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Introduction

Taylor model (TM) methods were originally developed for a practical
problem from nonlinear dynamics, range bounding of normal form defect
functions.

e Functions consist of code lists of 10* to 10° terms
e Have about the worst imaginable cancellation problem
e Are obtained via validated integration of large initial condition boxes.

Originally nearly universally considered intractable by the community.
But ... a small challenge goes a long way towards generating new ideas!

Idea: represent all functional dependencies as a pair of a polynomial P
and a remainder bound [, introduce arithmetic, and a new ODE solver.
Obtain the following properties:

e The ability to provide enclosures of any function given by a finite com-
puter code list by a Taylor polynomial and a remainder bound with a
sharpness that scales with order (n + 1) of the width of the domain.

e The ability to alleviate the dependency problem in the calculation.

e The ability to scale favorable to higher dimensional problems.



Definitions - Taylor Models and Operations

We begin with a review of the definitions of the basic operations.

Definition (Taylor Model) Let f : D C R’ — R be a function that is
(n+1) times continuously partially differentiable on an open set containing
the domain v-dimensional domain D. Let zy be a point in D and P the
n-th order Taylor polynomial of f around z. Let I be an interval such that

f(z) € Plx —xg) + 1 forall z € D.
Then we call the pair (P, I') an n-th order Taylor model of f around zy on D.

Definition (Addition and Multiplication) Let 715 = (P2, [12) be
n-th order Taylor models around z, over the domain . We define

Ti+T=(P+ P, + 1)
Ty - T = (P, I1.0)
where P, 5 is the part of the polynomial P, - P, up to order n and
Lo=B(P)+B(P) - I+ B(PR) -1+ I - I

where P, is the part of the polynomial P, - P, of orders (n + 1) to 2n, and
B(P) denotes a bound of P on the domain D. We demand that B(P) is at
least as sharp as direct interval evaluation of P(x — z() on D.



Definitions - Taylor Model Intrinsics

Definition (Intrinsic Functions of Taylor Models) Let T' = (P, I)
be a Taylor model of order n over the v-dimensional domain D = |a, b|
around the point xy. We define intrinsic functions for the Taylor models by
performing various manipulations that will allow the computation of Taylor
models for the intrinsics from those of the arguments. In the following,
let f(x) € P(x — ) + I be any function in the Taylor model, and let
cr = f(xo), and f be defined by f(z) = f(x) — ¢s. Likewise we define P by
P(x —xy) = P(x — x9) — ¢y, so that (P, I) is a Taylor model for f. For the
various intrinsics, we proceed as follows.

Exponential. We first write

exp(f(x)) = exp (cf + f(2)) = exp(cy) - exp (f(2))
= xpley) {1+ Flo) + 0P -+ o)

1
K
) e (0 Fo) |

where 0 < 6 < 1.



Definitions - Taylor Model Exponential, cont.

Taking £ > n, the part

expler) {14 Fo) + (@) 4o+ (o)}

is merely a polynomial of f, of which we can obtain the Taylor model via
Taylor model addition and multiplication. The remainder part of exp(f(x)),
the expression

expler) - { )™

(k i 1>!(f<x))k+1 exp (9 : f(:z:))} ,

will be bounded by an interval. First observe that since the Taylor polyno-
mial of f does not have a constant part, the (n + 1)-st through (k + 1)-st
powers of the Taylor model (P, I) of f will have vanishing polynomial part,
and thus so does the entire remainder part. The remainder bound interval
for the Lagrange remainder term




Definitions - Taylor Model Exponential, cont.

) e (0 F)

can be estimated because, for any z € D, P(x—xg) € B(P),and 0 < 6 < 1,
and so

exp(cy)

- = k+1
(@) exp (8- flw)) € (B(P)+1)" )
x exp ([0,1] - (B(P)+1)).
The evaluation of the “exp” term is mere standard interval arithmetic. In

the actual implementation, one may choose k =n for simplicity, but it is
not a priori clear which value of £ would yield the sharpest enclosures.



Definitions - Taylor Model Arc Sine

Arcsine. Under the condition Vo € D, B(P(x — xo) + 1) C (—1,1),
using an addition formula for the arcsine, we re-write

arcsin( f(z)) = arcsin(cy) + arcsin (f(x) /1 —ci—cp V1 - (f(a:))Q) .

Utilizing that

g(x) Ef(:v)-w/l—c?f—cf-\/1—(f(:13))2

does not have a constant part, we have

ancsin(g(2) = 9(2) + 3 (9(@)* + 5(9(2))° + 5 (g()

7 . (o) a0 g(a),

where
arcsin’(a) = 1/v/1 — a2, arcsin”(a) = a/(1 — a2)3/2,

arcsin®® (a) = (1 +24%)/(1 — a?)*?, ...



Definitions - Taylor Model Arc Sine, Antiderivation

A recursive formula for the higher order derivatives of arcsin
- (k+2) _

arcsin a) =

is useful. Then, evaluating in Taylor model arithmetic yields the desired re-
sult, where again the terms involving 6 only produce interval contributions.

{(2k + 1)aarcsin®*V(a) + k? arcsin®™ (a)}

Antiderivation. We note that a Taylor model for the integral with
respect to variable ¢ of a function f can be obtained from the Taylor model
(P, I) of the function by merely integrating the part P, ; of order up to
n—1 of the polynomial, and bounding the n-th order into the new remainder
bound. Specifically, we have

9 (P.T) - ( /O Py (a)dxi . (B(P— Py )+ 1) - (b — a@-)> |

Thus, given a Taylor model for a function f, the Taylor model intrinsic
functions produce a Taylor models for the composition of the respective
intrinsic with f. Furthermore, we have the following result.



TM Scaling Theorem

Theorem (Scaling Theorem) Let f, g € C"*(D) and (Pfy, I1)
and (P, 1,,) be n-th order Taylor models for f and g around x; on
zp + |[—h,h]” C D. Let the remainder bounds Iy, and [, satisfy I;;=
O(h"™) and I,;,=0(h"™). Then the Taylor models (P4, Ir1,5) and
(Pf.g, Lr.41) for the sum and products of f and g obtained via addition and
multiplication of Taylor models satisfy

If+g,h — O(hn+1>, and [f-g,h — O(hn+1>

Furthermore, let s be any of the intrinsic functions defined above, then
the Taylor model (Pys), Iss),5) for s(f) obtained by the above definition
satisfies

Iy =O(R").

