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One Dimensional TM Range Bounders
(Work with Youn-Kyung Kim at Michigan State Univ.)

It is relatively easy to produce efficient range bounders of up to sixth order

• There are well-known formulas for zeros of polynomials up to order 4
• Apply these to the derivatives and find all real roots
• Yields all critical points of polynomials up to order 5
• Evaluating polynomial at these and boundary points, and take min, max
Care has to be taken about the following aspects:
• Obviously, Evaluate formulas by interval arithmetic
• Branches in the code because of different sub-cases:
◦ follow each one separately, or
◦ slightly perturb the original polynomial so that branches disappear
P ∗(x) = P (x) +

P5
i=1 εi x

i, then B(P ) ⊂ B(P ∗)−B
³P5

i=1 εix
i
´

• Only interested in real roots: re-write expressions to avoid complex roots
• Cleverly write formulas to minimize width of enclosures of critical points
(cancellation problem)
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Shown above are values of absolute overestimation (q), empirical approximation order (EAO), and average
empirical approximation order (AEAO) of various bounding methods, for range enclosures of

f(x) = 1 − cos(x) over the domains 0 + [−2−j , 2−j ] with j = 1, 2, . . . , 7

Taylor model results are shown on the left with the default tightening method, and on the right with the
one-dimensional exact bounding scheme.
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Shown above are values of absolute overestimation (q), empirical approximation order (EAO), and average
empirical approximation order (AEAO) of various bounding methods, for range enclosures of

f(x) = (1 − cos(x))sin(x) over the domains 0 + [−2−j , 2−j ] with j = 1, 2, . . . , 7

Taylor model results are shown on the left with the default tightening method, and on the right with the
one-dimensional exact bounding scheme.



Youn-Kyung Kim / August 11, 2003 1

1 2 3 4 5 6 7
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

1

1

1

1

1

1

3

3

3

3

3

3

3

5

5

5

5

5

5

5

7

7

7

7

7

7

7

10

10

10

10

10

10

10

j

lo
g

10
q

INTERVAL
CENTERED
MEAN VALUE
1ST ORDER TM
3RD ORDER TM
5TH ORDER TM
7TH ORDER TM
10TH ORDER TM

1
3
5
7
10

1 2 3 4 5 6 7
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

1

1

1

1
1

1
1

3

3

3

3

3

3

3

5

5

5

5

5

5

5

7

7

7

7

7

7 7

10

10

10

10

10

10 10

j

lo
g

10
q

INTERVAL
CENTERED
MEAN VALUE
1ST ORDER TM
3RD ORDER TM
5TH ORDER TM
7TH ORDER TM
10TH ORDER TM

1
3
5
7
10

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

1 1 1
1

1 1

3

3

3 3 3 3

5
5

5 5 5 5

7
7

7 7 7 7

10
10

10 10 10 10

j

E
A

O

INTERVAL
CENTERED
MEAN VALUE
1ST ORDER TM
3RD ORDER TM
5TH ORDER TM
7TH ORDER TM
10TH ORDER TM

1
3
5
7
10

1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

1 1 1
1 1 1

3
3

3 3 3 3

5

5

5

5 57

7

7

7

710

10

10

10

10

j

E
A

O

INTERVAL
CENTERED
MEAN VALUE
1ST ORDER TM
3RD ORDER TM
5TH ORDER TM
7TH ORDER TM
10TH ORDER TM

1
3
5
7
10

INTERVAL CENTERED MEAN VALUE TM 1 TM 3 TM 5 TM 7 TM 10
0

1

2

3

4

5

6

7

8

9

10

1

3 5 7 10

METHOD

A
E

A
O

INTERVAL CENTERED MEAN VALUE TM 1 TM 3 TM 5 TM 7 TM 10
0

1

2

3

4

5

6

7

8

9

10

1

3

5

7 10

METHOD

A
E

A
O

Shown above are values of absolute overestimation (q), empirical approximation order (EAO), and average
empirical approximation order (AEAO) of various bounding methods, for range enclosures of

f(x) = (1 − cos(x + 0.1))(1 − cos(x − 0.1)) over the domains 0 + [−2−j , 2−j ] with j = 1, 2, . . . , 7

Taylor model results are shown on the left with the default tightening method, and on the right with the
one-dimensional exact bounding scheme.



The Linear Dominated Bounder (LDB)

• The linear part of TM polynomial is the leading part, so is it for range
bounding.

• The idea is easily extended to multi-dimensional.
• Use the linear part as a guideline for domain splitting and elimination.
• The reducti on of the s i ze of i nt erested b ox works mul t i - di mens i onal l y

and automatically. Thus , t he r e duc t i on rat e i s f as t .

• Even there is no linear part in the original TM, by shifting the expansion
point, normally the linear part is introduced.



LDB Algorithm
Wlog, find the upper bound of maximum of a polynomial P in B.

1. Re-expand P at the mid-pointm of B to Pm. Center the domain as Bm.

2. Turn the linear coefficients c of Pm all positive by a transformation D,
with Dii =sign(ci), Dij = 0 for i 6= j.
The polynomial is P+ in the domain Bw = Bm.

