Computer Assisted Proofs for the FPU Model

Gianni Arioli

Miami, December 17-20, 2003

The Fermi-Pasta-Ulam model consists of ${\cal P}$ particles whose dynamics is described by the equations

$$\ddot{q}_m = \phi'(q_{m+1} - q_m) - \phi'(q_m - q_{m-1}) \,, \qquad m = 1, 2, \dots, P \,,$$
 where $\phi(x) = \frac{x^2}{2} + \alpha \frac{x^3}{3} + \beta \frac{x^4}{4} \,.$

We investigate time-periodic solutions with $\alpha = 0$.

By homogeneity, it suffices to consider the case $\beta=1$. Similarly, the fundamental period T of a non-constant solution can be normalized to 2π by a rescaling of time. This leads us to consider the equation

$$\omega^2 \ddot{q} = -\nabla^* \left[\nabla q + (\nabla q)^3 \right],$$

where $\omega=2\pi/T$, and where ∇ and ∇^* are defined by

$$(\nabla q)_m(t) = q_{m+1}(t) - q_m(t), \qquad (\nabla^* q)_m(t) = q_{m-1}(t) - q_m(t).$$

The best known periodic solutions of the β -model are near q=0. In this regime, the cubic term is small compared to q, and we have $L_{\omega}q\approx 0$, where

$$L_{\omega}q = -\omega^2 \ddot{q} - \nabla^* \nabla q.$$

The values of $\omega>0$ for which L_ω has an eigenvalue zero, and the corresponding nonzero solutions of $L_\omega q=0$, will be referred to as resonant frequencies and normal modes, respectively.

Proposition 1. A frequency $\omega_n>0$ is resonant, that is, L_ω has an eigenvalue zero, if and only if

$$\omega_n k = \pm 2\sin(h\theta/2)\,,$$

for some nonzero $k \in \mathbb{Z}$ and $h \in \mathcal{P} := \mathbb{Z}/(P\mathbb{Z})$.

For every $h \in \mathcal{P}$, let \mathbb{P}'_h be the orthogonal projection on the h-th normal mode.

As a measure for the size of the h-th spatial mode of $q \in H^1_o$, we consider its "harmonic energy"

$$E_h(q) = E(\mathbb{P}'_h q), \qquad E(q) = \frac{1}{2} \langle \dot{q}, \dot{q} \rangle + \frac{1}{2} \langle \nabla q, \nabla q \rangle.$$

These energies are not directly related to the FPU Hamiltonian (unless lpha=eta=0), but they have the advantage of being additive, that is, the sum of $E_h(q)$ over all $h\in\mathbb{Z}/(2P\mathbb{Z})$ is equal to E(q).

Theorem 1. For P=32 and $\omega=0.1989$, the equation has a set of 11 real analytic solutions, $\{f_A,f_B,\ldots,f_K\}$, with the properties listed in the following table, where Φ_ω denotes the value of the functional, E is the harmonic energy of the given solution, and $\mathcal{E}_h=E_h/E$. The symbol ϵ stands for a real number of modulus less than 0.002, which may vary from one instance to the next.

solution	E	\mathcal{E}_1	\mathcal{E}_2	\mathcal{E}_{11}	\mathcal{E}_{14}
f_A	$5.71\ldots$	$0.248\dots$	0.109	$0.195\dots$	$0.442\dots$
f_B	$5.67\ldots$	$0.185\ldots$	$0.123\ldots$	$0.215\dots$	$0.470\dots$
f_C	$5.48\dots$	ϵ	$0.243\ldots$	ϵ	$0.755\dots$
f_D	$5.38\dots$	ϵ	ϵ	$0.375\ldots$	$0.622\dots$
f_E	$5.21\dots$	$0.537\dots$	ϵ	$0.458\ldots$	ϵ
f_F	$5.16\dots$	ϵ	ϵ	ϵ	0.999
f_G	$5.02\dots$	0.814	$0.137\dots$	ϵ	ϵ
f_H	$4.97\ldots$	$0.974\dots$	ϵ	ϵ	ϵ
f_{I}	$4.95\ldots$	$0.883\dots$	ϵ	ϵ	$0.075\dots$
f_J	4.81	ϵ	ϵ	0.999	ϵ
f_K	$3.65\ldots$	ϵ	0.996	ϵ	ϵ