We say the Taylor model arithmetic has the (n+1)-st order scaling property.

Proof. The proof for the binary operations follows directly from the
definition of the remainder bounds for the binaries. Similarly, the proof for
the intrinsics follows because all intrinsics are composed of binary operations
as well as an additional interval, the width of which scales at least with the
(n+1)-st power of a bound B of a function that scales at least linearly with

h.



Fundamental Theorem of TM Arithmetic

The scaling theorem states that a given function f can be approximated
by P with an error that scales with order (n + 1). Common mathematical
jargon. But in interval community, a related but different meaning of scaling
exists, namely the behavior of the overestimation of a given method to
determine the range of a function.

Theorem ( FTTMA, Fundamental Theorem of TM Arith-
metic) Let the function f: R"— R"be described by a multivariate Taylor
model Py + Iy over the domain D C RY. Let the function g : R'— R be
given by a code list comprised of finitely many elementary operations and
intrinsic functions, and let g be defined over the range of the Taylor model
Pr,+1¢. Let P+ I be the Taylor model obtained by executing the code
list for g, beginning with the Taylor model Py + ;. Then P + I is a Taylor
model for g o f.

Furthermore, if the Taylor model of f has the (n + 1)-st order scaling
property, so does the resulting Taylor model for g.

Proof. Induction over code list.

Example: Consider f with f(x) = sin®*(exp(x + 1)) + cos?(exp(x + 1)).
We know f(x) = 1, but validated methods don’t.



Implementation of TM Arithmetic

Validated Implementation of TM Arithmetic exists. The following points
are important

e Strict requirements for underlying FP arithmetic

e Taylor models require cutoff threshold (garbage collection)
e Coefficients remain FP, not intervals

e Package quite extensively tested by Corliss et al.

For practical considerations, the following is important:

e Need sparsity support
e Need efficient coefficient addressing scheme

e About 50, 000 lines of code
e Language Independent Platform, coexistence in F77, C, F90, C++



TM Enclosure Theorem

Theorem (Taylor Model Enclosure Theorem) Let the function
J + R” — R” be contained within P; + Iy over the domain D C R". Let
the function ¢ : R — R be given by a code list comprised of finitely
many elementary operations and intrinsic functions, and let g be defined
over the range of an enclosure of P, +1;. Let P+ I be the result obtained
by executing the code list for ¢ in admissible FP Taylor model arithmetic,
beginning with the Taylor model Py 4+ I;. Then P + I is an enclosure for
go f over D.

Proof The proof follows by induction over the code list of g from the
elementary properties of the Taylor model arithmetic.

Apparently the presence of the floating point errors entails that P is not
precisely the Taylor polynomial. In a similar fashion, also the scaling
property of the remainder bound in a rigorous sense is lost. However, these
properties of Taylor models are retained in an approximate fashion.



Important TM Algorithms

e Range Bounding (Evaluate f as TM, bound polynomial, add remain-
der bound)

e Quadrature (Evaluate f as TM, integrate polynomial and remainder
bound)

e Implicit Equations (Obtain TMs for implicit solutions of TM equa-
tions)

e Superconvergent Interval Newton Method (Application of Implicit
Equations)

¢ ODEs (Obtain TMs describing dependence of final coordinates on initial
coordinates)

e Implicit ODEs and DAEs

e Complex Arithmetic (Describe complex ranges as two-dimensional
TMs)



Examples for TM Bounding - Method

e Comparison of bounding with Taylor Model (TM), Interval (I), Cen-
tered Form (CF), Mean Value Form (MF)

e Used COSY INFINITY for TMs

e Used INTLAB Version 3.1 under Matlab Version 6 for others

e Study xg + [—277, +277] for different values of j

e Estimate "true" range either by hand, or rastering with many points
e Determine relative overestimation q for each method

e Determine empirical approximation order EAO for each method



A Simple 3D Test Function

e Rather innocent function in three variables
e Can show dependency suppression even in simple cases

e To increase dependency, also consider function f;

4tan(3
filz,y,2) = an( yi — 120 — 22 — T2(1 + 2y)
3T + x —_7(;_8)
(054 6y Jr(3y+13)2
— Sl .
Sy +7 3z

bz tanh(0.92)

NG

—20z(2z — 5) +

— 20y sin(3z),

10

fQ(CC,y,Z) — fl(xayaz> + Z(fl(xaya Z) _ fl(xayvz»a

j=1
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Gritton’s Function

e Small function values, but very strong cancellation problem
e "Simply" a polynomial of 18 th order, has 18 zeros
e Particularly difficult near z = 1.4

e Consider behavior around o = 2 and xy = 1.4

fg(x) = —371.9362500 + x - (—791.2465656 + - (4044.944143
z - (978.1375167 + - (—16547.89280 + x - (22140.72827
2 - (—9326.549350 + x - (—3518.536872 + x - (4782.532296
x - (—1281.479440 + x - (—283.4435875 + z - (202.6270915
z - (—16.17913459 + x - (—8.883039020 + z - (1.575580173
z - (1245990848 + z - (—0.03589148622 + z - (—0.0001951095576
z -

0.0002274682229)))))))))))))))))).



Gritton’s Function - Visualization

To visualize the behavior of Gritton’s function is difficult. We choose the
following method

e showing the function values logarithmically

e show interval enclosures by 40 and 120 subdivisions

e show TM enclosures by 40 TMs of fourth order and eigth order
e The 40 eigth order TMs can separate all 18 zeros of the function



3

— '\ __

_ Qi

i 3
- 1I0 -8 -6 -4 -2 o

io0n16

10n-6



io0n16

10n-6









log 9

min(10,max(0,EAQ))

2 3., “8- INTERVAL
—~A— CENTERED
—7- MEAN VALUE
3., -1 1ST ORDER TM
b 3+ 3RD ORDER TM
1! N & 6TH ORDER TM
NN ‘3., —9- 9TH ORDER TM
S ey
NN
N
oF b= 3.,
\\\\‘9—— _ "u,l"’
- —————e____ 8.,
Tl
~ <l
-1 1 1 1 1 1
1 2 3 4 5 6
j
10 T
—5- INTERVAL
-A~ CENTERED
9 —7 MEAN VALUE
-1 1ST ORDER TM
+ 3+ 3RD ORDER TM
sl & - 6TH ORDER TM
—9- 9TH ORDER TM
7k
6
SN e 3
3r, NN IEEERRRX TOO
- N e,
X

. \\
3o S T

log, 9

min(10,max(0,EAQ))