3. Compute the bound of the linear (I1) and nonlinear (Ih) parts of the
polynomial P+ in Bw. The maximum is bounded by [Min,M ] := I1+I

h.

4. The refinement iteration
(a) IfM−Min > ε, set Bw : ∀i, if ci > 0 and width(Bwi)>width(Ih)/ci,
then
◦ Bwi := Bwi−width(Ih)/ci.
◦ Re-expand P+ at the mid-point of Bw. ci’s are the new coefficients.
◦ Go to 3.
(b) Else, M is the upper bound of maximum.



-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

2.0 sqrt(5) 2.5 3.0

x

P(x) = 1-5*x+x^3/3 in [2,3],                     from R. Moore, SIAM 1979



-7

-6.8

-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x in [-0.5,0.5]

LDB, P(x) = 1-5*x+x^3/3 in [2,3], upper bound, step 0, centered PP = P(x+2.5)

PP = -6.29167+1.25*x+2.5*x^2+x^3/3
Linear part
+ Nonlinear part
Inner bound of Upper Bound



-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-0.066.. 0 0.1 0.2 0.3 0.4 0.5

x in [-0.066..,0.5]

LDB, P(x) = 1-5*x+x^3/3 in [2,3], upper bound, step 1, centered PP = P(x+2.5)

PP = -6.29167+1.25*x+2.5*x^2+x^3/3
Linear part
+ Nonlinear part
Inner bound of Upper Bound



-5.4

-5.35

-5.3

-5.25

-5.2

-5.15

-5.1

-5.05

-5

-4.95

0.402.. 0.42 0.44 0.46 0.48 0.5

x in [0.402..,0.5]

LDB, P(x) = 1-5*x+x^3/3 in [2,3], upper bound, step 2, centered PP = P(x+2.5)

PP = -6.29167+1.25*x+2.5*x^2+x^3/3
Linear part
+ Nonlinear part
Inner bound of Upper Bound



5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x in [-0.5,0.5]

LDB, P(x) = 1-5*x+x^3/3 in [2,3], for lower bound, step 0, centered & reversed PP = -P(-x+2.5)

PP = 6.29167+1.25*x-2.5*x^2+x^3/3
Linear part
+ Nonlinear part
Inner bound of Upper Bound



6.15

6.2

6.25

6.3

6.35

6.4

6.45

6.5

6.55

-0.066.. 0 0.1 0.2 0.3 0.4 0.5

x in [-0.066..,0.5]

LDB, P(x) = 1-5*x+x^3/3 in [2,3], for lower bound, step 1, centered & reversed PP = -P(-x+2.5)

PP = 6.29167+1.25*x-2.5*x^2+x^3/3
Linear part
+ Nonlinear part
Inner bound of Upper Bound



Comparison LDB Bounder and Bernstein Bounder

LDB Bounder Bernstein Bounder
Domain Splitting yes yes
Reduction per step varies, but usually À 1/2 1/2, in one dimension
Convergence Order 2, ..., (n + 1) 1, ..., (n + 1)
Ops per step (dense) (n + v)!/n!/v! >(n + v)!/n!/v! +k· (n + 1)v
ops for n = 4, v = 2 15 15 + k · 25
ops for n = 6, v = 4 210 210 + k · 2401
ops for n = 8, v = 6 3003 3003 + k · 531, 441
k : number of operations on each matrix element for filling, re-shaping, etc
of matrix, and bounding process.
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Statistical Analysis of LDB Bounder

Question: How frequently can the LDB bounder succeed to determine
the bounds without subdivision?

• Use 1000 random polynomials of order 4
• Vary the dimensionality NV over 1, ..., 10

• Vary the domain size as [−2−j, 2−j] for j = 1, ..., 5
• Record the frequency of success
• Display Mode 1: Freeze j, show results for different NV

• Display Mode 2: Freeze NV, show results for different j











The QDB-LDB Bounder I

Observe that bounding polynomial of a TM up to order 2 exactly yields a
third order bounder. Let this polynomial be

P (x) = Po + P1(x) + P2(x) = P0 + cx +
1

2
xtHx

We use a peeling strategy enhanced by LDB bounder and positive defi-
niteness check.
Wlog assume we are interested in minimum, the domain is [−1, 1]v, and all
variables do appear in the second order part (if not, reduce dimensionality).
Initialize stack to be studied by all 3v hypersurfaces consisting of [−1, 1]v, all
its boundaries, all their boundaries, etc etc. and all corner points. (These
are characterized by a vector of length v where each component assumes the
values −1, 0, or +1; the number of 0s is the dimension of the hypersurface)
Evaluate P at the corner point that lies closest to the direction −�c of the
gradient at the center, call resultM. Initialize stack of boxes to be studied to
[−1, 1]v.



