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“If the only tool you have is a hammer,
  the whole world looks like a nail.” - Mark Twain

Our tool is optimization

Is structural engineering a nail?
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Objectives
Buckling beam
Building structure failures
Simple steel structure
Truss
3-D Steel structure
Dynamic loading
Challenges

"Dwarfing visitors, the 70-foot-tall Corliss steam engine powered
the 1876 Centennial Exposition's entire Machinery Hall. Built by
George H. Corliss, it was the largest steam engine in the world.
Of engines like the Corliss, William Dean Howells wrote, 'In these
things of iron and steel the national genius speaks.'"
- www.150.si.edu/chap4/4ngin.htm
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Abstract
A typical modern office building is supported by steel columns and beams arranged
in bays (horizontally) and stories (US) (vertically).  The structure must support
static (weight) and dynamic (storms and earthquakes) loads, at modest
construction costs.  If the structure fails under extreme conditions, we want to
control its failure.  For example, we prefer failures that can be repaired, and we
prefer an inward collapse to toppling over. Members under extreme loads exhibit
multiple modes of failure, which must be understood and modeled.

Increasingly, software tools used by practicing structural engineers
augment or replace engineering experience and rules-of-thumb by careful
mathematical modeling and analysis to support rapid exploration of the design
space.  Optimization and nonlinear systems problems abound, and their reliable
solution is life-critical.  Many problems have nonlinear finite element formulations.
Parameter values are known approximately, at best. Problems such as beam
buckling are extremely sensitive to initial conditions.  Problems such as selection of
suitable members are discrete because we want to specify members from a
catalogue in stock.  Some problems have broad, flat minimal regions, and some
admit continua of solutions.  Are we having fun yet?

This talk is accessible to anyone who remembers how to solve calculus
max-min problems in two variables.  I assume no structural engineering beyond the
fact that the lecture hall has not collapsed.  I report a little on work that has been
done, but mostly speculate on opportunities.  Is your hammer in your hand?
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Objectives: Buildings & Bridges

Fundamental tenet of good engineering design:

Balance performance and cost
Minimize weight and construction costs

While
•Supporting gravity and lateral loading
•Without excessive connection rotations
•Preventing plastic hinge formation at service load levels
•Preventing excessive plastic hinge rotations at ultimate load levels
•Preventing excessive lateral sway at service load levels
•Preventing excessive vertical beam deflections at service load
  levels
•Ensuring sufficient rotational capacity to prevent formation of
  failure mechanisms
•Ensuring that frameworks are economical through telescoping
  column weights and dimensions as one rises through the
  framework

From Foley’s NSF proposal



7

Risk-Based Optimization
E.g.: Performance vs. earthquake?

Minimize initial cost of construction
    for the structural system

While
•Ensuring a tolerable level of
  risk against collapse from a
  2,500 year ground motion
•Ensuring a tolerable level of risk of not being able to occupy
  the building immediately after a 100 year event

Need
•Assemble ground motion time histories
•Define damage states for structural components (beams & columns)
•Define damage states for nonstructural components (walls)

Image: Hawke's Bay, New Zealand earthquake, Feb. 3, 1931. Earthquake Engineering Lab,
Berkeley.  http://nisee.berkeley.edu/images/servlet/EqiisDetail?slide=S1193
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Computational
Issues

Modeling
Large nonlinear systems
Constrained global
     optimizations
Uncertain parameters
Desire certainties:

•Guaranties of
  performance
•Legal liabilities

Do you want to plead:

“Yes, Your Honor, we were aware of more reliable
modeling methods and tools, but we didn’t use them.”

Image: Moments before crane collapse at Miller Park, Milwaukee, July 14, 1999.
MKE Journal/Sentinal. http://www.jsonline.com/news/metro/jul99/mpgallery71499.asp
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1. One Structural Element:
Buckling Beam

C-shaped beam - thin wall steel member

Under ultimate load, how does it fail?

Modes:
•Torsional (twisting)
•Flexural (bending)
•Local
•Distortion

Image: David H. Johnson, Channel Buckling Test and FEA Model,
Penn State. http://engr.bd.psu.edu/davej/wwwdj2.html

Figure from: Schafer (2001). "Thin-Walled Column Design Considering Local,
Distortional and Euler Buckling." Structural Stability Research Council Annual
Technical Session and Meeting, Ft. Lauderdale, FL, May 9-12, pp. 419-438.
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1. One Structural Element: Buckling Beam
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2. Building Structure: Failure Modes
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2. Building Structure: Failure Modes

Buckling (failure) modes include
•Distortional modes (e.g., segments of the wall columns bulging
  in or outward)
•Torsional modes (e.g., several stories twisting as a rigid body
  about the vertical building axis above a weak story)
•Flexural modes (e.g., the building toppling over sideways).

