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Introduction

Taylor model (TM) methods were originally developed for a practical
problem from nonlinear dynamics, range bounding of normal form defect
functions.

e Functions consist of code lists of 10* to 10° terms
e Have about the worst imaginable cancellation problem
e Are obtained via validated integration of large initial condition boxes.

Originally nearly universally considered intractable by the community.
But ... a small challenge goes a long way towards generating new ideas!

Idea: represent all functional dependencies as a pair of a polynomial P
and a remainder bound [, introduce arithmetic, and a new ODE solver.
Obtain the following properties:

e The ability to provide enclosures of any function given by a finite com-
puter code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order (n + 1) of the width of the domain.

e The ability to alleviate the dependency problem in the calculation.

e The ability to scale favorable to higher dimensional problems.



One Dimensional TM Range Bounders
(Work with Youn-Kyung Kim at Michigan State Univ.)

It is relatively easy to produce efficient range bounders of up to sixth order
e There are well-known formulas for zeros of polynomials up to order 4

e Apply these to the derivatives and find all real roots

e Yields all critical points of polynomials up to order 5

e Evaluating polynomial at these and boundary points, and take min, max
Care has to be taken about the following aspects:

e Obviously, Evaluate formulas by interval arithmetic

e Branches in the code because of different sub-cases:

o follow each one separately, or
o slightly perturb the original polynomial so that branches disappear

P*(z) = P(z)+ Y., & ', then B(P) C B(P*) - B (Z?:1 5ixi)
e Only interested in real roots: re-write expressions to avoid complex roots

e Cleverly write formulas to minimize width of enclosures of critical points
(cancellation problem)



The Linear Dominated Bounder (LDB)

e The linear part of TM polynomial is the leading part, also for range
bounding.

e The idea is easily extended to the multi-dimensional case.

e Use the linear part as a guideline for domain splitting and elimination.

e The reduction of the size of interested box works multi-dimensionally
and automatically. Thus, the reduction rate is fast.

e Even there is no linear part in the original TM, by shifting the expansion
point, normally the linear part is introduced.

e Fxact bound (with rounding) is obtained if monotonic.




LDB Algorithm

Wilog, find the lower bound of minimum of a polynomial P in B.

1. Re-expand P at the mid-point m of B to P,,. Center the domain as B,,.

2. Turn the linear coeflicients ¢;’s of P, all positive by a transformation D,
with Dii :Sign(cz-), Dz’j — 0 for 7 # ]
The polynomial is P, in the domain B,, = B,,.

3. Compute the bound of the linear (/;) and nonlinear (I;,) parts of the
polynomial P, in B,,. The minimum is bounded by [M, M;,| == I, + I".
If applicable, lower M, by the left end value and the mid-point value.

4. The refinement iteration
(a) If w =width([M, M;,|)> €, set By, : Vi, if ¢; > 0 and width(B,;)>w/¢;,
then
o Ewi L= sz + ’UJ/CZ'.
o Re-expand P, at the mid-point of B,,. ¢;’s are the new coeflicients.
o Go to 3.
(b) Else, M is the lower bound of minimum.

e If only a cutoff test is needed, the task is performed more efficiently.
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P(X)=1-5*x+x"3/3 in [2,3]

from R. Moore, SIAM 1979
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LDBL, P(x)=1-5*x+x"3/3. Step 0
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LDBL, P(x)=1-5*x+x"3/3. Step 0

-------- + Nonlinear part

2.5




-5.5

-6.5

LDBL, P(x)=1-5*x+x"3/3. Step 0

|
-------- + Nonlinear part
End point estimate
"7+ Mid point estimate
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LDBL, P(x)=1-5*x+x"3/3. Step 0

-------- + Nonlinear part
======= |nner bound

.
PP

2.5 3



-6.25

-6.3

-6.35

-6.4

-6.45

-6.5

LDBL, P(x)=1-5*x+x"3/3 in [2,2.5]. Step 1
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LDBL, P(x)=1-5*x+x"3/3 in [2,2.5].

Step 1

+ Nonlinear part
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LDBL, P(x)=1-5*x+x"3/3 in [2,2.5]. Step 1
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Inner bound
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Finding Min and Max using LDBL, P(x)=1-5*x+x"3/3 in [2,3]

Original Domain [2,3]

Reduced Domains for Finding Min

for Max
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The QDB (Quadratic Dominated Bounder) Algorithm

1. Let u be an external cutoff. Initialize u = min(u, ()(center)). Initialize
list with all 3" surfaces for study.

2. If no boxes are remaining, terminate. Otherwise select one surface .S of
highest dimension.

3.0n S, apply LDB. If a complete rejection is possible, strike S and all
its surfaces from the list and proceed to step 2. If a partial rejection is
possible, strike the respective surfaces of S from the list and proceed to
step 2.