5 INTERVAL v
~A- CENTERED \ 6
- MEAN VALUE \ R
-8 -1 1ST ORDER TM LDB \ ST
3+ 3RD ORDER TM LDB R
& - 6TH ORDER TM LDB Y- - - - -~
—9- 9TH ORDER TM LDB
-10 T 1 L L L
1 2 3 4 5 6 7
J
10 T V4
5 INTERVAL J
~A- CENTERED
9l “7 MEAN VALUE / i
-1 1ST ORDER TM LDB /
3+ 3RD ORDER TM LDB
6 - 6TH ORDER TM LDB /
8 —9- 9TH ORDER TM LDB / T
//
7H / i
/
/
61 / |
//
5P N / -
/
/
. L R
SO B g i

/




min(10,max(0,EAQ))

—&- INTERVAL
—A~ CENTERED
-7 MEAN VALUE

[11 1ST ORDER TM

+3+ 3RD ORDER TM
& 6THORDER TM

-2

10

—9- 9TH ORDER TM
T

2

—&- INTERVAL

—A~ CENTERED

-7 MEAN VALUE

+1+ 1ST ORDER TM

+3+ 3RD ORDER TM
& 6THORDER TM

—9- 9TH ORDER TM [

min(10,max(0,EAQ))

—&- INTERVAL
-A- CENTERED
-7 MEAN VALUE

-8 -1 1ST ORDER TM LDB \ 6 - ]
.3+ 3RD ORDER TM LDB 9~ T
& - 6TH ORDER TM LDB T~ -7
—9- 9TH ORDER TM LDB - -- - - -
-10 . ‘ :
1 2 3 4 5 6 7
J
10 < 9 :
~ 5 INTERVAL
/ —A- CENTERED
. J ~ -7~ MEAN VALUE L
/] - -1 1ST ORDER TM LDB
f ~ 3 3RD ORDER TM LDB
P S 6 - 6TH ORDER TM LDB
8 i ~ —9- 9TH ORDER TM LDB [
/" X
/ ~
; / R I
s
1
6 11 i
/1
/
5 g R |
! :
I B,
AL BB g




The Normal Form Defect Function

e Extreme cancellation; one of the reasons TM methods were invented
e Six-dimensional problem from dynamical systems theory
e Describes invariance defects of a particle accelerator
e Essentially composition of three tenth order polynomials
e The function vanishes identically to order ten
e Study for a- (1,1,1,1,1,1) for a = .1 and a = .2
e Interesting Speed observation: on same machine,
* one CF in INTLAB takes 45 minutes

* one TM of order 7 takes 10 seconds

3 2
fa(z1, .., 6) = Z (\/9321 + 3 — \/5532'—1 + 5’7%@)

1=1
where g: ﬁl (ﬁg (ﬁg(f)))



16 ) 15 T
“5- INTERVAL g
~A- CENTERED
| - MEAN VALUE 4
14 5+ 5TH ORDER TM ||

& - 6TH ORDER T™M
—7 - 7TH ORDER T™ 10}

T
—&- INTERVAL
—A- CENTERED
-7 MEAN VALUE
+5+ 5TH ORDER TM LDB
& - 6TH ORDER TM LDB
—7- 7TH ORDER TM LDB [

<t

UC)
iy 0
[=2]
o
e .
< 6~ - g,
-5 Mo T i
5 - _ s
ST 5
) ~% 6o
‘g -0 ~. ~ <
=~ ., ~
or ‘\~\'<'§,“‘_“ 7 S -
e
e
o S
-2 L L L L L §—— -15 L L I I I I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
j J
108 T 108 ; &
—5— INTERVAL /
~A- CENTERED
ol -7 MEAN VALUE || 9
5+ 5TH ORDER TM
& - 6TH ORDER T™M
—7-7THORDERT™M || |\ \ \ # o~ N Se_____
8 8
i 7
\
= \ = :
e) 61 O 6k N A o X e
2 N 32 6
] \ W
= \ S
g 50 O s 5
€ £
g =)
= pa
£ af £ af
€ £
3r 3
2+ i 2 (
~5- INTERVAL
~A- CENTERED
-5~ MEAN VALUE
1F f 1M 5. 5TH ORDER TM LDB
& 6TH ORDER TM LDB
—7- 7TH ORDER TM LDB
0 L L L L L 0 T L L L L

1 2 3 4 5 6 7 1 2 3 4 5 6 7



Iogmq

min(10,max(0,EAQ))

—&- INTERVAL

~A- CENTERED
-7 MEAN VALUE
+5+ 5TH ORDER TM

& - 6TH ORDER T™ ]
=7 - 7TH ORDER TM

-10 1 |
1 2 7 8
108- %
\/‘.
Y-
9r Ve
sk
7k
6l
5l
b
3k
oL
—= INTERVAL
—A- CENTERED
— MEAN VALUE
1M 5. 5TH ORDER TM 4
& 6TH ORDER TM
—7- 7TH ORDER TM
0 T L

2

Iogwq

min(10,max(0,EAQ))

30

20

10

-10

T
—&- INTERVAL
—A- CENTERED
-7 MEAN VALUE
+5+ 5TH ORDER TM LDB
& - 6TH ORDER TM LDB
—7- 7TH ORDER TM LDB

108

2L

—5- INTERVAL
-&- CENTERED
-7 MEAN VALUE

[1:5+ 5TH ORDER TM LDB

& - 6TH ORDER TM LDB

—7 - 7TH ORDER TM LDB
T T

2 3



Remainder Bounds from Interval AD

Use of AD has long history in interval analysis, goes back to Moore. One
application: determine remainder bounds for Taylor expansion.

e Set up code list of function
e Evaluate code list with point initial condition and high-order AD

e Evaluate code list with interval initial condition to get bound for remain-
der bound

Practical limitation: the code for remainder bound will have more de-
pendency than original function. So remainder bounds often have strong
overestimation.

Compare to Taylor Model: Contributions to remainder bound are calcu-
lated only from currently accumulated polynomial. This has less depen-
dency than original function. Example based on Gritton function:
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Width of Remainder Interval
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The Operator 0 'on Taylor Models

Let (P,, I,) be an n-th order Taylor model of f. From this we can obtain
a Taylor model for the indefinite integral 0, Lf = [ f dx} with respect to
variable x;.

Taylor polynomial part: ;" B,_1da,

Remainder Bound: (B(P,—P,-1)+1,)-B(x;), where B(P) is a polynomial
bound.

