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Introduction

Taylor model (TM) methods were originally developed for a practical
problem from nonlinear dynamics, range bounding of normal form defect
functions.

• Functions consist of code lists of 104 to 105 terms
• Have about the worst imaginable cancellation problem
• Are obtained via validated integration of large initial condition boxes.
Originally nearly universally considered intractable by the community.
But ... a small challenge goes a long way towards generating new ideas!
Idea: represent all functional dependencies as a pair of a polynomial P
and a remainder bound I, introduce arithmetic, and a new ODE solver.
Obtain the following properties:

• The ability to provide enclosures of any function given by a finite com-
puter code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order (n + 1) of the width of the domain.

• The ability to alleviate the dependency problem in the calculation.
• The ability to scale favorable to higher dimensional problems.



Definitions - Taylor Models and Operations
We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D ⊂ Rv → R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let x0 be a point in D and P the
n-th order Taylor polynomial of f around x0. Let I be an interval such that

f(x) ∈ P (x− x0) + I for all x ∈ D.

Thenwe call the pair (P, I) an n-th order Taylor model of f around x0 onD.

Definition (Addition and Multiplication) Let T1,2 = (P1,2, I1,2) be
n-th order Taylor models around x0 over the domain D. We define

T1 + T2 = (P1 + P2, I1 + I2)

T1 · T2 = (P1·2, I1·2)
where P1·2 is the part of the polynomial P1 · P2 up to order n and

I1·2 = B(Pe) +B(P1) · I2 +B(P2) · I1 + I1 · I2
where Pe is the part of the polynomial P1 · P2 of orders (n + 1) to 2n, and
B(P ) denotes a bound of P on the domain D.We demand that B(P ) is at
least as sharp as direct interval evaluation of P (x− x0) on D.



Definitions - Taylor Model Intrinsics
Definition (Intrinsic Functions of Taylor Models) Let T = (P, I)
be a Taylor model of order n over the v-dimensional domain D = [a, b]
around the point x0. We define intrinsic functions for the Taylor models by
performing various manipulations that will allow the computation of Taylor
models for the intrinsics from those of the arguments. In the following,
let f(x) ∈ P (x − x0) + I be any function in the Taylor model, and let
cf = f(x0), and f̄ be defined by f̄(x) = f(x)− cf. Likewise we define P̄ by
P̄ (x−x0) = P (x−x0)− cf, so that (P̄ , I) is a Taylor model for f̄ . For the
various intrinsics, we proceed as follows.
Exponential. We first write

exp(f(x)) = exp
¡
cf + f̄(x)

¢
= exp(cf) · exp

¡
f̄(x)

¢
= exp(cf) ·

½
1 + f̄(x) +

1

2!
(f̄(x))2 + · · · + 1

k!
(f̄(x))k

+
1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢¾ ,

where 0 < θ < 1.



Definitions - Taylor Model Exponential, cont.
Taking k ≥ n, the part

exp(cf) ·
½
1 + f̄(x) +

1

2!
(f̄(x))2 + · · · + 1

n!
(f̄(x))n

¾
is merely a polynomial of f̄ , of which we can obtain the Taylor model via
Taylor model addition andmultiplication. The remainder part of exp(f(x)),
the expression

exp(cf) ·
½

1

(n + 1)!
(f̄(x))n+1

+ · · · + 1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢¾ ,

will be bounded by an interval. First observe that since the Taylor polyno-
mial of f̄ does not have a constant part, the (n + 1)-st through (k + 1)-st
powers of the Taylor model (P̄ , I) of f̄ will have vanishing polynomial part,
and thus so does the entire remainder part. The remainder bound interval
for the Lagrange remainder term



Definitions - Taylor Model Exponential, cont.

exp(cf)
1

(k + 1)!
(f̄(x))k+1 exp

¡
θ · f̄(x)¢

can be estimated because, for any x ∈ D, P̄ (x−x0) ∈ B(P̄ ), and 0 < θ < 1,
and so

(f̄(x))k+1 exp
¡
θ · f̄(x)¢ ∈ ¡B(P̄ ) + I

¢k+1
× exp ¡[0, 1] · (B(P̄ ) + I)

¢
.

The evaluation of the “exp” term is mere standard interval arithmetic. In
the actual implementation, one may choose k = n for simplicity, but it is
not a priori clear which value of k would yield the sharpest enclosures.



Definitions - Taylor Model Arc Sine
Arcsine. Under the condition ∀x ∈ D, B(P (x − x0) + I) ⊂ (−1, 1),
using an addition formula for the arcsine, we re-write

arcsin(f(x)) = arcsin(cf) + arcsin
³
f(x) ·

q
1− c2f − cf ·

p
1− (f(x))2

´
.

Utilizing that

g(x) ≡ f(x) ·
q
1− c2f − cf ·

p
1− (f(x))2

does not have a constant part, we have

arcsin(g(x)) = g(x) +
1

3!
(g(x))3 +

32

5!
(g(x))5 +

32 · 52
7!

(g(x))7

+ · · · + 1

(k + 1)!
(g(x))k+1 · arcsin(k+1)(θ · g(x)),

where

arcsin0(a) = 1/
p
1− a2, arcsin00(a) = a/(1− a2)3/2,

arcsin(3)(a) = (1 + 2a2)/(1− a2)5/2, ...



Definitions - Taylor Model Arc Sine, Antiderivation

A recursive formula for the higher order derivatives of arcsin

arcsin(k+2)(a) =
1

1− a2
{(2k + 1)a arcsin(k+1)(a) + k2 arcsin(k)(a)}

is useful. Then, evaluating in Taylor model arithmetic yields the desired re-
sult, where again the terms involving θ only produce interval contributions.