4.Metétminefheldefiniténesslof[fheHessian[of () which isestricted fo S

) (Use LDL decomposition.) )
5. If the Hessian is not p.d. strike S from the list and proceed to step 2.
6. If the Hessian is p.d., determine the corresponding critical point c.

7. If c is fully inside S, strike S and all surfaces of S from the list, update
u = min(u, Q(c)), and proceed to step 2

8. If ¢ is not inside S, strike S and all of its surfaces that are not visible
from ¢ and proceed to step 2


Makino
(Use LDL decomposition.)
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The QDB Algorithm - Properties

The QDB algorithm has the following properties.
1. It has the third order approximation property.

2. The effort of finding the minimum requires the study of at most 3"
surfaces.

3. In the p.d. case, the computational effort requires the study of at most
2" surfaces.

4. For the surfaces studies, parts of the original LDL decomposition can be
re-used.

5. Because of extensive box striking, in practice, the numbers of boxes to
study is usually much much less.



The QDB Algorithm - Properties

The QDB algorithm has the following properties.
1. It has the third order approximation property.

2. The effort of finding the minimum requires the study of at most 3"
surfaces.

3. In the p.d. case, the computational effort requires the study of at most
2" surfaces.

4. For the surfaces studies, parts of the original LDL decomposition can be
re-used.

5. Because of extensive box striking, in practice, the numbers of boxes to
study is usually much much less.

But still, it is desirable to have something faster.



The QFB (Quadratic Fast Bounder) Algorithm
Let P + I be a given Taylor model. Idea: Decompose into two parts
P+1=(P—-Q)+I+(Q and observe
(P+1)>1(P—Q)+1Q)+I(I)
Choose () quadratic such that
1. ) can be easily and sharply bounded from below.
2. P — () is sufficiently simplified to allow bounding above given cutoff.
BUP+I)=~I(P—Q)+1(Q)+ (1)
First possibility: Let H be p.d. part of Hessian of P, set

1
Q = iwt - H-x
Then [(Q)) = 0. Removes all second order parts of P (!) Better yet:
1
Q= §(x —x0)' - H - (x — x0)
Allows to manipulate linear part. Works for ANY x( in domain. Still

Q) = 0.

Which choices for x( are good?



The QFB Algorithm - Properties

Most critical case: near local minimizer, so f is the entire purely quadratic
part of P.

Theorem: If xy is the (unique) minimizer of quadratic part of P on the
domain of P + I, then x, is also the minimizer of linear part of (P — @, ).
Furthermore, the lower bound of (P — @,,), when evaluated with plain
interval evaluation, is accurate to order 3 of the original domain box.

Proof: First part follows readily from Kuhn-Tucker conditions. If z
inside, linear part vanishes completely. Otherwise, if -th component of x
is wlog at left end, i-th partial there must be non-negative, so yields smallest
contribution obtained at xy.

Consequence: If x( is the minimizer of quadratic part P, we have

(P +1)=1(P = Qu) + Q) + (1)

Remark: The closer z is to the minimizer, the closer there is order 3
cutoft.



The QFB Algorithm - Practical Use

Algorithm: (Third Order Cutoff Test). Let 2" be a sequence
of points that converges to the minimum x( of the convex quadratic part
P, Inlstep n,[determinelabound of[((P — @), }tbylintetvallevalitation, and
assess whether the bound exceeds the cutoft threshold. If it does, reject the
box and terminate; if it does not, proceed to the next point z("*1,

QMLoc: Tool to generate cheap and efficient sequence z™). Determine
”feasible descent direction”

( Q

— 5 if 2"

9@'(71) = { min (_%7 0) if 2" on right

?

max (—%, 0) if 2" on left

?

inside

\
Now move in direction of ¢ until we hit box or quadratic minimum

along line. Very fast, can cover large ground per step, can change set of
active constraints very quickly.

Result: Cheap iterative third order cutoff. Usually requires very few, if
any, 1terations.



Use of QFB - Example
Let fi(z) =32 A,z — A, - (a-2) + 3" - A, - a with

2 3 ...3
e[
-1 -1 ...2

known to be p.d. with minimum a. Choose a random vector a, and 5"
boxes around it. Check box rejection with Interval evaluation, Centered
Form, QFB. Output average number of QFB iterations.



