

e Using source text translation approach.

e Applies to code with no loops or branches. May sound trivial but

— There are many ‘flux functions’ in CFD that are like this and
are invoked once per mesh cell each time global flux-function
is required — millions of times per run.

— For other computations, think of basic blocks in the code.

4 N

This Is an alternative way to implement the Vertex Elimination
method (VE) of Griewank and Reese (1991). Standard
iImplementations produce code with many, short, statements. This
way produces fewer, longer statements of inner-product form

Cij «— Cij + E CikClj -
ke K

Produces generally faster code than produced by other VE
approaches, and more human-readable.

We view the problem in terms of sparse linear algebra. The method
Is based on the well-known equivalence of Gaussian Elimination with
Crout-Doolittle “compact” LU factorization.

N /

/ Simple example I

~

lllustrate by a simple function y = f(x) with three inputs and two

outputs. Left column: code list for £, in MATLAB-like notation.

Right column: the basic linear relations of AD, obtained by

differentiating the code line-by-line:

function [yl,y2] = f(x1,x2,x3)

vl = x1*x2 dvy = xodx1 +x1das
v2 = sin(vl) dve = COS(Ul) dvy

v3 = 2%v2 dvs = 2duvy

vd = v3-x1 dvy = dvg— dxy

yl = x3*xv4 dy1 = x3dvg+ vgdxs
y2 = 3%v4d dys = 3duy

d's mean “derivatives wrt. whatever independent variables we are

@terested In" .

/

4 N

Eliminate intermediate dv; to get the dy; as linear combinations of
the dZCj:

dy/,, = Z Jz’j dZEj
J

This gives J = |J;;], the desired Jacobian matrix.

In classical Forward AD, d means “gradient wrt. the independent

variables” . Here,
q— o 0 9,
N 85131 ’ 8:1:2’ 5)5133

Eliminate the dv, by forward substitution, taking no account of
sparsity in the row vectors on the right.

N /

€

or the example:

Initialize with

da:l = (1 0 O)
dCUQ — (0 1 O)
dZIjg — (0 0 1)
and continue
dvy = zodri+21dry = (5132 1 O) (2>
dvy = cos(vy) dug = (cos(vy)xe cos(vi)xzy O)
dvg = 2 d?)g
dvy = dvg — da; =
and output
dyn = x3dvg +wvadzs =
dy2 — 3 d?}4 —

(Of course do it numerically, not symbolically.)

Q‘ straightforwardly done, costs 12 adds and 24 mults.

/

The relations in (1) constitute a sparse linear system

/ Matrix view. I \

g
) ro I 0 —1 0 0 0 0 0 dZEQ
0 0 O |cos(vy) =1 0 0] 0 O ds
0o 0 0] 0 2 -1 0lo0 o0 doy
0= dvz
-1 0 0 0 0O 1 —-1]0 0 dvs
0 0 w4 0 0 0 x3|—-1 0 doy
0 0 O 0 0o 0 3|0 -1 din
| dya
T P m B dX]
D [B L—-110] dv |, in Griewank's notation

(4)

/

-

That is

Bdx+ (L—-1)dv=20
Rdx+Tdv—dy=20

Solving,
dy = (R+T(I — L)"'B) dx,

hence Jacobian is given by

J=R+T(I-L)"'B

N

-

Vertex Elimination (VE) I

Griewank—Reese—-Naumann define VE in terms of the Computational
Graph, but it is equivalent to the following process on the matrix

D n
C—= D [L—I B]
m T R

Algorithm 0.1 (Vertex Elimination)
for each intermediate-variable row 7 = 1,...,p, in some order,

the pivot order
- Remove multiples of row 7 from later rows, to zero

all entries in column 1
- Delete row and column 2

N

~

10
This is just Gaussian Elimination (GE) on the matrix after
permuting rows and columns into pivot order. GE is known to be
equivalent to Crout—Doolittle compact LU factorization. Hence, VE
can be implemented by LU factorizing, “to p stages only”,

p n P "
JE: *]
c-= p [P(L-I)P' PB producing 7 endsl| (7)
m TPt R m | * enes
i up here ||

where P is a permutation matrix describing the pivot order

In AD applications, many original entries are constants, e.g. the
local derivatives for x &=y are 1, 1. In addition to using LU-style,

the right hand column shows the shorter code that can be produced
using this fact.

N /

row, v4 column. Pivot order is 3, 2, 1, 4.