Antiderivation. We note that a Taylor model for the integral with
respect to variable i of a function f can be obtained from the Taylor model
(P, I) of the function by merely integrating the part Pn−1 of order up to
n−1 of the polynomial, and bounding the n-th order into the new remainder
bound. Specifically, we have

∂−1i (P, I) =

µZ xi

0

Pn−1(x)dxi , (B(P − Pn−1) + I) · (bi − ai)

¶
.

Thus, given a Taylor model for a function f, the Taylor model intrinsic
functions produce a Taylor models for the composition of the respective
intrinsic with f. Furthermore, we have the following result.



TM Scaling Theorem
Theorem (Scaling Theorem) Let f, g ∈ Cn+1(D) and (Pf,h, If,h)
and (Pg,h, Ig,h) be n-th order Taylor models for f and g around xh on
xh + [−h, h]v ⊂ D. Let the remainder bounds If,h and Ig,h satisfy If,h=
O(hn+1) and Ig,h=O(hn+1). Then the Taylor models (Pf+g, If+g,h) and
(Pf ·g, If ·g,h) for the sum and products of f and g obtained via addition and
multiplication of Taylor models satisfy

If+g,h = O(hn+1), and If ·g,h = O(hn+1).

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Ps(f), Is(f),h) for s(f) obtained by the above definition
satisfies

Is(f),h = O(hn+1).

We say the Taylor model arithmetic has the (n+1)-st order scaling property.
Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof for
the intrinsics follows because all intrinsics are composed of binary operations
as well as an additional interval, the width of which scales at least with the
(n+1)-st power of a bound B of a function that scales at least linearly with
h.



Fundamental Theorem of TM Arithmetic
The scaling theorem states that a given function f can be approximated
by P with an error that scales with order (n + 1). Common mathematical
jargon. But in interval community, a related but differentmeaning of scaling
exists, namely the behavior of the overestimation of a given method to
determine the range of a function.
Theorem ( FTTMA, Fundamental Theorem of TM Arith-
metic) Let the function f :Rv→Rvbe described by a multivariate Taylor
model Pf + If over the domain D ⊂ Rv. Let the function g : Rv→R be
given by a code list comprised of finitely many elementary operations and
intrinsic functions, and let g be defined over the range of the Taylor model
Pf,+If . Let P + I be the Taylor model obtained by executing the code
list for g, beginning with the Taylor model Pf + If. Then P + I is a Taylor
model for g ◦ f.
Furthermore, if the Taylor model of f has the (n + 1)-st order scaling
property, so does the resulting Taylor model for g.
Proof . Induction over code list.
Example: Consider f with f(x) = sin2(exp(x + 1)) + cos2(exp(x + 1)).
We know f(x) = 1, but validated methods don’t.



Implementation of TM Arithmetic
Validated Implementation of TM Arithmetic exists. The following points
are important

• Strict requirements for underlying FP arithmetic

• Taylor models require cutoff threshold (garbage collection)
• Coefficients remain FP, not intervals
• Package quite extensively tested by Corliss et al.
For practical considerations, the following is important:

• Need sparsity support
• Need efficient coefficient addressing scheme
• About 50, 000 lines of code
• Language Independent Platform, coexistence in F77, C, F90, C++



TM Enclosure Theorem
Theorem (Taylor Model Enclosure Theorem) Let the function
f : Rv → Rv be contained within Pf + If over the domain D ⊂ Rv. Let
the function g : Rv → R be given by a code list comprised of finitely
many elementary operations and intrinsic functions, and let g be defined
over the range of an enclosure of Pf,+If . Let P + I be the result obtained
by executing the code list for g in admissible FP Taylor model arithmetic,
beginning with the Taylor model Pf + If. Then P + I is an enclosure for
g ◦ f over D.
Proof The proof follows by induction over the code list of g from the
elementary properties of the Taylor model arithmetic.

Apparently the presence of the floating point errors entails that P is not
precisely the Taylor polynomial. In a similar fashion, also the scaling
property of the remainder bound in a rigorous sense is lost. However, these
properties of Taylor models are retained in an approximate fashion.



Important TM Algorithms

•Range Bounding (Evaluate f as TM, bound polynomial, add remain-
der bound)

•Quadrature (Evaluate f as TM, integrate polynomial and remainder
bound)

• Implicit Equations (Obtain TMs for implicit solutions of TM equa-
tions)

• Superconvergent Interval Newton Method (Application of Implicit
Equations)

•ODEs (Obtain TMs describing dependence of final coordinates on initial
coordinates)

• Implicit ODEs and DAEs
•Complex Arithmetic (Describe complex ranges as two-dimensional
TMs)



Examples for TM Bounding - Method

• Comparison of bounding with Taylor Model (TM), Interval (I), Cen-
tered Form (CF), Mean Value Form (MF)

• Used COSY INFINITY for TMs

• Used INTLAB Version 3.1 under Matlab Version 6 for others
• Study x0 + [−2−j,+2−j] for different values of j
• Estimate "true" range either by hand, or rastering with many points
• Determine relative overestimation q for each method
• Determine empirical approximation order EAO for each method



A Simple 3D Test Function

• Rather innocent function in three variables
• Can show dependency suppression even in simple cases
• To increase dependency, also consider function f2

f1(x, y, z) =
4 tan(3y)

3x + x
q

6x
−7(x−8)

− 120− 2x− 7z(1 + 2y)

− sinh
µ
0.5 +

6y

8y + 7

¶
+
(3y + 13)2

3z

− 20z(2z − 5) + 5x tanh(0.9z)√
5y

− 20y sin(3z),

f2(x, y, z) = f1(x, y, z) +
10X
j=1

(f1(x, y, z)− f1(x, y, z)) ,
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Gritton’s Function

• Small function values, but very strong cancellation problem
• "Simply" a polynomial of 18 th order, has 18 zeros
• Particularly difficult near x = 1.4
• Consider behavior around x0 = 2 and x0 = 1.4

f3(x) = −371.9362500 + x · (−791.2465656 + x · (4044.944143
+ x · (978.1375167 + x · (−16547.89280 + x · (22140.72827
+ x · (−9326.549359 + x · (−3518.536872 + x · (4782.532296
+ x · (−1281.479440 + x · (−283.4435875 + x · (202.6270915
+ x · (−16.17913459 + x · (−8.883039020 + x · (1.575580173
+ x · (1245990848 + x · (−0.03589148622 + x · (−0.0001951095576
+ x · (0.0002274682229)))))))))))))))))).



