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The Fermi-Pasta-Ulam model consists of P particles whose dynamics is described

by the equations

q̈m = φ′(qm+1 − qm) − φ′(qm − qm−1) , m = 1, 2, . . . , P ,

where φ(x) = x2

2
+ αx3

3
+ β x4

4
.

We investigate time-periodic solutions with α = 0.

By homogeneity, it suffices to consider the case β = 1. Similarly, the fundamental

period T of a non-constant solution can be normalized to 2π by a rescaling of time.

This leads us to consider the equation

ω2q̈ = −∇∗
[

∇q + (∇q)3
]

,

where ω = 2π/T , and where ∇ and ∇∗ are defined by

(

∇q
)

m
(t) = qm+1(t) − qm(t) ,

(

∇∗q
)

m
(t) = qm−1(t) − qm(t) .
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The best known periodic solutions of the β-model are near q = 0. In this regime,

the cubic term is small compared to q, and we have Lωq ≈ 0, where

Lωq = −ω2q̈ −∇∗∇q .

The values of ω > 0 for which Lω has an eigenvalue zero, and the corresponding

nonzero solutions of Lωq = 0, will be referred to as resonant frequencies and

normal modes, respectively.

Proposition 1. A frequency ωn > 0 is resonant, that is, Lω has an eigenvalue

zero, if and only if

ωnk = ±2 sin(hθ/2) ,

for some nonzero k ∈ Z and h ∈ P := Z/(PZ).
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For every h ∈ P , let P
′
h be the orthogonal projection on the h-th normal mode.

As a measure for the size of the h-th spatial mode of q ∈ H1
o , we consider its

“harmonic energy”

Eh(q) = E(P′
hq) , E(q) = 1

2
〈q̇, q̇〉 + 1

2
〈∇q,∇q〉 .

These energies are not directly related to the FPU Hamiltonian (unless

α = β = 0), but they have the advantage of being additive, that is, the sum of

Eh(q) over all h ∈ Z/(2PZ) is equal to E(q).
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Theorem 1. For P = 32 and ω = 0.1989, the equation has a set of 11 real

analytic solutions, {fA, fB, . . . , fK}, with the properties listed in the following

table, where Φω denotes the value of the functional, E is the harmonic energy of

the given solution, and Eh = Eh/E. The symbol ε stands for a real number of

modulus less than 0.002, which may vary from one instance to the next.
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solution E E1 E2 E11 E14

fA 5.71 . . . 0.248 . . . 0.109 . . . 0.195 . . . 0.442 . . .

fB 5.67 . . . 0.185 . . . 0.123 . . . 0.215 . . . 0.470 . . .

fC 5.48 . . . ε 0.243 . . . ε 0.755 . . .

fD 5.38 . . . ε ε 0.375 . . . 0.622 . . .

fE 5.21 . . . 0.537 . . . ε 0.458 . . . ε

fF 5.16 . . . ε ε ε 0.999 . . .

fG 5.02 . . . 0.814 . . . 0.137 . . . ε ε

fH 4.97 . . . 0.974 . . . ε ε ε

fI 4.95 . . . 0.883 . . . ε ε 0.075 . . .

fJ 4.81 . . . ε ε 0.999 . . . ε

fK 3.65 . . . ε 0.996 . . . ε ε
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Proof of the theorem

We rewrite equation (main) in the form F (q) = q, where

F (q) = ω−2∂−2∇∗
(

∇q + (∇q)3
)

,

where ∂−1 denotes the antiderivative operator on the space of continuous

2π-periodic functions with average zero and we look for fixed points of F in the

space of functions q : R → R
P which extend analytically to a strip

Dρ = {t ∈ C : |Im(t)| < ρ} .
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To be more precise, given ρ > 0, denote by Fρ the vector space of all 2π-periodic

analytic functions f : Dρ → C,

f(t) =
∞
∑

k=1

fk sin(kt) +
∞
∑

k=0

f ′
k cos(kt) , t ∈ Dρ ,

which take real values for real arguments and for which the norm

‖f‖ρ =

∞
∑

k=1

eρk|fk| +
∞
∑

k=0

eρk|f ′
k|

is finite. When equipped with this norm, Fρ is a Banach space.

On the direct sum FP
ρ , we define the norm

‖q‖ρ = max
1≤i≤P

‖qi‖ .
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We note that Fρ is a Banach algebra, that is, ‖fg‖ρ ≤ ‖f‖ρ‖g‖ρ , for all f and g

in Fρ . Furthermore, ∂−2 acts as a compact linear operator on Aρ , as well as on

AP
ρ . This shows that the equation above defines a differentiable map F on AP

ρ

with compact derivatives DF (q). Thus, F can be well approximated locally by its

restriction to a suitable finite dimensional subspace of Aρ . This property makes it

ideal for a computer-assisted analysis.
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Our goal is to find fixed points for F by using a Newton like iteration, starting with a

numerical approximation q0 for the desired fixed point. The Newton map N

associated with F is given by

N (q) = F (q) −M(q)[F (q) − q] ,

with

M(q) = [DF (q) − I]−1 + I .