So define the operator 82-_101(1 space of Taylor models as

0, (P, 1)
([ st R Py 1) B



Taylor Models for the Flow

Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

S7(t) = F(r(t), 0

where F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions 7y and times ¢ that satisfy

—

o € |To1,To2] = B
t € [to, t1].

In particular, 7 itself may be a Taylor model, as long as its range is known
to lie in B.



The Use of Schauder’s Theorem

Re-write differential equation as integral equation

—

t
F(t) =7 + / F(r(d), ) dt.
Lo
Now introduce the operator
A COto, t1] — CPlto, t4]

on space of continuous functions via

t
A (f) (t) = 7 +/ Ia (f(t’),t’) dt'
Lo
Then the solution of ODE is transformed to a fixed-point problem on space
of continuous functions
7= A(7).

Theorem (Schauder): Let A be a continuous operator on the Banach
Space X. Let M C X be compact and convex, and let A(M) C M. Then
A has a fixed point in M, i.e. there is an ¥ € M such that A(T) = 7.



Satisfying Requirements of the Schauder Theorem

Here, X = (V" to, t1], Banach space of continuous functions on [ty t1],
equipped with maximum norm. The integral operator A is continuous. The
strategy to apply Schauder’s Fixed Point Theorem consists of the following
steps:

1. Determine family Y of subsets of X, the Schauder Candidate Sets. Each
set in Y should be compact and convex, it should be contained in suitable
Taylor model, and its image under A should be in Y.

2. Using RDA, determine initial set M, € Y that satisfies A(M,) C M,.
Then last requirement of Schauder is satisfied, and M| contains solution.

3. Iteratively generate M; = A(M;_;). Each M, also satisfies A(M;) C M;
and we have M; D Ms D... Continue until size stabilizes sufficiently.



Schauder Candidate Sets

As first step, it is necessary to establish a family of sets Y from which to
draw candidates for M. Let (P + I) be a Taylor model depending on time
as well as the initial condition 7. Then define the associated set Mz, i as
follows:

Mg,
(o
i

"[to, t1]; and for 7€ Mz, ;-

[t Ql

7 C
)
) S P—F[Vt S [to,tl] V7o
7(t") — F(t")| < k|t —t"|VE " € [to, t1] VT

In the last condition, £ is a bound for P , which exists because F is con-
tinuous and the solutions can cover only finite range over interval [ty t1].
The last condition means that all 7 € M3, 7 are uniformly Lipschitz with
constant k. Define the candidate set Y as

Y = UP+I



Convexity, Compactness, Invariance of Candidate Sets

Let M €Y. Then M is convex, because

fl,fQEMi
arr + (1 — a)¥y € M VYa € |0, 1]

Furthermore, M is compact, i.e. any sequence in M has a clusterpoint in
M. To see this, let (7)) be a sequence of functions in M.Then by definition of
M, () is uniformly Lipschitz, and thus uniformly equicontinuous. (%)) is
also uniformly bounded, and hence according to the Ascoli-Arzela Theorem,
has a uniformly convergent subsequence. Since the ,, are continuous, so is
the limit ©* of this subsequence, and since M is closed, the limit z* is in
M.

Finally, A maps Y into itself, and the uniform Lipschitzness follows be-

cause F' is bounded by k.



Satisfying Inclusion with Taylor Models

The only remaining requirements for Schauder’s theorem is to find a Tay-
lor model P + I such that
AP+I)CcP+1T.
But this condition can be checked with Taylor Models.
Toﬂsucceegi with inclusion requirement depencis on finding suitable choice
for P and I. Furthermore, it is desirable that I be tight.

Both benefit from the choice of a polynomial P that is already ”close” to
the true solution of the ODE.



The Polynomial of the Self-Including Set

Attempt sets M* of the form

]\4>I< = Mﬁ*+f* Where

ﬁ* — Mn(f)()at))

the n-th order Taylor expansion of the flow of the ODE. It is to be expected
that 7* can be chosen smaller and smaller as order n of P* increases.

This requires knowledge of nth order flow M, (7, t), including time de-
pendence. It can be obtained by iterating in polynomial arithmetic, or
Taylor models without treatment of a remainder. To this end, one chooses
an initial function M. (7,t) = Z, where 7 is the identity function, and
then iteratively determines

This process converges to the exact result M,, in exactly n steps.



The Remainder of the Self-Including Set

Now try to find I* such that
AM, +T") c M, + I*,

the Schauder inclusion requirement. Suitable choice for I requires experi-
menting, but is greatly simplified by the observation

I 5 1 = AM,(7,t) + [0,0]) — M,,(7, ).

Evaluating the right hand side in RDA yields a lower bound for I*, and a
benchmark for the size to be expected. Now iteratively try

Tk — ok . Jl0)
until computational inclusion is found, i.e.

AM,(Ft) + TV € M, (7, t) + TW,



Iterative Refinement of the Self-Including Set

Once computational inclusion has been determined, solution of ODE is
known to be contained in the Taylor model M,,(7,¢) + ). Set I;;) = I™;
since the solution is a fixed point of A, it is even contained in

AR(M, (7, 1) + I y)) for all k.
Furthermore, the iterates of A are shrinking in size, i.e.
AF(M, (7, t) + T1y)) € AFY M (Ft) + Ty) Yk

So the width of the remainder bound of the flow can be decreased by iter-
atively determining

— —

M (7, t) + Ly = AML(T, 1) + Ig_1y),

until no further significant decrease in size is achieved. As a result,

—

Mn(ﬁ t) + [(k)
is the desired sharp inclusion of the flow of the original ODE.



The Volterra Equation

Describe dynamics of two conflicting populations

dx
= 2x1(1 — x3), d_t2 = —x9(1 — 1)

diy

dt

Interested in initial condition

zo1 € 1+ [—0.05,0.05], xg9 € 34 [—0.05,0.05] at t = 0.

Satisfies constraint condition

2]3’2 —

Clxy, 19) = xyxie 1~ Constant
’ 2
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Shrink Wrapping I

A method to remove the remainder bound of a Taylor model by increasing
the polynomial part.