Gritton’s Function - Visualization

To visualize the behavior of Gritton’s function is difficult. We choose the
following method

• showing the function values logarithmically
• show interval enclosures by 40 and 120 subdivisions
• show TM enclosures by 40 TMs of fourth order and eigth order

• The 40 eigth order TMs can separate all 18 zeros of the function
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The Normal Form Defect Function

• Extreme cancellation; one of the reasons TMmethods were invented
• Six-dimensional problem from dynamical systems theory
• Describes invariance defects of a particle accelerator
• Essentially composition of three tenth order polynomials
• The function vanishes identically to order ten
• Study for a· (1, 1, 1, 1, 1, 1) for a = .1 and a = .2

• Interesting Speed observation: on same machine,
* one CF in INTLAB takes 45 minutes
* one TM of order 7 takes 10 seconds

f4(x1, .., x6) =
3X

i=1

µq
y22i−1 + y22i −

q
x22i−1 + x22i

¶2
where �y = �P1

³
�P2

³
�P3(�x)

´´
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Remainder Bounds from Interval AD

Use of AD has long history in interval analysis, goes back to Moore. One
application: determine remainder bounds for Taylor expansion.

• Set up code list of function
• Evaluate code list with point initial condition and high-order AD
• Evaluate code list with interval initial condition to get bound for remain-
der bound

Practical limitation: the code for remainder bound will have more de-
pendency than original function. So remainder bounds often have strong
overestimation.

Compare to Taylor Model: Contributions to remainder bound are calcu-
lated only from currently accumulated polynomial. This has less depen-
dency than original function. Example based on Gritton function:

f7(�x) = G(2 +
Xv

i=1
xi)

f8(x) = G(2 + x +
Xm

i=1
(x− x)).
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The Operator ∂−1on Taylor Models
Let (Pn, In) be an n-th order Taylor model of f. From this we can obtain
a Taylor model for the indefinite integral ∂−1i f =

R
f dx0i with respect to

variable xi.
Taylor polynomial part:

R xi
0 Pn−1dx0i,

Remainder Bound: (B(Pn−Pn−1)+In)·B(xi),whereB(P ) is a polynomial
bound.
So define the operator ∂−1i on space of Taylor models as

∂−1i (Pn, In)

=

µZ xi

0

Pn−1dx0i , (B(Pn − Pn−1) + In) ·B(xi)
¶



Taylor Models for the Flow
Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

dt
�r(t) = �F (�r(t), t)

where �F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions �r0 and times t that satisfy

�r0 ∈ [�r01, �r02] = �B

t ∈ [t0, t1].
In particular, �r0 itself may be a Taylor model, as long as its range is known
to lie in �B.



The Use of Schauder’s Theorem
Re-write differential equation as integral equation

�r(t) = �r0 +

Z t

t0

�F (�r(t0), t0) dt0.

Now introduce the operator

A : �C0[t0, t1]→ �C0[t0, t1]

on space of continuous functions via

A
³
�f
´
(t) = �r0 +

Z t

t0

�F
³
�f(t0), t0

´
dt0.

Then the solution of ODE is transformed to a fixed-point problem on space
of continuous functions

�r = A(�r).

Theorem (Schauder): Let A be a continuous operator on the Banach
Space X. Let M ⊂ X be compact and convex, and let A(M) ⊂ M. Then
A has a fixed point in M, i.e. there is an �r ∈M such that A(�r) = �r.



Satisfying Requirements of the Schauder Theorem
Here, X = �C0[t0, t1], Banach space of continuous functions on [t0, t1],
equipped with maximum norm. The integral operatorA is continuous. The
strategy to apply Schauder’s Fixed Point Theorem consists of the following
steps:

1. Determine family Y of subsets ofX, the Schauder Candidate Sets. Each
set in Y should be compact and convex, it should be contained in suitable
Taylor model, and its image under A should be in Y.

2. Using RDA, determine initial set M0 ∈ Y that satisfies A(M0) ⊂ M0.
Then last requirement of Schauder is satisfied, andM0 contains solution.

3. Iteratively generateMi = A(Mi−1). EachMi also satisfies A(Mi) ⊂Mi,

and we haveM1 ⊃M2 ⊃... Continue until size stabilizes sufficiently.



Schauder Candidate Sets
As first step, it is necessary to establish a family of sets Y from which to
draw candidates forM0. Let (�P + �I) be a Taylor model depending on time
as well as the initial condition �r0. Then define the associated set M�P+�I as
follows:

M�P+�I ⊂ �C0[t0, t1]; and for �r ∈M�P+�I :

�r(t0) = �r0

�r(t) ∈ �P + �I ∀t ∈ [t0, t1] ∀�r0
|�r(t0)− �r(t00)| ≤ k|t0 − t00|∀t0, t00 ∈ [t0, t1] ∀�r0

In the last condition, k is a bound for �F , which exists because �F is con-
tinuous and the solutions can cover only finite range over interval [t0, t1].
The last condition means that all �r ∈ M�P+�I are uniformly Lipschitz with
constant k. Define the candidate set Y as

Y =
[
�P+�I

M�P+�I



Convexity, Compactness, Invariance of Candidate Sets

Let M ∈ Y. ThenM is convex, because

�x1, �x2 ∈M ⇒
α�x1 + (1− α)�x2 ∈M ∀α ∈ [0, 1]

Furthermore,M is compact, i.e. any sequence inM has a clusterpoint in
M. To see this, let (�xn) be a sequence of functions inM.Then by definition of
M, (�xn) is uniformly Lipschitz, and thus uniformly equicontinuous. (�xn) is
also uniformly bounded, and hence according to the Ascoli-Arzela Theorem,
has a uniformly convergent subsequence. Since the �xn are continuous, so is
the limit �x∗ of this subsequence, and since M is closed, the limit �x∗ is in
M.
Finally, A maps Y into itself, and the uniform Lipschitzness follows be-
cause �F is bounded by k.