Use of QFB - Example
Let fi(z) =32 A,z — A, - (a-2) + 3" - A, - a with

2 3 ...3
e[
-1 -1 ...2

known to be p.d. with minimum a. Choose a random vector a, and 5"
boxes around it. Check box rejection with Interval evaluation, Centered
Form, QFB. Output average number of QFB iterations.

v N=5"v NI NC NQFB Avg. Iter
2 25 25 8 1 1.1
4 625 625 308 1 0.31



Use of QFB - Example
Let fi(z) =32 A,z — A, - (a-2) + 3" - A, - a with

2 3 ...3
e[
-1 -1 ...2

known to be p.d. with minimum a. Choose a random vector a, and 5"
boxes around it. Check box rejection with Interval evaluation, Centered
Form, QFB. Output average number of QFB iterations.

v N=5"v NI NC NQFB Avg. Iter
2 25 25 8 1 1.1
4 625 625 308 1 0.31
6 15,625 15,625 12,434 1 0.31
8 390,625 390,626 372,376 1 0.43
10 9,765,625 9,765,625 9,622,750 1 0.55



Key Features and Algorithms of COSY-GO

e List management of boxes not yet determined to not contain the global
minimizer. Loading a new box. Discarding a box with range above
the current threshold value. Splitting a box with range not above the
threshold value for further analysis. Storing a box smaller than the
specified size.

e Application of a series of bounding schemes, starting from mere interval
arithmetic to naive Taylor model bounding, LDB, then QFB. A higher
bounding scheme is executed only if all the lower schemes fail.

e Update of the threshold cutoff value via various schemes. It includes
upper bound estimates of the local minimum by corresponding bounding
schemes, the mid point estimate, global estimates based on local behavior
of function using gradient line search and convex quadratic form.

e Box size reduction using LDB.

e Resulting data is available in various levels including graphics output.



Moore’s Simple 1D Function

flx)=1+2"—2"
Study on [0, 1]. Trivial-looking, but dependency and high order.
Assumes shallow min at 0.8.
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Box Step Number

COSY-GO with naive IN with mid point test. 1D. f=x"5-x"4+1
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COSY-GO with Centered Form with mid point test. 1D. f=x"5-x"4+1
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Beale’s 2D and 4D Function

flay, x9) = (15 — 21(1 — 22))*+(2.25 — 21 (1 — 22))°+(2.625 — a1 (1 — 23))°

Domain [—4.5,4.5]*. Minimum value 0 at (3,0.5).

Little dependency, but tricky very shallow behavior.
Generalization to 4D:

flxy, T9, 23, 4) = (1.5 — 21(1 — 29)) + (2.25 — a1 ( 1—:1:2 )"+
+ (14 a3(1 — 24))° + (3+$31—x4) +(7+x31—azf’l))2
+ (34 a1(1 —z4))° + (9+5L’11—x4) —|—(21—|—5L’11—I‘Z))2
+ (0.5 — 3(1 — 22))* + (0.75 — 23(1 — 22))” + (0.875 — x3(1 — 23))”
Domain [0, 4]*. Minimum value 0 at (3,0.5,1, 2)

2 2

(2.625 — 21 (1 — 3))



The Beale function. f = [1.5-x(1-y)]*2 + [2.25-x(1-y"2)]*2 + [2.625-x(1-y"3)]"* 2
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COSY-GO with IN. The Beale function




COSY-GO with CF. The Beale function




COSY-GO with LDB/QFB. The Beale function
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COSY-GO. The Beale function. Remaining Boxes ( < 1e-6 ) around (3,0.5)
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COSY-GO The Beale Function: Number of Boxes -- IN

To Be Stuldied
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COSY-GO The Beale Function: Number of Boxes -- CF
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Cutoff Value
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COSY-GO The Beale Function: Cutoff Value -- IN
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Cutoff Value
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Cutoff Value
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COSY-GO The Beale Function: Cutoff Value -- LDB/QFB
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Cutoff Value
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Cutoff Value

COSY-GO Beale 4D: Cutoff Value -- LDB/QFB
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Lennard-Jones Potentials

Ensemble of n particles interacting pointwise with potentials

1 1
VLJ(T):E_2.E

Has very shallow minimum of —1 at » = 1. Very hard to Taylor expand.
Extremely wide range of function values: V7 ;(0.5) = 4000, V7 ;(2) ~ 0.03

V=2 Vi(ri—r)

Find min f = Zn Wiy (ri—r;) +1].

1<J

Study n = 3, 4, 5. Pop quiz: What do resulting molecules look like?



Number

COSY-GO Lennard-Jones potential for 4 atoms: Number of Boxes -- LDB/QFB
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Cutoff Value

COSY-GO Lennard-Jones potential for 4 atoms: Cutoff Value -- LDB/QFB
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COSY-GO Lennard-Jones potential for 5 atoms: Number of Boxes -- LDB/QFB
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Cutoff Value

COSY-GO Lennard-Jones potential for 5 atoms: Cutoff Value -- LDB/QFB
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Lennard-Jones Potentials - Results

Find minimum with COSY-GO and Globsol.
Usel TMs[oflOrdet[5[IQFB&LDBL
Use Globsol in default mode.

