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The Problem

Enclose the solution of a system of n ≥ 2 equations IVP

y′ = A(t)y + g(t), y(0) = y0 ∈ [y0].

Idea (Lohner, Nickel)

• Perform (n + 1) integrations of points specifying a parallelepiped

at ti and enclose each point solution at ti+1.

We have (n + 1) boxes.

• Find (n + 1) points that determine a parallelepiped, which

encloses all the parallelepipeds with vertices in these boxes.

• Repeat.
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Figure 1: (a) enclosures of point solutions at t1; (b) some of the par-

allelepipeds with vertices in these enclosures (boxes); the larger box

contains the fourth vertices; (c–d) parallelepipeds enclosing the true

solution
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Figure 2: The same computation as in the previous figure, except that

the width of each component of the enclosures is 2× 10−10. The boxes

are denoted by “+”.
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Figure 3: (a) enclosures of point solutions at t1; (b) some of the par-

allelepipeds with vertices in these enclosures (boxes); the larger box

contains the fourth vertices; (c–d) parallelepipeds enclosing the true

solution
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Figure 4: The same computation as in the previous figure, except that

the width of each component of the enclosures is 2× 10−10. The boxes

are denoted by “+”.
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Advantages

• We enclose point solutions:

Taylor series + remainder term.

• The method does not impose restrictions on the size of the initial

box.

• An automatic differentiation package for computing Taylor

coefficients for the solution to Y ′ = A(t)Y , Y (0) = I is not

needed.

These coefficients are computed in AWA and VNODE.

Difficulties

• How to compute (n + 1) points on each step such that the

parallelepiped specified by them encloses the solution set.

• How to achieve small overestimations and reduce the wrapping

effect.
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Outline

1. Enclosing point solutions

2. Computing a parallelepiped

3. Choice of a transformation matrix

4. Reducing the wrapping effect

5. Concluding remarks
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Enclosing Point Solutions

Denote by fi(·) the ith Taylor coefficient of the solution to

y′ = A(t)y + g(t). (1)

If h and [ỹ0] 3 y0 are such that

y0 +

p−1∑

i=1

tifi(y0) + tpfp([ỹ0]) ⊆ [ỹ0] for all t ∈ [0, h],

then (1) with y(0) = y0 has a unique solution in [0, h], and

y(t; t0, y0) ∈ [ỹ0] for all t ∈ [0, h].

At t = h,

y(h; t0, y0) ∈ y0 +

p−1∑

i=1

hifi(y0) + hpfp([ỹ0]).
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Assume that at a point ti, for all y0 ∈ [y0],

y(ti; t0, y0) ∈ { b0 + Bα | α ∈ [0, 1]n },

where B ∈ R
n×n, and [0, 1]n denotes the vector with each component

[0, 1].

We integrate v0 = b0, v1 = b0 + b1, . . . , vn = b0 + bn

to compute [w0], [w1], . . . , [wn].

That is, for each vj ,

y
(
ti+1; ti, vj

)
∈ [wj ] = vj +

p−1∑

i=1

hifi(vj) + hpfp([ṽj ]),

where vj ∈ [ṽj ].
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Computing a Parallelepiped

Denote

cj = mid([wj ]),

[ej ] = [wj ] − cj , j = 0, . . . , n,

C the n × n matrix with jth column cj − c0, and

[e] =
n∑

j=1

[ej ] + (n − 1)[e0].

For all yi ∈ { b0 + Bα | α ∈ [0, 1]n },

y(ti+1; ti, yi) ∈
{
w0 +

n∑

j=1

αj(wj − w0) | αj ∈ [0, 1], wj ∈ [wj ]
}

⊆
{

c0 + Cα + [e] | α ∈ [0, 1]n
}
,
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since for α ∈ [0, 1]n, wj ∈ [wj ], and ej = wj − cj ∈ [ej ] (j = 0, . . . , n),

w0 +
n∑

j=1

αj(wj − w0)

= c0 + Cα + (w0 − c0) +

n∑

j=1

αj

(
wj − w0 − (cj − c0)

)

= c0 + Cα + e0 +
n∑

j=1

αj(ej − e0)

= c0 + Cα +

n∑

j=1

αjej + (1 −

n∑

j=1

αj)e0

∈
{

c0 + Cα +
n∑

j=1

[ej ] + (n − 1)[e0] | α ∈ [0, 1]n
}

=
{

c0 + Cα + [e] | α ∈ [0, 1]n
}
.

(Note that each [ej ] is symmetric.)
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Figure 5: We want to enclose the set
{

c0 + Cα + [e] | α ∈ [0, 1]n
}

by

a parallelepiped.
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We want to find g0 and G such that

{ c0 + Cα + e | α ∈ [0, 1]n, e ∈ [e] } ⊆ { g0 + Gα | α ∈ [0, 1]n }.