Proof of the theorem

We rewrite equation (main) in the form F(q) = q, where

$$F(q) = \omega^{-2} \partial^{-2} \nabla^* \left(\nabla q + (\nabla q)^3 \right) ,$$

where ∂^{-1} denotes the antiderivative operator on the space of continuous 2π -periodic functions with average zero and we look for fixed points of F in the space of functions $q:\mathbb{R}\to\mathbb{R}^P$ which extend analytically to a strip

$$\mathcal{D}_{\rho} = \{ t \in \mathbb{C} : |\mathrm{Im}(t)| < \rho \} .$$

To be more precise, given $\rho>0$, denote by \mathcal{F}_{ρ} the vector space of all 2π -periodic analytic functions $f:\mathcal{D}_{\rho}\to\mathbb{C}$,

$$f(t) = \sum_{k=1}^{\infty} f_k \sin(kt) + \sum_{k=0}^{\infty} f'_k \cos(kt), \qquad t \in \mathcal{D}_{\rho},$$

which take real values for real arguments and for which the norm

$$||f||_{\rho} = \sum_{k=1}^{\infty} e^{\rho k} |f_k| + \sum_{k=0}^{\infty} e^{\rho k} |f'_k|$$

is finite. When equipped with this norm, $\mathcal{F}_{
ho}$ is a Banach space.

On the direct sum \mathcal{F}^P_{ρ} , we define the norm

$$||q||_{\rho} = \max_{1 \le i \le P} ||q_i||.$$

We note that \mathcal{F}_{ρ} is a Banach algebra, that is, $\|fg\|_{\rho} \leq \|f\|_{\rho} \|g\|_{\rho}$, for all f and g in \mathcal{F}_{ρ} . Furthermore, ∂^{-2} acts as a compact linear operator on \mathcal{A}_{ρ} , as well as on \mathcal{A}_{ρ}^{P} . This shows that the equation above defines a differentiable map F on \mathcal{A}_{ρ}^{P} with compact derivatives DF(q). Thus, F can be well approximated locally by its restriction to a suitable finite dimensional subspace of \mathcal{A}_{ρ} . This property makes it ideal for a computer-assisted analysis.

Our goal is to find fixed points for F by using a Newton like iteration, starting with a numerical approximation q_0 for the desired fixed point. The Newton map $\mathcal N$ associated with F is given by

$$\mathcal{N}(q) = F(q) - \mathcal{M}(q)[F(q) - q],$$

with

$$\mathcal{M}(q) = [DF(q) - \mathbb{I}]^{-1} + \mathbb{I}.$$

If the spectrum of DF(q) is bounded away from 1, and q_0 is sufficiently close to a fixed point of F, then $\mathcal N$ is a contraction in some neighborhood of q_0 .

Due to the compactness of DF(q), this contraction property is preserved if we replace $\mathcal{M}(q)$ by a fixed linear operator M close to $\mathcal{M}(q_0)$. This leads us to consider the new map \mathcal{C} , defined by

$$\mathcal{C}(q) = F(q) - M[F(q) - q], \quad q \in \mathcal{A}_{\rho}^{P}.$$

M will be chosen to be a "matrix", in the sense that $M=\mathbb{P}_\ell M \mathbb{P}_\ell$ for some $\ell>0$, where \mathbb{P}_ℓ denotes the canonical projection in \mathcal{A}_ρ^P onto Fourier polynomials of degree $k\leq \ell$. We also verify that $M-\mathbb{I}$ is invertible, so that \mathcal{C} and F have the same set of fixed points. In order to prove that \mathcal{C} is a contraction on some ball $B(q_0,r)$ in \mathcal{A}_ρ^P of radius r>0, centered at q_0 , it suffices to verify the inequalities

$$\|\mathcal{C}(q_0) - q_0\|_{\rho} < \varepsilon, \quad \|D\mathcal{C}(q)\| < K, \quad \varepsilon + Kr < r,$$

for some real numbers $r, \varepsilon, K > 0$, and for arbitrary q in the ball $B(q_0, r)$. These bounds imply that C, and thus F, has a unique fixed point in $B(q_0, r)$.