Problem CPU-time needed Max list
n=4, COSY 89 sec 2,866
n=5, COSY 1,550 sec 6,321

n=4 atoms: 6D problem, n=5 atoms: 9D probl

Total # of Boxes

15,655
69,001
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n=4 atoms: 6D problem,   n=5 atoms: 9D problem
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Lennard-Jones Potentials - Results

Find minimum with COSY-GO and Globsol.
Usel TMs[oflOrdet[5[IQFB&LDBL
Use Globsol in default mode.

Problem CPU-time needed Max list Total # of Boxes
n=4, COSY 89 sec 2,866 15,655
n=5, COSY 1,550 sec 6,321 69,001
n=4, Globsol 5,833 sec 243,911

=5, Globsol >259,200 sec
(not finished yet)

n=4 atoms: 6D problem, n=5 atoms: 9D probl
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n=4 atoms: 6D problem,   n=5 atoms: 9D problem
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Tracking x-px Phase Space Moition of the Tevatron
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Tracking x-px Phase Space Moition of the Tevatron


0. 400E-02

Tracking y-py Phase Space Moition of the Tevatron
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Tracking Phase Space Motion of 5 Particles in Regular Coordit
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Motion in Regular Coordinates
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Tracking Phase Space Motion of 5 Particles in Regular Coordinates
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Tracking Phase Space Motion of 5 Particles in Normal Form Coordinates
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Example of Phase Space Motion
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Tracking Phase Space Motion of 5 Particles in Normal Form Coordinates
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Tracking Phase Space Motion of 5 Particles in Normal Form Coordinates
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Make Stability Estimate via Nekhoroshev-type
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Validated Estimate using Global Optimizer


The[Normal Form Invariant/Defect Function

e Extreme cancellation; one of the reasons TM methods were invented
e Six-dimensional problem from dynamical systems theory
e Describes invariance defects of a particle accelerator
e Essentially composition of three tenth order polynomials
e The function vanishes identically to order ten
e Study for a- (1,1,1,1,1,1) for a = .1 and a = .2
e Interesting Speed observation: on same machine,
*one CFENINTLAB (takes[45minuites (Version 3.1 under Matlab V.6)

* one TM of order 7 takes 10 seconds

3 2
flx1, .., we) = Z (\/9321 + 3 — \/55'%@'—1 + 5’7%@)
i=1

where g: ﬁl (ﬁg (ﬁg(f)))
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The Tevatron NF Invariant Defect Function

Estimate bound of the defect function over the Tevatron actual emit-
tance (radius r) by global optimization. Make the stability estimate via
Nekhoroshev-type for 2 - r.



The Tevatron NF Defect Function - GlobSol Results

For the computations, GlobSol’s maximum list size was changed to 10°,
and the CPU limit was set to 10 days. All other parameters affecting the
performance of GlobSol were left at their default values.

Dimension CPU-time needed Max list Total # of Boxes

18810 sec 4733
>562896 sec (not finished yet)
>259200 sec (could not finish) 63446 (remaining)
> 86400 sec (could not finish) 21306 (remaining)
not attempted

O Ol W

We observe that in this example, COSY outperforms GlobSol by many
orders of magnitude. However, we are not completely sure if a different
choice of parameters for GlobSol could result in better performance.



The Tevatron NF Defect Function - COSY{GO Results

Tolerance on the sharpness of the resulting minimum is 107°.For the
evaluation of the objective function, Taylor models of order 5 were used.
For the range bounding of the Taylor models, LDB with domain reduction
was [beingluséd! |

Dimension CPU-time needed Max list Total # of Boxes

2 5.747071 sec 11 31
3 38.48828 sec 44 172
4 346.8604 sec 357 989
5 3970.746 sec 2248 6641
6 57841.94 sec 17241 49821



The Tevatron NF Invariant Defect Function

Estimate bound of the defect function over the Tevatron actual emit-
tance (radius r) by global optimization. Make the stability estimate via
Nekhoroshev-type for 2 - r.

e The result was very much limited by floating point floor.

e Can guarantee stability for 107 turns (emittance: 1.27 - 10~*mm mrad,
normal form radius Ryp = 107°).



Conclusion

e Taylor models provide enclosures of functional dependencies by polyno-
mials and a remainder that scales with n + 1st order.

e Range bounding of polynomial is often easier than range bounding of the
original function. Thus, the TM range bounding algorithms can lead to
a high order method.

e For one dimensional systems, there are bounders up to the sixth order.

e The LDB bounding is cheap, and exact if monotonic. It can be used to
assist various other methods. (QDB, Bernstein, ...)

e The QDB bounder provides the third order method.

e If the quadratic part is positive definite, a much faster quadratic bounder,
the QFB bounder, can be used for a cutoff test, preventing the problem
of cluster effect.

e Combined with various schemes for estimating cutofl values, we demon-
strated the efficiency of the Taylor model global optimizer COSY-GO.