Let H ∈ R
n×n be nonsingular.

Denote

[r] = (H−1C)[0, 1]n + H−1[e] and D = diag
(
w([r])

)
.

Then
{
c0 + Cα + e | α ∈ [0, 1]n, e ∈ [e]

}

= { c0 + H
(
(H−1C)α + H−1e

)
| α ∈ [0, 1]n, e ∈ [e] }

⊆ { c0 + Hr | r ∈ [r] }

= { c0 + Hr + Hr | r ∈ [0, r − r] = D[0, 1]n }

= { (c0 + Hr) + (HD)α | α ∈ [0, 1]n }

= { g0 + Gα | α ∈ [0, 1]n }.

This derivation is by R. Lohner (2001, private communications).
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Now, for all yi ∈ { b0 + Bα | α ∈ [0, 1]n },

y(ti+1; ti, yi) ∈ { g0 + Gα | α ∈ [0, 1]n }.

We integrate g0, (g0 + g1), . . . , (g0 + gn).

Subtlety: we compute in floating-point arithmetic g̃0 and G̃

corresponding to g0 and G.

Is

{ c0 + Cα + e | α ∈ [0, 1]n, e ∈ [e] } ⊆ { g̃0 + G̃α | α ∈ [0, 1]n } ? (2)

If

G̃−1(c0 − g0) + (G̃−1C)[0, 1]n + G̃−1[e] ⊆ [0, 1]n (3)

then (2) holds.

If (3) does not hold in computer arithmetic, inflate [e] and try again.
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Choice of a Transformation Matrix

Parallelepiped method

H = C,

[r] = (H−1C)[0, 1]n + H−1[e] = [0, 1]n + C−1[e].

This method breaks down when C is close to singular.

QR-factorization method

C = QR, H = Q,

[r] = (H−1C)[0, 1]n + H−1[e] = R[0, 1]n + QT [e].
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Figure 6: Enclosures obtained by the parallelepiped and QR approaches.
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On some problems, with a large initial box, the QR method can

produce large overestimations.

Example:

y′ =

(
1 −2

3 −4

)
y, y(0) ∈ ([1, 2], [1, 2])T .

We take [e] = [−10−3, 10−3], h = 0.2.

The eigenvalues of exp(hA) are ≈ 0.8187 and 0.6703.
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Figure 7: QR; the blue lines denote the true solution set.
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Figure 8: Parallelepiped; the vertices of the true solution are denoted

by “+”.
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Example:

y′ =

(
−0.5 1

−1 0

)
y, y(0) ∈ ([1, 2], [1, 2])T .

We take [e] = [−10−4, 10−4], h = 0.2.

The eigenvalues of exp(hA) are ≈ 0.9334 ± 0.1831i, and

ρ
(
exp(hA)

)
≈ 0.9512.
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Figure 9: QR and parallelepiped methods
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Reducing the Wrapping Effect

The true solution is in

{ g0 + Gα | α ∈ [0, 1]n }

= { c0 + Hr | r ∈ (H−1C)[0, 1]n + H−1[e] }.

Parallelepiped

H = C, [rp] = [0, 1]n + C−1[e].

QR factorization

C = QR, H = Q, [rq] = R[0, 1]n + QT [e].

Can we combine them, or switch between them at run time?

Two ad-hoc solutions: Approach I and II.
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Approach I

We can (roughly) measure the overestimations in the parallelepiped

and QR methods by
∥∥w
(
C[rp]

)∥∥ and
∥∥w
(
Q[rq]

)∥∥, respectively.

Select:

if
∥∥w
(
C[rp]

)∥∥ ≤
∥∥w
(
Q[rq]

)∥∥

H = C, [r] = [rp] (parallelepiped)

else

H = Q, [r] = [rq] (QR)



25

Example:

y′ =

(
1 −2

3 −4

)
y, y(0) ∈ ([1, 2], [1, 2])T ,

[e] = [−10−3, 10−3], h = 0.2.
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Figure 10: Approach I
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Approach II

Let βmax be the largest angle among the angles between every two

columns of C.

Let βmin be the smallest such angle.

Let θ, 0 < θ � π, be a constant.

Select:

if βmin > θ and βmax < π − θ

H = C, [r] = [rp] (parallelepiped)

else

H = Q, [r] = [rq] (QR)



28

Example:

y′ =

(
1 −2

3 −4

)
y, y(0) ∈ ([1, 2], [1, 2])T ,

[e] = [−10−3, 10−3], h = 0.2,

θ = 10o = π/18.
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Figure 11: Approach II
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Concluding Remarks

• To reduce the wrapping effect when propagating larger sets, a

combination of the parallelepiped and QR-factorization methods

may be necessary.

• When to switch from one method to the other?

• An eigenvalue, or stability type analysis of a combined approach

may be necessary.