After the kth step of the integration, the region occupied by the final
variables is given by

A= Iy + U Mo(f()),
7B

where X are the initial variables, B is the original box of initial conditions,
M is the polynomial part of the Taylor model, and Iy is the remainder
bound interval. M, is scaled such that the original box B is unity, i.e.
B = —1,1]". I accounts for the local approximation error of the expansion
in time carried out in the kth step as well as floating point errors and
potentially other accumulated errors from previous steps; it is usually very

small. Try to “absorb” the small remainder interval into a set very similar
to the first part via

AcC A =T+ | M),
f()Eé

where M is a slightly modified polynomial, and I_ék is significantly reduced



Shrink Wrapping 11

First, extract the constant part ap and hnear part My - 7 of My and de-
termine a floating point approximation M of My. If ODEs admits unique
solutions, attempting to invert the linear transformation M, in a floating
point environement will very hkely succeed.

After approx1mate inverse M has been determined, apply linear trans-
formation M - (Z — dy) from the left to the Taylor model M (%) + I o that
describes the current flow. As a result, the constant part of the resulting
Taylor model now vanishes, and its linear part is near identity. We write
the resulting Taylor model as

M+T=T+S+1,

where 7 is the identity, and the function S contains the nonlinear parts of
the resulting Taylor model as well as some small linear corrections due to
the error in inversion. We include I into the interval box d - [—1, 1]*, where
d is a small number.



Shrink Wrapping 111

alan
K - Jx

Figure 1: The region described by the Taylor model Mg + fo is transformed to be normalized as Z + S + f, where 7 is the identity.

Definition (Shrinkability) Let M =Z + S +1I, where S is a polyno-

mial and I is a small interval. We include I into the interval box d-[—1, 1]".
We pick numbers s and ¢ satisfying

s> |Si(@)|VieB, 1<i<uw,
dS; .

t > VereB, 1<) <w.
81']'

We call a map M shrinkable if (1 — vt) > 0 and (1 — s) > 0;



Shrink Wrapping IV

Then we define ¢, the so-called shrink wrap factor, as
1

I=(w=1t)-(1-s)

The bounds s and ¢ for the polynomials S; and 0S;/0z; can be computed
by interval evaluation. The factor ¢ will prove to be a factor by which
the Taylor polynomial Z + & has to be multiplied in order to absorb the
remainder bound interval.

q=1+d-

Remark (Typical values for ¢) To put the various numbers in per-
spective, in the case of the verified integration of the Asteroid 1997 XF'11,
we typically have d = 1077, s = 107*, t = 107%, and thus ¢ ~ 1 + 107", It
is interesting to note that the values for s and ¢ are determined by the non-
linearity in the problem at hand, while in the absence of “noise” terms in
the ODESs described by intervals, the value of d is determined mostly by the
accuracy of the arithmetic. Rough estimates of the expected performance
in quadruple precision arithmetic indicate that with an accompanying de-
crease in step size, if desired d can be decreased below 107!, resulting in
qg~1+10"1,



Shrink Wrapping V
In order to proceed, we need some estimates relating image distances to
origin distances.

Lemma. Let M be a map as above, let ||-|| denote the max norm, and
let (1 — ot) > 0. Then we have

M(Z) = Mi(E)| <D 10+t |2 — ],
j

H/\/l(f) — /\/l(a?)‘ < (1+wt)- Ha‘?— 7|, and
[IM(Z) — M(D)|| > (1 —ot)- [|7— 2|
Proof. For the proof of the first assertion, we observe that all (v —

1) partials of OM;/0z; for j # ¢ are bounded in magnitude by ¢, while
OM;/0x; is bounded in magnitude by 1+¢; thus the first statement follows
from the intermediate value theorem. For the second assertion, we trivially




observe

HM@) - M(f)H — Hax ‘Mz(f) - Mz<f)‘
< m@&XZ 10:j +t] |25 — ;]
J

< (1+4wt) ||z —2.

For the proof of the third assertion, which is more involved, let k be such
that H:T_f— a‘:’” = |z — x|, and wlog let T — x;; > 0. Then we have

HM@) - M@)‘ = m?X \M@(f) — Mz(f)’
> | M(T) — My(Z),

= |(L+ o) (@ —z) + YT — ) (1)
jk

for some set of ¢; with |¢;| <t Vj = 1,...,v, according to the mean value




theorem. Now observe that for any such set of c¢;,

> ei(@i—a)| < el z—al < | D el | e —

J7#k J7#k JF#k

< (U—l) t |£f]€—£L']€|

< (1—t) \Ek—xk\ < (1—|—Ck><£fk—iljk).
Hence the left term in the right hand absolute value in (1) dominates the
right term for any set of ¢;, and we thus have

(14 e (@ — ) + ) (@ — )
j7k
> (1 —t)(Zp — ) Zt Z; —
J#k
> (1 — t)(fk — CCk) — (U — 1) t (i’k — CEk)
= (1 —vt)(Z — xx) = (1 — vt) Hj

which completes the proof.




Shrink Wrapping VI

Theorem (Shrink Wrapping) Let M = 7 + S(&), where Z is the
identity. Let I = d-|—1,1]", and
R=T+| M@
7eB
be the set sum of the interval I = [—d, d]" and the range of M over the
original domain box B. So R is the range enclosure of the flow of the ODE

over the interval B provided by the Taylor model. Let ¢ be the shrink wrap
factor of M; then we have

R c (JeM)(7),
7eB
and hence multiplying M with the number ¢ allows to set the remainder
bound to zero.

Proof. Let 1 < i < v be given. We note that because OM;/dx; > 1—t >
0, M, increases monotonically with x;. Consider now the (v—1) dimensional
surface set (21, ..., x,) with z; = 1 fixed. Pick aset of z; € [—1,1], 7 # i. We
want to study how far the set R = I + | = M(Z) can extend beyond the
surface in direction 7 at the surface point ¥ = M(x1, ..., x;_1, 1, Tiv1, ooy Ty)-



Let y; be the i-th component of y. The i-th components of the set i + I
apparently extend beyond y; by d. However, it is obvious that R can extend
further than that beyond y;. In fact, for any other y with 1y, —yi| <d for

j < i, there are points in § + I with all but the i-th component equal to
those of 4. On the other hand, any § with |j; — y;| > d for some j # i can

not have a point in y + [ with all but the i-th component matching those
of y. So at the point y;, the set R can extend to

ri(y) = d+ Sup Yi-
{J| ly;—y;|<d (j#i)}

We shall now find a bound for r;(7/). First we observe that because of the
monotonicity of M;, we can restrict the search to the case with x; = 1. We
now project to an (v — 1) dimensional subspace by fixing x; = 1 and by
removing the i-th component M,. We denote the resulting map by M.
and similarly denote all (v — 1) dimensional variables with the superscript
CC( i)?? .