Theorem 2. In each of the 11 cases described in Theorem 1, there exists a Fourier polynomial q_0 , and real numbers $\rho, \varepsilon, r, K > 0$, such that the inequalities above hold. Furthermore, the numerical bounds given in these theorems are satisfied for all function in the corresponding ball $B(q_0, r)$.

The proof of this theorem is based on a discretization of the problem, carried out and controlled with the aid of a computer.

At the trivial level of real numbers, the discretization is implemented by using interval arithmetics. In particular, a number $s \in \mathbb{R}$ is "represented" by an interval $S = [S^-, S^+]$ containing s, whose endpoints belong to some finite set of real numbers that are representable on the computer. Such an interval will be called a "standard sets" for \mathbb{R} .

The goal now is to combine these elementary bounds to obtain e.g. a bound G_1 on the norm function on \mathcal{A}^P_ρ , and a bound G_2 on the map \mathcal{C} . Then, in order to prove the first inequality, it suffices to verify that $G_1(G_2(S))\subset U$, where S is a set in $\operatorname{std}(\mathcal{A}^P_\rho)$ containing g_0 , and U is an interval in $\operatorname{std}(\mathbb{R})$ with $U^+<\varepsilon$.

We define the standard sets for \mathcal{A}_{ρ} . Let $n \geq \ell$ be a fixed integer. Given $U = (U_1, \ldots, U_n)$ in $\operatorname{std}(\mathbb{R}^n)$, and $V = (V_0, \ldots, V_{2n})$ in $\operatorname{std}(\mathbb{R}^{2n+1}_+)$, denote by S(U,V) the set of all functions f that can be represented as

$$f(t) = \sum_{k=1}^{n} u_k \sin(kt) + \sum_{m=0}^{2n} v_m(t), \qquad v_m(t) = \sum_{k=m}^{\infty} v_{m,k} \sin(kt),$$

with $u_k\in U_k$, and $v_m\in\mathcal{A}_\rho$ with $\|v_m\|_\rho\in V_m$, for all k and m. We now define $\mathrm{std}(\mathcal{A}_\rho)$ to be the collection of all such sets S(U,V), subject to the condition that $V_m^-=0$ for all m.

It is now straightforward to implement a bound on the norm function on \mathcal{A}_{ρ}^{P} , or the operator ∂^{-2} , or the sum of two functions in \mathcal{A}_{ρ}^{P} . In order to obtain a bound on the product of two functions in \mathcal{A}_{ρ} , we simply multiply the representations of the two factors term by term, and write the result again as an explicit Fourier polynomial of order n, plus a sum of "error terms" of orders greater than m, for $m=0,1,\ldots,2n$.

The guiding principle here is to keep as much information as possible about the order of each term in the product, since the operator ∂^{-2} , which is applied last in the definition of F, contracts higher order terms more than lower order ones. This principle also motivated our choice of standard sets for \mathcal{A}_{ρ} .

For a bound on the linear operator M, we can compute explicitly its restriction to standard sets whose components $S(U_i,V_i)$ have $V_{i,m}=[0,0]$ whenever $m\leq \ell$. The remaining terms are estimated by using that $\|Mq\|_{\rho}\leq \|M\|\|q\|_{\rho}$. The operator norm $\|L\|$ of a continuous linear operator L on \mathcal{A}_{ρ}^P is given by the following formula. Denote by $h^{j,m}$ the function $(i,k)\mapsto \delta_{ij}e^{-k\rho}\sin(kt)$. Then

$$||L|| = \max_{1 \le i \le P} \sum_{j=1}^{P} \sup_{m \ge 1} ||(Lh^{j,m})_i||_{\rho}.$$

In the case where L is the "matrix" M, the right hand side of this equation is trivial to estimate. The bounds discussed so far can be combined to yield a bound on the the map \mathcal{C} , suitable for proving the first and the last inequality.

In order to prove the second inequality

$$||D\mathcal{C}(q)|| < K,$$

we also need a bound on the map $q\mapsto \|D(q)\|$. Its domain only needs to include balls $B(\rho_0,r)$ with positive representable radii, and these balls are in fact standard sets of \mathcal{A}^P_ρ . The technique used for this estimate is similar, up to some technical details.