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Taylor models: definition

f : [−1, 1]v → IR

(x1, · · · , xv) 7→ f(x1, · · · , xv)

is represented by

To(x1, · · · , xv) + IL

where

To is a polynomial of order o

IL is an interval enclosing the Lagrange remainder,

IL = 1
(o+1)!‖f

(o+1)‖∞ × [−1, 1]
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Taylor models and floating-point arithmetic

f : [−1, 1]v → IR

(x1, · · · , xv) 7→ f(x1, · · · , xv)
is represented by

To(x1, · · · , xv) + IFP

To is a polynomial with floating-point coefficients of order o

IFP is an interval enclosing the Lagrange remainder

and an enclosure of the rounding errors
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Taylor models, FP arithmetic and sparse
representation

f : [−1, 1]v → IR

(x1, · · · , xv) 7→ f(x1, · · · , xv)
is represented by

To(x1, · · · , xv) + I

To is a polynomial with not too small floating-point coefficients
IFP is an interval enclosing the Lagrange remainder,

an enclosure of the rounding errors and

an enclosure of the terms corresponding to small coefficients
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Question: are the results guaranteed enclosures?

Recollection
[A. Benedetti ] (message from March 2002)

In the works of Berz the coefficients of the polynomial
part are always represented by floating point numbers. Shouldn’t
these be intervals? Since the coefficients are manipulated
every time the Taylor models are combined in arithmetic
operations or used as arguments in elementary functions,
how can I get verified result if intervals are not used
for the coefficients?

Question: what is the approximation order?
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Definition of the approximation order

Usual analysis: x being a point, T is of order o iff

∀x ∈ X, |T (x)− f(x)| = O(xo)

Taylor models (using exact arithmetic) are of order o.

What happens with floating-point coefficients?

Notion of approximate order?

Interval analysis: X being an interval, F is of order o iff

w(F (X)) = O(w(X)o)

Order > 2: NP-hard.

Cocnlusion: same vocabulary but not same meaning.
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Taylor models: notations

coefficients of the polynomial: ai, 1 ≤ i ≤ p (floating-point numbers)

I interval containing the Lagrange remainder, the bound on rounding

errors and the swept terms.

εm : machine precision, i.e. for every operation the relative rounding

error is ≤ εm/2
εu: machine underflow threshold

εc: logical underflow threshold: every number < εc is replaced by 0

or swept (hyp: ε2
c > εu)

t : tallying variable (for rounding errors)

s : sweeping variable (to get rid of small coefficients).
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Taylor models: operations using an ideal arithmetic

Multiplication by a scalar
T ′ = [bk, J ] = c× T with T = [ai, I] :

for k = 1 to p do

bk = c× ak

J = c× I

Addition
T = [bk, J ] = T1 + T2 with T1 = [a(1)

i , I(1)] and T2 = [a(2)
i , I(2)] :

for k = 1 to p do

bk = a
(1)
k + a

(2)
k

J = I(1) + I(2)
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Taylor models: operations using an ideal arithmetic

Multiplication
T = [bk, J ] = T1 × T2 with T1 = [a(1)

i , I(1)] and T2 = [a(2)
i , I(2)] :

J = I(1) × I(2)

for k = 1 to p do

for j = 1 to p do

if l := order(j)+ order(k) ≤ o then

bl = bl + a
(1)
k × a

(2)
j

else

J = J + [−|a(1)
k × a

(2)
j |, |a(1)

k × a
(2)
j |]

J = J + [−
∑

i |a
(1)
i |,

∑
i |a

(1)
i |]× I(2)

J = J + I(1) × [−
∑

i |a
(2)
i |,

∑
i |a

(2)
i |]
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Taylor models: operations
using floating-point arithmetic

Notations: ideal operations: usual symbols,

floating-point or interval operations: circled symbols.