We observe that with the function M., also the function M is shrinkable
according to the definition, with factors s and ¢ inherited from M. Appar-
ently the condition on ¢ in the definition of r;(¢/) entails that in the (v — 1)
dimensional subspace, ||7") — 71|| < d. Let £ and %) be the (v — 1) di-
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Figure 2: At the point y;, the set R = I + Uze g M(Z) can extend to r;(3).



mensional pre-images of §') and §"), respectively; because ||g") — 71|| < d,
we have according to the above lemma that
- d
—1—(v—1)t
which entails that also in the original space we have |7; — z;| < d/(1—(v—
1)t) for j # i. Hence we can bound r;(%) via

ri(y) < d+ sup M ().

{7 |7j—2;1<d/(1—(v-1)t)
(j#i), vi=2;=1}

We now invoke the first statement of the lemma for the case of 7, T satisfying
7, — x| <d/(1—(v—1)t) (j #1), i = T; = 1. The last condition implies
that the term involving (6;; + ¢) does not contribute, and we thus have
IM;i(Z) — M;(Z)| < (v—1)t-d/(1 — (v—1)t), and altogether

20) _ (i)

d-(v—1)t
(1) <y +d
i) < yit +1—(’U—1)t
1
=y +d- .
bit 1 —(v—1)t

We observe that the second term in the last expression is independent of
i. Hence we have shown that the “band” around J._z M(Z) generated by



the addition of I never extends more than d/(1 — (v — 1)t) in any direction.

To complete the proof, we observe that because of the bound s on S, the
box (1—s)[—1, 1]" lies entirely in the range of M. Thus multiplying the map
M with any factor ¢ > 1 entails that the edges of the box (1 — s)[—1,1]"
move out by the amount (1 — s)(¢ — 1) in all directions. Since the box is
entirely inside the range of M, this also means that the border of the range
of M moves out by at least the same amount in any direction ¢. Thus

choosing ¢ as
1

I=(@=1t)-(1-5)

q=1+d-
assures that
U (gM) D R

zeB
as advertised.



Shrink Wrapping VII

Let us consider the practical limiations of the method; apparently the
measures of the nonlinearities s and ¢ must not become too large

Remark (Limitations of shrink wrapping) Apparently the shrink
wrap method discussed above has the following limitations

Remark 1 1. The measures of nonlinearities s and t must not become too
large

2. The application of the tnverse of the linear part should not lead to large
increases in the size of remainder bounds.

Apparently the first requirement limits the domain size that can be cov-
ered by the Taylor model, and it will thus happen only in extreme cases.
Furthermore, in practice the case of s and ¢ becoming large is connected
to also having accumulated a large remainder bound, since the remainder
bounds are calculated from the bounds of the various orders of s. In the
light of this, not much additional harm is done by removing the offending
s into the remainder bound and create a linearized Taylor model.

Definition (Blunting of an Ill-Conditioned Matrix)

Let A be a regular matrix that is potentially ill-conditioned and ¢ =
(q1, -.-qn) & vector with ¢; > 0. Arrange the column vectors d@; of A by size.



Let ¢; be the familiar orthonormal vectors obtained through the Gram-
Schmidt procedure, i.e.

1—1
- > & (@-&)
k=1

€, =

1—1
- > & (@-&)
k=1

We form vectors EZ via .

bi = d; + gi€;
and assemble them columnwise into the matrix B . We call B the g-blunted
matrix belonging to A

Proposition (Regularity of the Blunted Matrix) The I;;- are lin-

early independent and thus Bis regular.

Proof. By induction. Apparently by is linearly independent. Assume
now that I;l, o 13;-_1 are linearly independent. We first observe that for each
7, the vector I;Z- is a linear combination of the aj, for £ = 1, ..., 7 and thus also
of the €. for £ =1, ..., 7, since both the a; and the €, span the same space.
Now assume I;Z is linearly dependent on 51, - I;i_l; then it is also linearly



dependent on €1, ..., €;_1, i.e. there are A\, ..., \;_; such that
1—1
= \iéh.
k=1

But because b; = d; + ¢;€;, we have

( \H

a; 1+ 1 4
K di — ) e (d; - €)
k=1

Since by requirement, ¢; > 0, the factor of a; is nonzero, and we have a
contradiction to the linear independence of a; from é, ..., €;_1. Thus 51, e b;
are linearly independent.

Intuitively, of course, the eflect of blunting is that each vector b; is being
"pulled away" from the space spanned by the previous vectors 51, e I;Z-_l,
and more strongly so if ¢; becomes bigger and bigger. In fact, we have the
following result: .

)\k—l—CLZ ek 5k
k=1




Long-Term Behavior - Floating Point Case

Consider very simple two-state dynamical system:
Lp+1 = A - Ty
Tnro = (1/a) - Tpi

with initial condition zy = 1. Study the behavior for specific choices of a in
both single and double precision arithmetic on

e I'77 compiler by DEC, now distributed as {77 Digital Visual Fortran
Version 5.0 as part of Microsoft Fortran PowerStation

e 77 compiler distributed by GNU; we specifically tested Version V0.5.24.

Choose a; = 3 for single precision, as; = 0.9999999901608054 for double
precision
In both cases, we observe exponential growth of the error!
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Long-Term Behavior - Validated Case

Consider very simple two-state dynamical system:

azn+1:xn\/1+x%+y% andyn+1:yn\/1+$%+y%

2
Tpyo = Tpyt - and
\/1 +/1+4(22  +92,,)

2
Yn+2 = Yn+1 - :
" " \/1 +/ 1+ 47 +Yn)

Simple arithmetic shows that, also here we have (12, Yni2) = (Tn, Yn)-
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Preconditioning the Flow

Idea: write the Taylor model of the solution as a composition of two Taylor
models (P + [;) and (P, + I,.), and then choose P, + I; in such a way that
in each step, the operations appearing on I, are minimized. At the same
time, I; will be chosen as small as possible. Can be viewed as a coordinate
transformation.

In the factorization, we impose that (P, + I;) is normalized such that each
of its components has a range in [—1, 1], and even near the boundaries.

Definition (Preconditioning the Flow) Let (P + I) be a Taylor

model. We say that (P, + I), (P, + I,) is a factorization of (P + I) if
B(P,+1I,) € [-1,1] and

(P+I1)e (P +1)o(P.-+1,) forall z € B
where B is the domain of the Taylor model (P, + I,.).