Example for ”-1,0,+1” Notation

Consider a 3D cube. There are 27 surfaces

0 0 0 3D center volume
-1 0 0 2D left face
+1 0 0 2D right face
0 -1 0 2D front face
0 +1 0 2D back face
0 0 -1 2D bottom face
0 0 1 2D top face
-1 -1 0 1D edge left back edge

... ...
+1 +1 +1 0D top right back corner



The QDB-LDB Bounder II

1. If there is no box on the stack, we are done. Otherwise, pick a box B
of maximum remaining dimension from the stack. Let P on B be P =
c0 + cx + 1

2x
t Hx.

2. Evaluate P on B with LDB; call the lower bound MB. If MB ≥ M,
discard B and all its boundaries and their boundaries ... and go to 1. The
discarding is greatly simplified by ”−1, 0,+1” vector notation.

3. If box B is not discarded, perform a non-positive definiteness test of P2
on B. If non-positive definiteness is shown, discard B and go to 1. P2 is
shown to not be positive definite if any one of the following holds

* Any diagonal element Hii is negative or zero

*
P

i,j Pij ≤ 0
* Any 2× 2 principal minor mij is negative or zero

* (Any higher principal minor is negative or zero; may be too much to
check)



The QDB-LDB Bounder III

4. If P2 survives this check, try to solve Hx + c = 0. Use Moore-Krawcyk
algorithm with preconditioning.
a) If unique solution can be found, check

- If x /∈ B, discard box B and go to 1.
- If x ∈ B, set M = min(M,P (x)).

Discard B and all its boundaries and their boundaries ...
Go to 1.

b) If unique solution can not be found, H has an eigenvalue close to 0.
Modify H → H + εI, where I is the identity,
until unique solution can be found, go to a).



The QDB-LDB Bounder - Properties

A few observations about the practical performance are in order

• A successful use of LDB on the first box immediately terminates the
algorithm. This is very likely to occur if the function is monotonic, and
in particular if the nonlinearities are small, as is the case for results of
most TM computations.

• A successful use of LDB on only one of the primary boundaries decreases
the workload by about 1/3 in typical cases. This is likely to occur once
or twice if the function is monotonic in one direction.

• A successful use of LDB on one of the remaining lower boundaries has
less impact, but is still very useful.

• Since LDB is relatively cheap, the combination with LDB can have a big
influence on practical performance

• Algorithm requires as a worst case 3v − 2v solutions of linear systems of
various dimensions; the 2v corner points do not require linear algebra.
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Example: Polynomial from Moore’s 1979 Book

P (x) = 1− 5x + 1
3x
3, x ∈ [2, 3]

Method Range Width
Exact [ −6.453559.. , −5 ] 1.46

Naive Interval [ −11.333333.. , 0 ] 11.34
Centered Form [ −7.583333.. , −5 ] 2.59
by Order Bounds [ −6.958333.. , −5 ] 1.96
by QDB+hi OB [ −6.489583.. , −5 ] 1.49

LDB [ −6.516634.. , −5 ] 1.52
Mean Value Form [ −8.291.. , −4.291.. ] 4.01
Monotonicity local minimum at

√
5

POLBND [ −6.453560.. , −5 ] 1.46
Rastering, 1000pnt (inner) [ −6.453559.. , −5 ] 1.46

POLBND is a global optimizer implemented in COSY by
Jens Hoefkens (1999) based on the algorithm in the dissertation of Ratz.
Combined with nth order TM, this is our first (n + 1)st order bounder.



Gritton’s Second Problem, Domain 1.4+[-1,1]·2−5

The polynomial of degree 18 from Chemical Engineering. There are 18
roots in the range [−12, 8], and it is particularly difficulty to bound around
1.4.

Method Width Accur.
Rastering (1000) 2.69e-2
Naive Interval 1.04e4 1.04e4
Centered Form 1.25e3 1.25e3
Mean V. Form 1.43e3 1.43e3

LDB 2.86e-2 1.74e-3
Global Opt. 3.20e-2 5.10e-3

4th TM ε 3.90e-4
+ QDB + hi OB 2.90e-2 2.14e-3

+ LDB 2.90e-2 2.14e-3
+ GO 2.73e-2 3.99e-4
8th TM ε 4.89e-10

+ QDB + hi OB 2.86e-2 1.74e-3
+ LDB 2.86e-2 1.74e-3
+ GO 2.69e-2 9.58e-8

Monotonicity No



Conclusion

• Taylor models provide enclosures of functional dependencies by polyno-
mials and a remainder that scales with n + 1st order.

• Ra nge b oundi ng o f p ol ynomi a l i s of t e n eas i er t han r ange b oundi ng of
t he o r i gi nal f unc t i on. Thus , t he TM r ange b oundi ng al gor i t hms c an
lead to a high order method.

• For one dimensional systems, there are bounders up to the sixth order.
• The LDB bounding is cheap, and can be used to assist various other
methods. (QDB, Bernstein)

• The QDB b o unde r pr ovi des t he t hi r d or de r me t ho d. By c ombi ni ng wi t h
LDB, t he QDB b ounder c an b e qui t e efficient.