Satisfying Inclusion with Taylor Models
The only remaining requirements for Schauder’s theorem is to find a Tay-
lor model �P + �I such that

A(�P + �I) ⊂ �P + �I.

But this condition can be checked with Taylor Models.
To succeed with inclusion requirement depends on finding suitable choice
for �P and �I. Furthermore, it is desirable that �I be tight.
Both benefit from the choice of a polynomial �P that is already ”close” to
the true solution of the ODE.



The Polynomial of the Self-Including Set
Attempt sets M∗ of the form

M∗ =M�P ∗+�I∗ where
�P ∗ =Mn(�r0, t),

the n-th order Taylor expansion of the flow of the ODE. It is to be expected
that �I∗ can be chosen smaller and smaller as order n of �P ∗ increases.
This requires knowledge of nth order flowMn(�r0, t), including time de-
pendence. It can be obtained by iterating in polynomial arithmetic, or
Taylor models without treatment of a remainder. To this end, one chooses
an initial function M(0)

n (�r, t) = I, where I is the identity function, and
then iteratively determines

M(k+1)
n =n A(M(k)

n ).

This process converges to the exact resultMn in exactly n steps.



The Remainder of the Self-Including Set
Now try to find �I∗ such that

A(Mn + �I∗) ⊂Mn + �I∗,

the Schauder inclusion requirement. Suitable choice for �I∗ requires experi-
menting, but is greatly simplified by the observation

�I∗ ⊃ �I(0) = A(Mn(�r, t) + [�0,�0])−Mn(�r, t).

Evaluating the right hand side in RDA yields a lower bound for �I∗, and a
benchmark for the size to be expected. Now iteratively try

�I(k) = 2k · �I(0),
until computational inclusion is found, i.e.

A(Mn(�r, t) + �I(k)) ⊂Mn(�r, t) + �I(k).



Iterative Refinement of the Self-Including Set
Once computational inclusion has been determined, solution of ODE is
known to be contained in the Taylor modelMn(�r, t) + �I(k). Set �I(1) = �I(k);
since the solution is a fixed point of A, it is even contained in

Ak(Mn(�r, t) + �I(1)) for all k.

Furthermore, the iterates of A are shrinking in size, i.e.

Ak(Mn(�r, t) + �I(1)) ⊂ Ak−1(Mn(�r, t) + �I(1)) ∀k
So the width of the remainder bound of the flow can be decreased by iter-
atively determining

Mn(�r, t) + �I(k) = A(Mn(�r, t) + �I(k−1)),

until no further significant decrease in size is achieved. As a result,

Mn(�r, t) + �I(k)

is the desired sharp inclusion of the flow of the original ODE.



The Volterra Equation
Describe dynamics of two conflicting populations

dx1
dt
= 2x1(1− x2),

dx2
dt
= −x2(1− x1)

Interested in initial condition

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.

Satisfies constraint condition

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant
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Shrink Wrapping I
Amethod to remove the remainder bound of a Taylor model by increasing
the polynomial part.
After the kth step of the integration, the region occupied by the final
variables is given by

A = �I0 +
[
�x0∈ �B

M0(�x0),

where �x0 are the initial variables, �B is the original box of initial conditions,
M0 is the polynomial part of the Taylor model, and �I0 is the remainder
bound interval. M0 is scaled such that the original box �B is unity, i.e.
�B = [−1, 1]v. �I0 accounts for the local approximation error of the expansion
in time carried out in the kth step as well as floating point errors and
potentially other accumulated errors from previous steps; it is usually very
small. Try to “absorb” the small remainder interval into a set very similar
to the first part via

A ⊂ A∗ = �I∗0 +
[
�x0∈ �B

M∗
0(�x0),

whereM∗
0 is a slightly modified polynomial, and �I

∗
0 is significantly reduced



Shrink Wrapping II

First, extract the constant part �a0 and linear part M̂0 · �x ofM0 and de-
termine a floating point approximation M̄−1

0 of M̂0. If ODEs admits unique
solutions, attempting to invert the linear transformation M̂0 in a floating
point environement will very likely succeed.
After approximate inverse M̄−1

0 has been determined, apply linear trans-
formation M̄−1

0 · (�x−�a0) from the left to the Taylor modelM0(�x0)+ �I0 that
describes the current flow. As a result, the constant part of the resulting
Taylor model now vanishes, and its linear part is near identity. We write
the resulting Taylor model as

M+ �I = I + S + �I,

where I is the identity, and the function S contains the nonlinear parts of
the resulting Taylor model as well as some small linear corrections due to
the error in inversion. We include �I into the interval box d · [−1, 1]v, where
d is a small number.



Shrink Wrapping III

Figure 1: The region described by the Taylor modelM0 + �I0 is transformed to be normalized as I + S + �I, where I is the identity.