The composition of the Taylor models is here to be understood as insertion
of the Taylor model P.+ I, into the polynomial F; via Taylor model addition
and multiplication and subsequent addition of the remainder bound I;. For
the study of the solutions of ODEs, the following result is important



Preconditioning the Flow 11

Proposition Let (P, + I;,) o (P.,, + I,,) be a factored Taylor model
that encloses the flow of the ODE at time ¢,. Let (P, , I, ) be the

result of integrating (P, + I;,,) from ¢, to ¢,,+1. Then
(f)lTn—H? ];:n—H) o (Prp+ Irp)

Definition (Curvilinear Preconditioning) Let ™ = f(z, 2/, .2~ 1)
be an m-th order ODE in n variables. Let z,(¢) be a solution of the ODE
and z/.(t), ..., 2 (t) its first k time derivatives. Let €, ..., € be the [ unit
vectors not in the span of x/.(t), eyt (t), sorted by distance from the
span. Then we call the Gram-Schmidt orthonormalization of the set (x.(t),
s ;z;?(f“)(t), €1, ..., €;) the curvilinear basis of depth k.

Curvilinear coordinates have long history. Study of solar system, Beam
Physics, ... .

Example (Curvilinear Solar System and Particle Accelera-
tors) In this case, n = 3, and one usually chooses k = 2. The first basis
vector points in the direction of motion of the reference orbit. The second
vector is perpendicular to it and points approximately to the sun or the
center of the accelerator. The third vector is chosen perpendicular to the

plane of the previous two.
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Preconditioning the Flow III

Theorem (Curvilinear Coordinates for Autonomous Linear
Systems) Let 2/ = A -z be an n-dimensional linear system that has
n distrinct nonzero eigenvalues \; with eigenvectors a;. Let B be a box
with nonzero volume, and =, = > . | X;a; € B such that X; # 0 for all
v = 1,...,n. Then the derivatives of :137@, 1 = 1,...,n, are linearly inde-
pendent, and hence the depth n curvilinear coordinates are obtained by
applying the Gram-Schmidt procedure to the derivatives :1:7(42), 1=1,...,n.

Proof. The motion of the reference point x, as a function of time is

apparently given by

x,.(t) = Z X; - a; - exp(\it)

i=1
so that the jth derivative assumes the form

n
zV)(t) = ZXZ- - a; - X exp(Ait).
i=1
We now consider the determinant of the matrix of coefficients in the basis



a;, and observe

X1\ X1>\1 X1 AY
XQ)\Q X2>\2 XQ)\SL

Xohn XpA2 X7

DV Vs
i 1 n—1 n
- det 1 )\2 . >\2 — H ()\ZXZ)n H <>\z — )\]) # 0
2:1 By ' \n-1 i=1 P>

because of the well-known property of the Vandermonde matrix.
Definition (Natural Coordinate System for Linear System)

Let 2’ = A - x be an n-dimensional linear system that has n distrinct real
eigenvalues \; > Ay > ... > \, with eigenvectors ay, ..., a,. We define the
normal basis (b;) of the system to be the result of applying the Gram-

Schmidt orthonormalization procedure to the vectors aq,...,a,, i.e. the
result of the recursive computation

a; — Zi-;l bj . (ai : bj)

bi = = .
ai = Y21 by - (ai - by)




needle IC(1.5,-1) - Curvilinear preconditioning




needle IC(1.5,-1) - QR based preconditioning




The Natural Coordinate System has the following important property:

Proposition (Curvilinear Coordinates for Autonomous Linear
Systems) Let 2/ = A -z be an n-dimensional linear system that has
n distrinct real eigenvalues \; with eigenvectors a;. Let b, be the natural
coordinate system of the linear system. Let B be a box with nonzero
volume, and z, = Y ., X;a; € B such that X; # 0. If z, is used as the
reference orbit to define the curvilinear coordinates c;, then the curvilinear
coordinates converge to the natural coordinates, i.e. we have

¢; — b; for all 7 as t — oo.

Remark: Variations are possible to treat the case of multiple eigenvalues.



A Muon Cooling Ring

Example from Beam Physics: Simple model of muon cooling ring, using
curvilinear preconditioning.

Simultaneous damping via matter, and azimuthal accelerations. Equa-
tions of motion:

T = Py

y:py

. 8% n 8 y

Pz = Dy — " Pz )
/P21 Vit

Has invariant solution
(2, Y, Pz, py)1(t) = (cost, —sint, —sint, — cost),
ODE asymptotically approach circular motion of the form
(@, Y, Pr, Py)a(t) = (cos (t — @), —sin(t — @), —sin(t — @), —cos(t — ¢)),

where ¢ is a characteristic angle for each particle.



A Muon Cooling Ring - Results

1. Need to treat a large box of [—1072, 1072

2. Because of damping action towards the invariant limit cycle, the linear
part of the motion is more and more ill-conditioned.

COSY easily integrates 10 cycles for d = 1072 with curvilinear precondi-
tioning and QR preconditioning. AWA (method 4) behaves as follows:

d | Cycles
1072]0.22
10731 1.25
107419.5

Thus, trying to simulate the system with AWA requires > (10*)* = 108
subdivisions of the box that COSY can transport in one piece.



mucool, DX=0.01, preconditioned TM 12th, noSW
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Remainder Error Size of x

le-3
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mucool ODE, (1,0,0,-1), Pre-conditioned TM 12th, noSW
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Condition Number L
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Determinant L
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A 2D Discrete Kepler Problem

Dynamics of circular Kepler orbits around central mass. Period T' and
large semi-major axis are related via 72 = k- a®. Sow = 21 /T = 2r-1r73/2,
and thus after At we have

Tpt1 \ [ cosA¢ sinAg T

Ynt1 )\ —sinAg cosAg )\ y,
2 At

where A¢p = 1

(22 +y?)
Characteristic of general Kepler problem: as time progresses, larger and
larger lag in angle fr different r, resulting in shearing. Circular form makes
Taylor expansion of final in terms of initial coordinates ultimately impossi-

ble. Thus, any Taylor method will eventually have to fail. The question is,
how soon!

3/4°

Also interesting: estimate growth rate of remainder bounds. For smallest
d, have increase of 9- 10~ over 5, 000 revolutions or 40, 000 iterations. This
corresponds to about 2-107!® per map iteration. This is near floating point
limit!



