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The Fermi-Pasta-Ulam model consists of P particles whose dynamics is described
by the equations

éjm — ¢/(Qm+1 _ Q’m) _ gb,(‘]m — Qm—l) 9

where ¢(x) = % + a% —|—6% .

We investigate time-periodic solutions with oo = 0.

By homogeneity, it suffices to consider the case [ = 1. Similarly, the fundamental
period 1’ of a non-constant solution can be normalized to 27 by a rescaling of time.
This leads us to consider the equation

w'q=-V"[Vg+(Va)],
where w = 27 /T, and where V and V* are defined by

(Va) (1) = gmi1(t) —am(@), (V) (1) = @m-1(t) — gm(t).
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The best known periodic solutions of the 3-model are near ¢ = 0. In this regime,

the cubic term is small compared to ¢, and we have L _,q ~ 0, where

L,q=—w?j—V*Vq.

The values of w > 0 for which L, has an eigenvalue zero, and the corresponding
nonzero solutions of L,,q = 0, will be referred to as resonant frequencies and

normal modes, respectively.

Proposition 1. A frequency w,, > 0 is resonant, that is, L, has an eigenvalue
zero, if and only if

wnk = +£2sin(hf/2),
for some nonzero k € Zand h € P := Z/(PZ).
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Forevery h € P, let IP)’h be the orthogonal projection on the A-th normal mode.

As a measure for the size of the h-th spatial mode of g € HO1 , We consider its

“harmonic energy”

En(q) = E(Phq), E(q) =1(¢,q) +%(Vq,Vqg).

These energies are not directly related to the FPU Hamiltonian (unless
a = 3 = 0), but they have the advantage of being additive, that is, the sum of
Ey(q)overallh € Z/(2PZ) is equal to E(q).
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Theorem 1. For P = 32 and w = 0.1989, the equation has a set of 11 real
analytic solutions, { fa, fB, - - ., fK }, with the properties listed in the following

table, where ®_, denotes the value of the functional, ' is the harmonic energy of
the given solution, and £, = E}, /E. The symbol € stands for a real number of

modulus less than 0.002, which may vary from one instance to the next.
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solution E
fa 5.71...
fg  5.67...
fc  5.48...
fo  5.38...
fe 5.21...

fr  5.16...
fa 5.02...
g 4.97...
fr 495...
f; 4.81...
fr  3.65...
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Proof of the theorem

We rewrite equation (main) in the form ['(q) = ¢, where

F(q) =w™?07°V* (Vg + (Vq)?)

where O~ denotes the antiderivative operator on the space of continuous
27-periodic functions with average zero and we look for fixed points of ' in the

space of functions ¢ : R — R¥ which extend analytically to a strip

D, = {t € C:|m(t)| < p}.
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To be more precise, given p > 0, denote by fp the vector space of all 27-periodic

analytic functions f : D, — C,

f(t) =) frsin(kt) + > ficos(kt), te€D,,
k=1 k=0

which take real values for real arguments and for which the norm

oo

£l = e il + ) e £
k=0

k=1

is finite. When equipped with this norm, ]:p Is a Banach space.

On the direct sum ff, we define the norm

lall, = max gl
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We note that F, is a Banach algebra, thatis, || fg||, < || f]|,/|gl/, . forall fand g

in fp . Furthermore, O~ 2 acts as a compact linear operator on .Ap , as well as on

Af. This shows that the equation above defines a differentiable map F' on .Af

with compact derivatives DF(q). Thus, F' can be well approximated locally by its
restriction to a suitable finite dimensional subspace of .Ap . This property makes it

ideal for a computer-assisted analysis.
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Our goal is to find fixed points for F' by using a Newton like iteration, starting with a
numerical approximation qq for the desired fixed point. The Newton map N

associated with F' is given by

M(q) = [DF(q) =17 ' +1.