If the spectrum of DF (q) is bounded away from 1, and q0 is sufficiently close to a

fixed point of F , then N is a contraction in some neighborhood of q0 .
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Due to the compactness of DF (q), this contraction property is preserved if we

replace M(q) by a fixed linear operator M close to M(q0). This leads us to

consider the new map C, defined by

C(q) = F (q) − M [F (q) − q] , q ∈ AP
ρ .

M will be chosen to be a “matrix”, in the sense that M = P`MP` for some

` > 0, where P` denotes the canonical projection in AP
ρ onto Fourier polynomials

of degree k ≤ `. We also verify that M − I is invertible, so that C and F have the

same set of fixed points. In order to prove that C is a contraction on some ball

B(q0, r) in AP
ρ of radius r > 0, centered at q0 , it suffices to verify the inequalities

‖C(q0) − q0‖ρ < ε , ‖DC(q)‖ < K , ε + Kr < r ,

for some real numbers r, ε, K > 0, and for arbitrary q in the ball B(q0, r). These

bounds imply that C, and thus F , has a unique fixed point in B(q0, r).
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Theorem 2. In each of the 11 cases described in Theorem 1, there exists a Fourier

polynomial q0 , and real numbers ρ, ε, r, K > 0, such that the inequalities above

hold. Furthermore, the numerical bounds given in these theorems are satisfied for

all function in the corresponding ball B(q0, r).

The proof of this theorem is based on a discretization of the problem, carried out

and controlled with the aid of a computer.

At the trivial level of real numbers, the discretization is implemented by using interval

arithmetics. In particular, a number s ∈ R is “represented” by an interval

S = [S−, S+] containing s, whose endpoints belong to some finite set of real

numbers that are representable on the computer. Such an interval will be called a

“standard sets” for R.
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The goal now is to combine these elementary bounds to obtain e.g. a bound G1 on

the norm function on AP
ρ , and a bound G2 on the map C. Then, in order to prove

the first inequality, it suffices to verify that G1(G2(S)) ⊂ U , where S is a set in

std(AP
ρ ) containing g0 , and U is an interval in std(R) with U+ < ε.

We define the standard sets for Aρ . Let n ≥ ` be a fixed integer. Given

U = (U1, . . . , Un) in std(Rn), and V = (V0, . . . , V2n) in std(R2n+1
+ ),

denote by S(U, V ) the set of all functions f that can be represented as

f(t) =
n

∑

k=1

uk sin(kt) +
2n
∑

m=0

vm(t) , vm(t) =
∞
∑

k=m

vm,k sin(kt) ,

with uk ∈ Uk , and vm ∈ Aρ with ‖vm‖ρ ∈ Vm , for all k and m. We now define

std(Aρ) to be the collection of all such sets S(U, V ), subject to the condition that

V −
m = 0 for all m.
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It is now straightforward to implement a bound on the norm function on AP
ρ , or the

operator ∂−2, or the sum of two functions in AP
ρ . In order to obtain a bound on the

product of two functions in Aρ , we simply multiply the representations of the two

factors term by term, and write the result again as an explicit Fourier polynomial of

order n, plus a sum of “error terms” of orders greater than m, for

m = 0, 1, . . . , 2n.

The guiding principle here is to keep as much information as possible about the

order of each term in the product, since the operator ∂−2, which is applied last in

the definition of F , contracts higher order terms more than lower order ones. This

principle also motivated our choice of standard sets for Aρ .
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For a bound on the linear operator M , we can compute explicitly its restriction to

standard sets whose components S(Ui, Vi) have Vi,m = [0, 0] whenever m ≤ `.

The remaining terms are estimated by using that ‖Mq‖ρ ≤ ‖M‖‖q‖ρ . The

operator norm ‖L‖ of a continuous linear operator L on AP
ρ is given by the

following formula. Denote by hj,m the function (i, k) 7→ δije
−kρ sin(kt). Then

‖L‖ = max
1≤i≤P

P
∑

j=1

sup
m≥1

∥

∥

(

Lhj,m
)

i

∥

∥

ρ
.

In the case where L is the “matrix” M , the right hand side of this equation is trivial

to estimate. The bounds discussed so far can be combined to yield a bound on the

the map C, suitable for proving the first and the last inequality.
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In order to prove the second inequality

‖DC(q)‖ < K ,

we also need a bound on the map q 7→ ‖D(q)‖. Its domain only needs to include

balls B(ρ0, r) with positive representable radii, and these balls are in fact standard

sets of AP
ρ . The technique used for this estimate is similar, up to some technical

details.