Remainder Error Size of x

2D Discrete Kepler Problem, DX=1e-6, (1,0), noSW
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Remainder Error Size of x
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Remainder Error Size of x
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2D Discrete Kepler Problem, DX=1e-10, (1,0), noSW
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Remainder Error Size of x
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2D Discrete Kepler Problem, DX=1e-12, (1,0), noSW
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The Henon Map

Henon Map: frequently used elementary example that exhibits many of
the well-known effects of nonlinear dynamics, including chaos, periodic fixed
points, islands and symplectic motion. The dynamics is two-dimensional,
and given by

Tpal =1 — Ozx% + Yn
Yn+1 — ﬁxn

It can easily be seen that the motion is area preserving for |G| = 1.We

consider
a=24and = —1,

and concentrate on initial boxes of the from (xg, yy) € (0.4, —0.4)+[—d, d]*.



Henon system, xn = 1-2.4*x"2+y, yn = -X, the positions at each step
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Henon system, xn = 1-2.4*x"2+y, yn = -x, corner points (+-0.01) the first 5 steps
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Henon system, xn = 1-2.4*x"2+y, yn = -X, corner points (+-0.01) the first 120 steps
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Henon system, xn

= 1-2.4*x"2+y, yn = -X, NO=1, SW
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Henon system, xn = 1-2.4*x"*2+y, yn = -x, NO=1, SW
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Henon system, xn = 1-2.4*x"2+y, yn = -x, NO=20, SW
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-0.15

Henon system, xn = 1-2.4*x"2+y, yn = -x, NO=20, SW
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Determinant and Condition Number

Henon system, xn = 1-2.4*x"2+y, yn = -x, DX=1e-6, NO=1, no-SW
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Determinant and Condition Number
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Determinant and Condition Number
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Determinant and Condition Number
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Remainder Error Size of x

le-3
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le-15

Henon system, xn = 1-2.4*x"2+y, yn = -x, DX=1e-14, (0.4,-0.4), SW
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Henon system, xn = 1-2.4*x"2+y, yn = -X, DX=1e-14, (0.4,-0.4), SW
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Remainder Error Size of x

Henon system, xn = 1-2.4*x"2+y, yn = -X, DX=1e-14, (0.4,-0.4), SW
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Random Matrices - Discrete

Select 1000 twodimensional random matrices with coefficients in |[—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditioned Taylormodel

e Blunted preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation
Perform the following tasks:

e [terations through matrix

e Sets of iterations through matrix and its inverse
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325 Conjugate EVs Random Matrices
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520 Real EVs (ratio <5) Random Matrices

-80

50 100 150 200
Step Number

250



log_10(Mean)

80 Real EVs (5 =<ratio <10 ) Random Matrices
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40 Real EVs (10 =<ratio < 20 ) Random Matrices
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18 Real EVs (20 =<ratio <50 ) Random Matrices
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Random Matrices - Discrete

Select 1000 twodimensional random matrices with coefficients in |[—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditioned Taylormodel

e Blunted preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation
Perform the following tasks:

e [terations through matrix

e Sets of iterations through matrix and its inverse
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520 Real EVs (ratio <5) Random Matrices

VE
IN

TMN

-
e
-

e TMQ

TMB

= -
=
e .
-
=

10

(ueaN)oT bo

-15

-20

-25

500

400

300

200

100

Step Number



<ratio <10 ) Random Matrices
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<ratio < 20 ) Random Matrices
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80 Real EVs (5 =<ratio <10 ) Random Matrices
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18 Real EVs (20 =<ratio <50 ) Random Matrices
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Remainder Error Size (Average over 4 components)
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Example Matrix - Continuous

Consider exampe random matrix

+0.9564 +0.2004 +0.4826 +0.8871
—0.4922 +0.5651 —0.1474 —0.7678
—0.0269 —0.8587 —0.3785 —0.6168
—0.8271 +0.2661 —0.9380 +-0.5289

Approximate eigenvalues 0.3928, —0.3911, 1.005 £ 0.8669: . Center point
of the initial domain box (0.6446, 0, 0050, —0.2394, 0.4581), width 1073,

e Exponential rise from 107! at t = 3 to 107" at t = 10, corresponds to
1047 2 10°™ per time unit

Al =

e Magnitude of complex eigenvalues is approximately 1.327, leading to
exp (1.327) & 3.769 ~ 10°°7% per time unit.

e Very close agreement between growth of error and growth of true solution

e Asymptotics same as with good non-validated integrator



Random Matrices - Continuous

Select 10 fourdimensional random matrices A with coefficients in [—1, 1.
Solve ODE p

gr:A-r

with random initial conditions.

Perform integration in the following ways:
e Curvilinear-Preconditioned Taylormodel
e QR-Preconditioned Taylormodel
Observe that

e CV and QR preconditiong have the same asymptotic behavior

e Both lead to error growth agreeing with growth along longest EV up to
1%.

e Thus, same error growth as in non-validated case.
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Conclusions - Linear Problems

e In case of distinct real eigenvalues, Curvilinear (CV) and QR coor-
dinate systems converge to same limit

e Thus, CV and QR preconditioning has same asymptotic behavior

e The asymptotic behavior is essentially that of a good non-validated in-
tegrator (Nedialkov - Jackson)

e For complex eigenvalues, CV and QR both lead to rotations, and are
thus expected to behave the same

e Blunting method leaves eigenvectors with largest eigenvalues unchanged
e Longest direction(s) of blunted parallelepiped are not affected
e Only asymptotically non-dominating directions are affected

e Blunted method has essentially same asymptotic behavior as non-
validated integrator



Collection of Random Matrices

Select 1000 twodimensional random matrices with coefficients in |[—1, 1].Sort
according to eigenvalues into seven sub-cases.
Perform iteration in the following ways:

e Naive Interval

e Naive Taylormodel

e Parallelepiped-preconditioned Taylormodel

e QR-preconditioned Taylormodel

e Blunted QR-preconditioned TM, various blunting factors

e Set of four floating point corner points for volume estimation
Perform the following tasks:

e 500 iterations through matrix

e 25 sets of iterations through matrix and its inverse
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325 conjugate random matrices
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287 real EVs (ratio<2 ) random matrices
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40 real EVs ( 10=<ratio<20 ) random matrices
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18 real EVs ( 20=<ratio<50 ) random matrices
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17 real EVs (ratio>=50 ) random matrices
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325 conjugate random matrices
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287 real EVs (ratio<2 ) random matrices
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<ratio<5) random matrices
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18 real EVs ( 20=<ratio<50 ) random matrices
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