Definition (Shrinkability) LetM = I + S +�I, where S is a polyno-
mial and �I is a small interval. We include �I into the interval box d · [−1, 1]v.
We pick numbers s and t satisfying

s ≥ |Si(�x)| ∀ �x ∈ B, 1 ≤ i ≤ v,

t ≥
¯̄̄̄
∂Si
∂xj

¯̄̄̄
∀ �x ∈ B, 1 ≤ i, j ≤ v.

We call a mapM shrinkable if (1− vt) > 0 and (1− s) > 0;



Shrink Wrapping IV
Then we define q, the so-called shrink wrap factor, as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)
.

The bounds s and t for the polynomials Si and ∂Si/∂xj can be computed
by interval evaluation. The factor q will prove to be a factor by which
the Taylor polynomial I + S has to be multiplied in order to absorb the
remainder bound interval.

Remark (Typical values for q) To put the various numbers in per-
spective, in the case of the verified integration of the Asteroid 1997 XF11,
we typically have d = 10−7, s = 10−4, t = 10−4, and thus q ≈ 1 + 10−7. It
is interesting to note that the values for s and t are determined by the non-
linearity in the problem at hand, while in the absence of “noise” terms in
the ODEs described by intervals, the value of d is determined mostly by the
accuracy of the arithmetic. Rough estimates of the expected performance
in quadruple precision arithmetic indicate that with an accompanying de-
crease in step size, if desired d can be decreased below 10−12, resulting in
q ≈ 1 + 10−12.



Shrink Wrapping V
In order to proceed, we need some estimates relating image distances to
origin distances.
Lemma. LetM be a map as above, let k·k denote the max norm, and
let (1− vt) > 0. Then we have¯̄Mi(�̄x)−Mi(�x)

¯̄ ≤X
j

|δi,j + t| |x̄j − xj| ,°°M(�̄x)−M(�x)
°° ≤ (1 + vt) · °°�̄x− �x

°° , and°°M(�̄x)−M(�x)
°° ≥ (1− vt) · °°�̄x− �x

°° .
Proof. For the proof of the first assertion, we observe that all (v −
1) partials of ∂Mi/∂xj for j 6= i are bounded in magnitude by t, while
∂Mi/∂xi is bounded in magnitude by 1+ t; thus the first statement follows
from the intermediate value theorem. For the second assertion, we trivially



observe °°M(�̄x)−M(�x)
°° = max

i

¯̄Mi(�̄x)−Mi(�x)
¯̄

≤ max
i

X
j

|δi,j + t| |x̄j − xj|

≤ (1 + vt)
°°�̄x− �x

°° .
For the proof of the third assertion, which is more involved, let k be such
that

°°�̄x− �x
°° = |x̄k − xk| , and wlog let x̄k − xk > 0. Then we have°°M(�̄x)−M(�x)

°° = max
i

¯̄Mi(�̄x)−Mi(�x)
¯̄

≥ ¯̄Mk(�̄x)−Mk(�x)
¯̄

=

¯̄̄̄
¯̄(1 + ck)(x̄k − xk) +

X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄ (1)

for some set of cj with |cj| ≤ t ∀j = 1, ..., v, according to the mean value



theorem. Now observe that for any such set of cj,¯̄̄̄
¯̄X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄ ≤X

j 6=k
|cj| |x̄j − xj| ≤

X
j 6=k
|cj|
 |x̄k − xk|

≤ (v − 1) t |x̄k − xk|
≤ (1− t) |x̄k − xk| ≤ (1 + ck) (x̄k − xk) .

Hence the left term in the right hand absolute value in (1) dominates the
right term for any set of cj, and we thus have¯̄̄̄

¯̄(1 + ck)(x̄k − xk) +
X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄

≥ (1− t)(x̄k − xk)−
X
j 6=k

t |x̄j − xj|

≥ (1− t)(x̄k − xk)− (v − 1) t (x̄k − xk)

= (1− vt)(x̄k − xk) = (1− vt)
°°�̄x− �x

°° ,
which completes the proof.



Shrink Wrapping VI
Theorem (Shrink Wrapping) Let M = I + S(�x), where I is the
identity. Let �I = d · [−1, 1]v, and

R = �I +
[
�x∈ �B

M(�x)

be the set sum of the interval �I = [−d, d]v and the range ofM over the
original domain box �B. So R is the range enclosure of the flow of the ODE
over the interval �B provided by the Taylor model. Let q be the shrink wrap
factor ofM; then we have

R ⊂
[
�x∈ �B
(qM)(�x),

and hence multiplyingM with the number q allows to set the remainder
bound to zero.
Proof. Let 1 ≤ i ≤ v be given. We note that because ∂Mi/∂xi > 1−t >
0,Mi increases monotonically with xi. Consider now the (v−1) dimensional
surface set (x1, ..., xv) with xi = 1 fixed. Pick a set of xj ∈ [−1, 1], j 6= i.We
want to study how far the set R = �I +

S
�x∈ �BM(�x) can extend beyond the

surface in direction i at the surface point �y =M(x1, ..., xi−1, 1, xi+1, ..., xv).



Let yi be the i-th component of �y. The i-th components of the set �y + �I
apparently extend beyond yi by d. However, it is obvious that R can extend
further than that beyond yi. In fact, for any other �̄y with |ȳj − yj| ≤ d for
j 6= i, there are points in �̄y + �I with all but the i-th component equal to
those of �y. On the other hand, any �̄y with |ȳj − yj| > d for some j 6= i can
not have a point in �̄y + �I with all but the i-th component matching those
of �y. So at the point yi, the set R can extend to

ri(�y) = d + sup
{�̄y| |ȳj−yj|≤d (j 6=i)}

ȳi.