Multiplication by a scalar
T ′ = [bk, J ] = c× T with T = [ai, I] :

error upper bounded by:

for k = 1 to p do

bk = c⊗ ak εm/2× |c× ak|
J = c⊗ I interval operation
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Taylor models: operations
using floating-point arithmetic

Addition
T = [bk, J ] = T1 + T2 with T1 = [a(1)

i , I(1)] and T2 = [a(2)
i , I(2)] :

error upper bounded by:

for k = 1 to p do

bk = a
(1)
k ⊕ a

(2)
k εm/2× (|a(1)

k |+ |a(2)
k |)

J = I(1) ⊕ I(2) interval operation
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Taylor models: operations using FP arithmetic

Multiplication
T = [bk, J ] = T1 × T2 with T1 = [a(1)

i , I(1)] and T2 = [a(2)
i , I(2)] :

J = I(1) ⊗ I(2) error upper bounded by:

for k = 1 to p do

for j = 1 to p do

p = a
(1)
k ⊗ a

(2)
j εm/2× |a(1)

k × a
(2)
k |

if l := order(j)+ order(k) ≤ o then

bl = bl ⊕ p εm/2× (|bl|+ |p|)
else

J = J ⊕ [−|p|, |p|] interval operation

J = J + [−
∑

i |a
(1)
i |,

∑
i |a

(1)
i |]× I(2) interval operations

J = J + I(1) × [−
∑

i |a
(2)
i |,

∑
i |a

(2)
i |] except on the sums
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Taylor models: estimating floating-point errors
using floating-point arithmetic

Problem (paradox): rounding errors are due to floating-point

arithmetic: how to estimate them using floating-point arithmetic?

Starting point:

(assumption) nb op× εm ≤ 1/2

and
|(a⊕ b)− (a + b)| ≤ εm ⊗ (|a| ⊕ |b|)
and even

|(a⊕ b)− (a + b)| ≤ εm ⊗max(|a|, |b|)

|(a⊗ b)− (a× b)| ≤ εm ⊗ |a⊗ b|
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Taylor models: estimating floating-point errors
using floating-point arithmetic

Multiplication by a scalar
T ′ = [bk, J ] = c× T with T = [ai, I] :

t = 0
s = 0
for k = 1 to p do

bk = c⊗ ak

t = t⊕ |bk|
if |bk| < εc then

s = s⊕ |bk|
bk = 0

J = c⊗ I ⊕ 2⊗ εm ⊗ [−t, t]⊕ 2⊗ [−s, s]
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Taylor models: estimating floating-point errors
using floating-point arithmetic

Goal: either prove that is provides guaranteed results or propose an

algorithm that provides guaranteed results.

1. prove that the t variable really takes into account rounding errors

(i.e. the errors for c⊗ ak and the errors for the accumulation into

t);

2. prove that the swept terms (put into s) and the errors for the

computation of s are correctly taken into account;

3. the last operation is an interval one, thus rounding errors are taken

into account properly.

Notations: ideal operations: usual symbols,

floating-point or interval operations: circled symbols.
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Taylor models: multiplication by a scala
proof for the computation of t

• error on bk = c⊗ ak ≤ εm ⊗ |bk| ≤ εm

(
1 + εm

2

)
|bk|

⇒
∑

k error on bk ≤
∑

k εm ⊗ |bk| ≤ εm

(
1 + εm

2

) ∑
k |bk|.

• computed value = 2⊗ εm ⊗
⊕

k |bk| ≥ 2εm

(
1− εm

2

) ⊕
k |bk|.

Does this hold: εm

(
1 +

εm

2

) ∑
k

|bk| ≤ 2εm

(
1− εm

2

) ⊕
k

|bk|?
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• Relation between
∑

k |bk| and
⊕

k |bk| ?
Higham (4.4): from now on, n = nb op

|
∑

k |bk| −
⊕

k |bk|| ≤ nεm
2

∑
k |bk|

⇒
∑

k |bk| ≤ 1
1−nεm

2

⊕
k |bk|

We have εm

(
1 +

εm

2

) ∑
k

|bk| ≤
εm

(
1 + εm

2

)
1− nεm

2

⊕
k

|bk|,

dos this hold?
εm

(
1 + εm

2

)
1− nεm

2

⊕
k

|bk| ≤ 2εm

(
1− εm

2

) ⊕
k

|bk|?

i.e.
1 + εm

2(
1− εm

2

)
.
(
1− nεm

2

) ≤ 2?