If the spectrum of D F'(q) is bounded away from 1, and qq is sufficiently close to a

fixed point of F', then \ is a contraction in some neighborhood of qo -




Second Taylor Model Workshop, Miami, december 2003

Due to the compactness of DF(q), this contraction property is preserved if we
replace M (q) by a fixed linear operator M close to M(qq). This leads us to

consider the new map C, defined by

Cq) = F(q) — M[F(q) —q], q€A,.

M will be chosen to be a “matrix”, in the sense that M/ = [P, M P, for some
¢ > 0, where [P, denotes the canonical projection in Af onto Fourier polynomials
of degree k < /. We also verify that M — I is invertible, so that C and F’ have the
same set of fixed points. In order to prove that C is a contraction on some ball

B(qo, 'r) in AJ: of radius 7 > 0, centered at q , it suffices to verify the inequalities
IC(q0) —qollp <&, [DC(@| <K, e+Kr<r,

for some real numbers 7, €, K > 0, and for arbitrary g in the ball B(qo, ). These

bounds imply that C, and thus F, has a unique fixed pointin B(qo, ).
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Theorem 2. In each of the 11 cases described in Theorem 1, there exists a Fourier
polynomial qg , and real numbers p, €, r, i > 0, such that the inequalities above
hold. Furthermore, the numerical bounds given in these theorems are satisfied for

all function in the corresponding ball B(qo, 7).

The proof of this theorem is based on a discretization of the problem, carried out

and controlled with the aid of a computer.

At the trivial level of real numbers, the discretization is implemented by using interval

arithmetics. In particular, a number s € R is “represented” by an interval

S = [S_, S+] containing s, whose endpoints belong to some finite set of real

numbers that are representable on the computer. Such an interval will be called a

“standard sets” for IR.
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The goal now is to combine these elementary bounds to obtain e.g. a bound (G on
the norm function on Af, and a bound (G5 on the map C. Then, in order to prove
the first inequality, it suffices to verify that G1(G2(S)) C U, where S is a set in
std(A]pD) containing g , and U is an interval in std(R) with U™ < «.

We define the standard sets for Ap . Let n > £ be a fixed integer. Given
U= (Up,...,U,)instd(R"),and V = (Vy, ..., Va,) instd(RZ" 1),
denote by S(U, V') the set of all functions f that can be represented as

d o vmt),  vm(t) = vmpsin(kt),

2n o0
m=0 k=m

f(t) =) ugsin(kt) +
k=1

with uy, € Uy, and v, € A, with ||vp, ||, € V,,,, for all k and m. We now define
std(.A,) to be the collection of all such sets S(U, V'), subject to the condition that
V. = 0forall m.

m
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It is now straightforward to implement a bound on the norm function on AL orthe

operator 072, or the sum of two functions in Af. In order to obtain a bound on the

product of two functions in Ap , we simply multiply the representations of the two
factors term by term, and write the result again as an explicit Fourier polynomial of
order n, plus a sum of “error terms” of orders greater than m, for

m=0,1,...,2n.

The guiding principle here is to keep as much information as possible about the
order of each term in the product, since the operator O~2, which is applied last in
the definition of F’, contracts higher order terms more than lower order ones. This

principle also motivated our choice of standard sets for .Ap :
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For a bound on the linear operator M, we can compute explicitly its restriction to
standard sets whose components S(U;, V;) have V; ,,, = [0, 0] whenever m < /.

The remaining terms are estimated by using that || M q||, < |[M||||¢||, . The

operator norm || L|| of a continuous linear operator L on A/’ is given by the

following formula. Denote by k7™ the function (4, k) — &;;€ %7 sin(kt). Then

P
L| = max su L™ || .
1Ll = max > sup [[(LA™),],
g=1""=
In the case where L is the “matrix” M , the right hand side of this equation is trivial
to estimate. The bounds discussed so far can be combined to yield a bound on the

the map C, suitable for proving the first and the last inequality.
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In order to prove the second inequality
|DC(q)|| < K,

we also need a bound on the map ¢ — || D(q)||. Its domain only needs to include

balls B(po, 'r) with positive representable radii, and these balls are in fact standard

sets of Af. The technique used for this estimate is similar, up to some technical

details.
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