We shall now find a bound for ri(�y). First we observe that because of the
monotonicity ofMi, we can restrict the search to the case with xi = 1.We
now project to an (v − 1) dimensional subspace by fixing xi = 1 and by
removing the i-th componentMi. We denote the resulting map byM(i),
and similarly denote all (v − 1) dimensional variables with the superscript
“(i)”.
We observe that with the functionM, also the functionM(i) is shrinkable
according to the definition, with factors s and t inherited fromM. Appar-
ently the condition on �̄y in the definition of ri(�y) entails that in the (v− 1)
dimensional subspace,

°°�̄y(i) − �y(i)
°° ≤ d. Let �̄x(i) and �x(i) be the (v − 1) di-
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Figure 2: At the point yi, the set R = �I +
S
�x∈ �BM(�x) can extend to ri(�y).



mensional pre-images of �̄y(i) and �y(i), respectively; because
°°�̄y(i) − �y(i)

°° ≤ d,
we have according to the above lemma that°°°�̄x(i) − �x(i)

°°° ≤ d

1− (v − 1)t,
which entails that also in the original space we have |x̄j − xj| ≤ d/(1−(v−
1)t) for j 6= i. Hence we can bound ri(�y) via

ri(�y) ≤ d + sup
{�̄x| |x̄j−xj|≤d/(1−(v−1)t)

(j 6=i), xi=x̄i=1}

Mi(�̄x).

Wenow invoke the first statement of the lemma for the case of �̄x, �x satisfying
|x̄j − xj| ≤ d/(1− (v− 1)t) (j 6= i), xi = x̄i = 1. The last condition implies
that the term involving (δi,j + t) does not contribute, and we thus have
|Mi(�̄x)−Mi(�x)| ≤ (v − 1)t · d/(1− (v − 1)t), and altogether

ri(�y) ≤ yi + d +
d · (v − 1)t
1− (v − 1)t

= yi + d · 1

1− (v − 1)t.
We observe that the second term in the last expression is independent of
i. Hence we have shown that the “band” around

S
�x∈ �BM(�x) generated by



the addition of �I never extends more than d/(1− (v− 1)t) in any direction.
To complete the proof, we observe that because of the bound s on S, the
box (1−s)[−1, 1]v lies entirely in the range ofM. Thus multiplying the map
M with any factor q > 1 entails that the edges of the box (1 − s)[−1, 1]v
move out by the amount (1 − s)(q − 1) in all directions. Since the box is
entirely inside the range ofM, this also means that the border of the range
of M moves out by at least the same amount in any direction i. Thus
choosing q as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)

assures that [
�x∈ �B
(qM) ⊃ R

as advertised.



Shrink Wrapping VII
Let us consider the practical limiations of the method; apparently the
measures of the nonlinearities s and t must not become too large
Remark (Limitations of shrink wrapping) Apparently the shrink
wrap method discussed above has the following limitations

Remark 1 1. The measures of nonlinearities s and t must not become too
large

2. The application of the inverse of the linear part should not lead to large
increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be cov-
ered by the Taylor model, and it will thus happen only in extreme cases.
Furthermore, in practice the case of s and t becoming large is connected
to also having accumulated a large remainder bound, since the remainder
bounds are calculated from the bounds of the various orders of s. In the
light of this, not much additional harm is done by removing the offending
s into the remainder bound and create a linearized Taylor model.
Definition (Blunting of an Ill-Conditioned Matrix)
Let Â be a regular matrix that is potentially ill-conditioned and �q =
(q1, ...qn) a vector with qi > 0. Arrange the column vectors �ai of Â by size.



Let �ei be the familiar orthonormal vectors obtained through the Gram-
Schmidt procedure, i.e.

�ei =

�ai −
i−1P
k=1

�ek (�ai · �ek)¯̄̄̄
�ai −

i−1P
k=1

�ek (�ai · �ek)
¯̄̄̄.

We form vectors �bi via
�bi = �ai + qi�ei

and assemble them columnwise into the matrix B̂ .We call B̂ the �q-blunted
matrix belonging to Â
Proposition (Regularity of the Blunted Matrix) The �bi are lin-

early independent and thus B̂ is regular.
Proof. By induction. Apparently �b1 is linearly independent. Assume
now that�b1, ...,�bi−1 are linearly independent. We first observe that for each
i, the vector�bi is a linear combination of the �ak for k = 1, ..., i and thus also
of the �ek for k = 1, ..., i, since both the �ak and the �ek span the same space.
Now assume �bi is linearly dependent on �b1, ...,�bi−1; then it is also linearly



dependent on �e1, ..., �ei−1, i.e. there are λ1, ..., λi−1 such that

�bi =
i−1X
k=1

λk�ek.

But because �bi = �ai + qi�ei, we have

�ai

1 + qi¯̄̄̄
�ai −

i−1P
k=1

�ek (�ai · �ek)
¯̄̄̄
 =

i−1X
k=1

(λk + �ai · �ek) �ek

Since by requirement, qi > 0, the factor of �ai is nonzero, and we have a
contradiction to the linear independence of�ai from�e1, ..., �ei−1. Thus�b1, ...,�bi
are linearly independent.
Intuitively, of course, the effect of blunting is that each vector �bi is being
"pulled away" from the space spanned by the previous vectors �b1, ...,�bi−1,
and more strongly so if qi becomes bigger and bigger. In fact, we have the
following result: .



Long-Term Behavior - Floating Point Case

Consider very simple two-state dynamical system:

xn+1 = a · xn
xn+2 = (1/a) · xn+1

with initial condition x0 = 1. Study the behavior for specific choices of a in
both single and double precision arithmetic on

• F77 compiler by DEC, now distributed as f77 Digital Visual Fortran
Version 5.0 as part of Microsoft Fortran PowerStation

•G77 compiler distributed byGNU; we specifically testedVersionV0.5.24.
Choose a1 = 3 for single precision, a2 = 0.9999999901608054 for double
precision
In both cases, we observe exponential growth of the error!
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Long-Term Behavior - Validated Case
Consider very simple two-state dynamical system:

xn+1 = xn ·
p
1 + x2n + y2n and yn+1 = yn ·

p
1 + x2n + y2n

xn+2 = xn+1 ·
s

2

1 +
p
1 + 4(x2n+1 + y2n+1)

and

yn+2 = yn+1 ·
s

2

1 +
p
1 + 4(x2n+1 + y2n+1)

.