Controlling mode of buckling flagged by solution to eigenvalue problem

(K + l Kg) d = 0

K  - Stiffness matrix
Kg - Geometric stiffness - e.g., effect of axial load
d  - displacement response

“Bifurcation points” in the loading response are key
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3. Simple Steel Structure
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3. Simple Steel Structure: Uncertainty

Linear analysis: K d = F

Stiffness K = fK(E, I, R)
Force F = fF(H, w)

E     - Material properties (low uncertainty)
I, A  - Cross-sectional properties (low uncertainty)
wDL   - Self weight of the structure (low uncertainty)
R     - Stiffness of the beams’ connections (modest uncertainty)
wLL   - Live loading (significant uncertainty)
H     - Lateral loading (wind or earthquake) (high uncertainty)

Approaches: Monte Carlo, probability distributions

Interval finite elements: Muhanna and Mullen (2001)
“Uncertainty in Mechanics Problems – Interval Based Approach”
Journal of Engineering Mechanics, Vol. 127, No. 6, pp. 557-566.
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Muhanna & Mullen: Element-by-Element

Reduce finite element interval over-estimation due to coupling
Each element has its own set of nodes
Set of elements is kept disassembled
Constraints force “same” nodes to have same values

Interval finite elements: Muhanna and Mullen (2001),
“Uncertainty in Mechanics Problems – Interval Based Approach”
Journal of Engineering Mechanics, Vol. 127, No. 6, pp. 557-566.

=

=
=
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Muhanna, Georgia Tech - REC
Center for Reliable Engineering Computing
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3. Simple Steel Structure
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3. Simple Steel Structure: Nonlinear

K(d) d = F

Stiffness K(d) depends on response deformations
Properties E(d), I(d), & R(d) depend on response deformations
Possibly add geometric stiffness Kg

Guarantee bounds to strength or response of the structure?

Extend to inelastic deformations?

Next: More complicated component: Truss
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4. Truss
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Example from Muhanna, Mullen, & Zhang, Penalty-Based Solution for
the Interval Finite Element Methods, DTU Copenhagen, Aug. 2003.
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ÿTwo-bay truss
ÿThree-bay truss

E = 200 GPa

Examples – Stiffness UncertaintyExamples Examples ––  Stiffness UncertaintyStiffness Uncertainty
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Examples – Stiffness Uncertainty 1%Examples Examples ––  Stiffness Uncertainty 1%Stiffness Uncertainty 1%

ÿThree-bay truss
Three bay truss (16 elements) with  1% uncertainty in Modulus of Elasticity,  E = [199, 201] GPa

-0.015%0.025%0.021%-0.011%Over estimate

1.56751.5409-5.78542-5.84694present ¥ 10-4

1.567261.54129-5.78663-5.84628Comb ¥ 10-4

U5(UB)U5(LB)V2(UB)V2(LB)
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Examples – Stiffness Uncertainty 5%Examples Examples ––  Stiffness Uncertainty 5%Stiffness Uncertainty 5%

ÿThree-bay truss
Three bay truss (16 elements) with  5% uncertainty in Modulus of Elasticity,  E = [195, 205] GPa

-0.634%0.933%0.596%-0.321%Over estimate

1.629781.47675-5.63699-5.98838Present ¥ 10-4

1.6195111.490661-5.670806-5.969223Comb ¥ 10-4

U5(UB)U5(LB)V2(UB)V2(LB)
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Examples – Stiffness Uncertainty 10%Examples Examples ––  Stiffness Uncertainty 10%Stiffness Uncertainty 10%

ÿThree-bay truss
Three bay truss (16 elements) with  10% uncertainty in Modulus of Elasticity,  E = [190, 210] GPa

-3.049%4.634%2.862%-1.623%Over estimate

1.73831.36236-5.37385-6.22965Present ¥ 10-4

1.686871.42856-5.53218-6.13014Comb ¥ 10-4

U5(UB)U5(LB)V2(UB)V2(LB)
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5. 3D Steel Structures
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5. 3D: Uncertain, Nonlinear, Complex

Complex? Nbays and Nstories

3D linear elastic analysis of structural square plan:
6 * (Nbays)2 * Nstories equations

Solution complexity is O(N6
bays * N3

stories)

Feasible for current desktop workstations for all but largest buildings

But consider

Are we having fun yet?

•Imperfections
•Irregular structures
•Uncertain assemblies

•Dynamic - l(t)
•Beams as fibers
•Uncertain loads
•Maintenance

•Nonlinear stiffnes
•Inelastic analysis
•Uncertain properties
•Aging
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6. Dynamic Loading

Performance vs. varying loads,
     windstorm, or earthquake?

Force F(x, t)?

Wind distributions?
     Tacoma Narrows Bridge
     Milwaukee stadium crane
     Computational fluid dynamics

Ground motion time histories?
     Drift-sensitive and acceleration-sensitive
     Simulate ground motion

Resonances?
     Marching armies break time
     Not with earthquakes. Frequencies vary rapidly

Image: Smith, Doug, "A Case Study and Analysis of the Tacoma Narrows Bridge Failure",
http://www.civeng.carleton.ca/Exhibits/Tacoma_Narrows/DSmith/photos.html
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Moré: Optimization Is Central?

That’s the analysis part: Given a design, find responses

Optimal design?
e.g., 8,000 inelastic analyses vs. 1013 combinations

Minimize cost
s.t. Safety

Current practice: “Confidence parameter,” genetic algorithms
Much domain knowledge: e.g., group members, 
intelligent mutation, object-oriented
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Lessons in Applied Mathematics?

Vocabulary
Respect the experts
Ask questions
Listen
Start small
Who will buy?

Monarch Corliss Engine near Smithville, TX
- From Vintagesaws.com
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Challenges

Life-critical - Safety vs. economy
Multi-objective optimization
Highly uncertain parameters
Discrete design variables
     e.g., 71 standard column shapes
     149 AISC standard beam shapes
Extremely sensitive vs. extremely stable
Solutions: Multiple isolated, continua, broad & flat
Need for powerful tools for practitioners

“Well, I’ve got a hammer.” - Peter, Paul, & Mary