TRADITIONAL VE STYLE
Input: elementary derivatives
lcvlxl, cvlx2, cv2vl, cv3v2, cv4xl,
levdv3, cylx3, cylv4, cy2v4
leliminate v3

cvdv2 = cvdv3 * cv3v2
leliminate v2

cvdvl = cvdv2 * cv2vl
leliminate v1

cvdxl = cv4dxl + cvdvl * cvlxl
cvdx2 = cvdvl * cvlx2
leliminate v4

cylxl = cylv4d * cvdxl

cy2x1 = cy2v4 * cvixl

cylx2 = cylv4d * cv4x2

cy2x2 = cy2v4d * cv4x2

/ Code generation for simple example I \

Entries of matrix are represented by simple variables, e.g. cylv4 is entry in yl

LU STYLE+EXPLOITING CONSTS
Input: non-constant elem derivs

I cvlxl, cvlx2, cv2vl, cylx3, cylv4d
'Use cv3v2=2, cv4v3=1, cy2v4=3
cvdvl = 2 * cv2vl

cvdxl = -1 + cvdvl * cvixl

cvdx2 = cvdvl * cvlx2

cylxl = cylv4d * cvixl

cy2x1l = 3 * cv4xl

cylx2 = cylv4d * cv4dx2

cy2x2 = 3 * cv4x2

1 add, 7 mults — cf. costs on Slide 3

1 add, 8 mults

Qt end J is formed from J;; = cyixj. (Note cylx3 is input, and cy2x3 is 0). /

11

12

Jacobians by Inner Products (JIP) I

JIP is a prototype written in MATLAB. Input is (1) a representation
of the Computational Graph G, produced e.g. by ELIAD tool's
Fortran parser; (2) a pivot order 7 (you choose one of several
heuristics to compute 7). Output is code in the above “LU style”.

Tests on real code showed many (even over 50%) statements
generated by this process were simple copies ¢;; = c,5 or ¢;; = —Cs.
JIP exploits this to shorten code further — “alias” feature.

N /

13

/ Examples I \

Roe flux function from CFD. 10 inputs, 5 outputs, 62
Intermediates. Best heuristic was “pre-eliminated VLR", giving
code with 240 lines, 445 add/subtracts, 662 multiplications.
(ELIAD: 1222 to 3175 lines depending on pivot order. Slightly
unfair as includes 278 lines elementary derivative and function
code.)

(Derived from) Flow in Channel function from MINPACK test
set. 128 inputs, 34 outputs, 582 intermediates. J is sparse with
342 nonzeros out of possible 4352. We get code with one line
per nonzero, 352 add/subtracts, 494 multiplications. Without
the “alias” feature the code would have been 518 lines longer.

(ELTAD: 4420 to 9982 lines.)

N /

14

Platform
technique W(VF)/W(F) | Ultral0 Alpha AMD
ADIFOR 15.95 17.39 0.74 9.10
FD 12.14 13.32 12.47 9.08
TAMC-ftl 21.18 18.00 10.02 12.34
TAMC-ad 12.69 23.87 8.03 8.97
VE-SLP-R 6.78 9.70 4.24 4.00
VE-SLP-R-DFT 6.78 9.25 4.05 5.69
VE-SLP-Mark 7.35 11.92 4.62 4.17
VE-SLP-VLR 6.60 10.43 4.00 3.90
VE-SLP-VLR-DFT 6.60 8.32 4.36 5.51
LU-SLF 7 0.84 4.92 3.98
LU-SLR 7 8.01 4.62 3.47
LU-SL-Mark 7 9.10 4.44 3.72
LU-SL-VLR 7 8.52 4.06 3.41
LU-SLPF ? 10.52 4.47 3.89
LU-SLPR ? 7.63 3.93 3.38
LU-SLP-Mark ? 8.96 4.40 3.72
LU-SLP-VLR ? 8.80 4.04 3.41

Table 1: Tests on Roe flux

~

15

Platform \

technique W(VF)/W(F) | Ultralo0 Alpha AMD
MINPACK 1.91 1353 1255 6.52
HAND-CODED 1.91 9.25 717 222
HAND-CODED-(UNROLLED) ? 4.75 363 1.26
ADIFOR(UNROLLED) 34.42 2250 42.02 14.59
TAMC-F(UNROLLED) 35.99 2123 4438 13.97
TAMC-R 44.64 73.89 73.09 25.87
FD(UNROLLED) 33.73 116.79 172.38 38.49
VE-SL-F 3.49 3.14 338 4.92
VE-SL-R 2.25 3.12 332 1.82
VE-SLP-F 2.25 3.16 333 1.84
VE-SLP-R 2.25 3.14 333 1.82
LU-SLF ? 2.98 336 1.38
LU-SLR ? 3.09 342 1.35
LU-SLMARK ? 3.07 337 1.35
LU-SLVLR ? 2.99 335 1.37
LU-SLPF ? 3.12 334 1.37
LU-SLPR ? 3.10 334 1.37

Table 2: Tests on FIC problem /

Q& A I

What's this technique good for?

It applies to the same kind of code as ELIAD tool handles — say
up to 1000 lines of Fortran. You must unroll any loops. Branches
could, in principle, be handled as ELIAD presently does.

The Cranfield AD group intend to include this code generation
method in ELIAD in due course.

What are the algorithms?

Standard graph manipulation — which MATLAB is good at because
of its sparse matrix features. Combination of symbolic/numerical
linear algebra — done by overloading the Matrix-Multiply operator
on a new data type using MATLAB's OO features.

N /

16

4 N

17

4 N

Can't compiler optimization “exploit constants and aliases” just as

well?

Our optimizations are fairly specific to AD code. Speed tests on
several workstations showed .J-code without “constant and alias”
optimization generally runs a lot slower than J-code with it, even at

highest level of compiler optimization.

N /