Simple arithmetic shows that, also here we have (xn+2, yn+2) = (xn, yn).
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Preconditioning the Flow
Idea: write the Taylor model of the solution as a composition of two Taylor
models (Pl + Il) and (Pr + Ir), and then choose Pl + Il in such a way that
in each step, the operations appearing on Ir are minimized. At the same
time, Il will be chosen as small as possible. Can be viewed as a coordinate
transformation.
In the factorization, we impose that (Pl+ Il) is normalized such that each
of its components has a range in [−1, 1], and even near the boundaries.
Definition (Preconditioning the Flow) Let (P + I) be a Taylor

model. We say that (Pl + Il), (Pr + Ir) is a factorization of (P + I) if
B(Pr + Ir) ∈ [−1, 1] and

(P + I) ∈ (Pl + Il) ◦ (Pr + Ir) for all x ∈ B

where B is the domain of the Taylor model (Pr + Ir).

The composition of the Taylor models is here to be understood as insertion
of the Taylor model Pr+Ir into the polynomial Pl via Taylor model addition
and multiplication and subsequent addition of the remainder bound Il. For
the study of the solutions of ODEs, the following result is important



Preconditioning the Flow II
Proposition Let (Pl,n + Il,n) ◦ (Pr.n + Ir,n) be a factored Taylor model
that encloses the flow of the ODE at time tn. Let (P ∗l,n+1, I

∗
l,n+1) be the

result of integrating (Pl,n + Il,n) from tn to tn+1. Then

(P ∗l,n+1, I
∗
l,n+1) ◦ (Pr.n + Ir,n)

Definition (Curvilinear Preconditioning) Let x(m) = f(x, x0, ...x(m−1), t)
be an m-th order ODE in n variables. Let xr(t) be a solution of the ODE
and x0r(t), ..., x

(k)
r (t) its first k time derivatives. Let �e1, ..., �el be the l unit

vectors not in the span of x0r(t), ..., x
(k)
r (t), sorted by distance from the

span. Then we call the Gram-Schmidt orthonormalization of the set (x0r(t),
..., x

(k)
r (t), �e1, ..., �el) the curvilinear basis of depth k.

Curvilinear coordinates have long history. Study of solar system, Beam
Physics, ... .
Example (Curvilinear Solar System and Particle Accelera-
tors) In this case, n = 3, and one usually chooses k = 2. The first basis
vector points in the direction of motion of the reference orbit. The second
vector is perpendicular to it and points approximately to the sun or the
center of the accelerator. The third vector is chosen perpendicular to the
plane of the previous two.
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Preconditioning the Flow III
Theorem (Curvilinear Coordinates for Autonomous Linear
Systems) Let x0 = Â · x be an n-dimensional linear system that has
n distrinct nonzero eigenvalues λi with eigenvectors ai. Let B be a box
with nonzero volume, and xr =

Pn
i=1Xiai ∈ B such that Xi 6= 0 for all

i = 1, ..., n. Then the derivatives of x(i)r , i = 1, ..., n, are linearly inde-
pendent, and hence the depth n curvilinear coordinates are obtained by
applying the Gram-Schmidt procedure to the derivatives x(i)r , i = 1, ..., n.
Proof. The motion of the reference point xr as a function of time is
apparently given by

xr(t) =
nX
i=1

Xi · ai · exp(λit)

so that the jth derivative assumes the form

x(j)r (t) =
nX
i=1

Xi · ai · λji exp(λit).

We now consider the determinant of the matrix of coefficients in the basis



ai, and observe

det


X1λ1 X1λ

2
1 X1λ

n
1

X2λ2 X2λ
2
2 X2λ

n
2. . .

Xnλn Xnλ
2
n Xnλ

n
n


=

nY
i=1

(λiXi)
n · det


1 λ11 λn−11

1 λ12 λn−12. . .
1 λ1n λn−1n

 =
nY
i=1

(λiXi)
n
Y
i>j

(λi − λj) 6= 0

because of the well-known property of the Vandermonde matrix.
Definition (Natural Coordinate System for Linear System)
Let x0 = Â · x be an n-dimensional linear system that has n distrinct real
eigenvalues λ1 > λ2 > ... > λn with eigenvectors a1, ..., an. We define the
normal basis (bi) of the system to be the result of applying the Gram-
Schmidt orthonormalization procedure to the vectors a1, ..., an, i.e. the
result of the recursive computation

bi =
ai −

Pi−1
j=1 bj · (ai · bj)¯̄̄

ai −
Pi−1

j=1 bj · (ai · bj)
¯̄̄.
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The Natural Coordinate System has the following important property:
Proposition (Curvilinear Coordinates for Autonomous Linear
Systems) Let x0 = Â · x be an n-dimensional linear system that has
n distrinct real eigenvalues λi with eigenvectors ai. Let bi be the natural
coordinate system of the linear system. Let B be a box with nonzero
volume, and xr =

Pn
i=1Xiai ∈ B such that Xi 6= 0. If xr is used as the

reference orbit to define the curvilinear coordinates ci, then the curvilinear
coordinates converge to the natural coordinates, i.e. we have

ci→ bi for all i as t→∞.

Remark: Variations are possible to treat the case of multiple eigenvalues.



A Muon Cooling Ring
Example from Beam Physics: Simple model of muon cooling ring, using
curvilinear preconditioning.
Simultaneous damping via matter, and azimuthal accelerations. Equa-
tions of motion:

ẋ = px
ẏ = py

ṗx = py − αq
p2x + p2y

· px + αp
x2 + y2

· y

ṗy = −px − αq
p2x + p2y

· py − αp
x2 + y2

· x

Has invariant solution

(x, y, px, py)I(t) = (cos t,− sin t,− sin t,− cos t),
ODE asymptotically approach circular motion of the form

(x, y, px, py)a(t) = (cos (t− φ) ,− sin (t− φ) ,− sin (t− φ) ,− cos (t− φ)),

where φ is a characteristic angle for each particle.



A Muon Cooling Ring - Results

1. Need to treat a large box of [−10−2, 10−2]4
2. Because of damping action towards the invariant limit cycle, the linear
part of the motion is more and more ill-conditioned.

COSY easily integrates 10 cycles for d = 10−2 with curvilinear precondi-
tioning and QR preconditioning. AWA (method 4) behaves as follows:

d Cycles
10−2 0.22
10−3 1.25
10−4 9.5

Thus, trying to simulate the system with AWA requires > (102)4 = 108

subdivisions of the box that COSY can transport in one piece.
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A 2D Discrete Kepler Problem

Dynamics of circular Kepler orbits around central mass. Period T and
large semi-major axis are related via T 2 = k ·a3. So ω = 2π/T = 2π · r−3/2,
and thus after ∆t we haveµ

xn+1
yn+1

¶
=

µ
cos∆φ sin∆φ
− sin∆φ cos∆φ

¶µ
xn
yn

¶
where ∆φ =

2π∆t

(x2 + y2)3/4
.

Characteristic of general Kepler problem: as time progresses, larger and
larger lag in angle fr different r, resulting in shearing. Circular form makes
Taylor expansion of final in terms of initial coordinates ultimately impossi-
ble. Thus, any Taylor method will eventually have to fail. The question is,
how soon!

Also interesting: estimate growth rate of remainder bounds. For smallest
d, have increase of 9 · 10−9 over 5, 000 revolutions or 40, 000 iterations. This
corresponds to about 2 ·10−13 per map iteration. This is near floating point
limit!
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The Henon Map
Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

xn+1 = 1− αx2n + yn
yn+1 = βxn.

It can easily be seen that the motion is area preserving for |β| = 1.We
consider

α = 2.4 and β = −1,
and concentrate on initial boxes of the from (x0, y0) ∈ (0.4, −0.4)+[−d, d]2.
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Random Matrices - Discrete
Select 1000 twodimensional randommatrices with coefficients in [−1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

• Naive Interval
• Naive Taylormodel
• Parallelepiped-preconditioned Taylormodel
• QR-preconditioned Taylormodel
• Blunted preconditioned TM, various blunting factors
• Set of four floating point corner points for volume estimation
Perform the following tasks:

• Iterations through matrix
• Sets of iterations through matrix and its inverse
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Random Matrices - Discrete
Select 1000 twodimensional randommatrices with coefficients in [−1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

• Naive Interval
• Naive Taylormodel
• Parallelepiped-preconditioned Taylormodel
• QR-preconditioned Taylormodel
• Blunted preconditioned TM, various blunting factors
• Set of four floating point corner points for volume estimation
Perform the following tasks:

• Iterations through matrix
• Sets of iterations through matrix and its inverse
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Example Matrix - Continuous

Consider exampe random matrix

A1 =


+0.9564 +0.2004 +0.4826 +0.8871
−0.4922 +0.5651 −0.1474 −0.7678
−0.0269 −0.8587 −0.3785 −0.6168
−0.8271 +0.2661 −0.9380 +0.5289


Approximate eigenvalues 0.3928, −0.3911, 1.005± 0.8669i . Center point
of the initial domain box (0.6446, 0, 0050,−0.2394, 0.4581), width 10−3.
• Exponential rise from 10−11 at t = 3 to 10−7 at t = 10, corresponds to
104/7 ≈ 10.5715 per time unit
•Magnitude of complex eigenvalues is approximately 1.327, leading to
exp (1.327) ≈ 3.769 ≈ 100.5763 per time unit.
• Very close agreement between growth of error and growth of true solution
• Asymptotics same as with good non-validated integrator



Random Matrices - Continuous
Select 10 fourdimensional random matrices A with coefficients in [−1, 1].
Solve ODE

d

dt
r = A · r

with random initial conditions.

Perform integration in the following ways:

• Curvilinear-Preconditioned Taylormodel
• QR-Preconditioned Taylormodel
Observe that

• CV and QR preconditiong have the same asymptotic behavior
• Both lead to error growth agreeing with growth along longest EV up to
1%.

• Thus, same error growth as in non-validated case.
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Conclusions - Linear Problems

• In case of distinct real eigenvalues, Curvilinear (CV) and QR coor-
dinate systems converge to same limit

• Thus, CV and QR preconditioning has same asymptotic behavior
• The asymptotic behavior is essentially that of a good non-validated in-
tegrator (Nedialkov - Jackson)

• For complex eigenvalues, CV and QR both lead to rotations, and are
thus expected to behave the same

•Bluntingmethod leaves eigenvectors with largest eigenvalues unchanged
• Longest direction(s) of blunted parallelepiped are not affected
• Only asymptotically non-dominating directions are affected
• Blunted method has essentially same asymptotic behavior as non-
validated integrator



Collection of Random Matrices
Select 1000 twodimensional randommatrices with coefficients in [−1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

• Naive Interval
• Naive Taylormodel
• Parallelepiped-preconditioned Taylormodel
• QR-preconditioned Taylormodel
• Blunted QR-preconditioned TM, various blunting factors
• Set of four floating point corner points for volume estimation
Perform the following tasks:

• 500 iterations through matrix
• 25 sets of iterations through matrix and its inverse
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