Yes thanks to εm < 1/5 and nε < 1/2.
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proof for the computation of s

• Let K denote {k/|bk| < εc}, let us prove that

2⊗ s = 2.
⊕
k∈K

|bk| ≥
∑
k∈K

|bk|+ error on this sum.

• error on this sum ≤
(
1− ]K εm

2

)−1
.]K εm

2

⊕
k∈K |bk|

• The following holds∑
k∈K

|bk|+ error on this sum ≤
(
1− ]K

εm

2

)−1

.
(
1 + ]K

εm

2

) ⊕
k∈K

|bk|

• as ]Kεm < 1/2,
(
1− ]K

εm

2

)−1

≤ 4
3

and
(
1 + ]K

εm

2

)
≤ 5

4
this gives the sought result.
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Taylor models: proof for the addition

Addition
T = [bk, J ] = T1 + T2 with T1 = [a(1)

i , I(1)] and T2 = [a(2)
i , I(2)] :

t = 0
s = 0
for k = 1 to p do

bk = a
(1)
k ⊕ a

(2)
k

t = t⊕ |a(1)
k | ⊕ |a(2)

k |
if |bk| < εc then

s = s⊕ |bk|
bk = 0

J = I(1) ⊕ I(2) ⊕ 2⊗ εm ⊗ [−t, t]⊕ 2⊗ [−s, s]
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Taylor models: proof for the addition

Goal: either prove that is provides guaranteed results or propose an

algorithm that provides guaranteed results.

1. prove that the t variable really takes into account rounding errors

(i.e. the errors for a
(1)
k ⊕ a

(2)
k and the errors for the accumulation

into t): cf. proof for the multiplication by a scalar;

2. prove that the swept terms (put into s) and the errors for the

computation of s are correctly taken into account: cf. proof for

the multiplication by a scalar;

3. the last operation is an interval one, thus rounding errors are taken

into account properly.
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Taylor models: proof for the multiplication
T = [bk, J ] = T1 × T2 with T1 = [a(1)

i , I(1)] and T2 = [a(2)
i , I(2)]

t = 0, s = 0
J = I(1) ⊗ I(2)

for k = 1 to p do

for j = 1 to p do

p = a
(1)
k ⊗ a

(2)
j

t = t⊕ |p|
if l := order(j)+ order(k) ≤ o then

bl = bl ⊕ p

t = t⊕max(|bl|, |p|)
if |bk| < εc then

s = s⊕ |bk| and then bk = 0
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J⊕ = 2⊗
⊕

j

(
([−1, 1]⊗

⊕
k>o−j |a

(1)
k |)⊕ I(1)

)
⊗[−|a(2)

j |, |a(2)
j |]

J = J ⊕ 2⊗ [−
⊕

k |a
(1)
k |,

⊕
k |a

(1)
k |]⊗ I(2)

J = J ⊕ 2⊗ εm ⊗ [−t, t]⊕ 2⊗ [−s, s]
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Taylor models: proof for the multiplication

Goal: either prove that is provides guaranteed results or propose an

algorithm that provides guaranteed results.

1. prove that the t variable really takes into account rounding errors:

cf. proof for the multiplication by a scalar;

2. prove that the swept terms (put into s) and the errors for the

computation of s are correctly taken into account: cf. proof for

the multiplication by a scalar;

3. in the last line, rounding errors are taken into account thanks to

interval arithmetic and to the factor “2” for the sums.

Remark: this is different from Cosy, where interval operations are

performed at each step ⇒ no need for this factor “2” (?).
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Conclusion and future work

• Almost done: check that the algorithms given here are the ones

implemented in Cosy.

• Done: prove that the rounding errors are correctly taken into

account, i.e. that even with FP arithmetic, results are guaranteed.

Multiplication to be discussed. . .

• To do: proof that translations-homotheties are also correct with

FP arithmetic (from any domain to [−1, 1] and reciprocally).

• To do: same work on the intrinsics: /,
√

and elementary

functions (with some reasonable assumptions on the quality of FP

elementary functions).

Taylor models mini-workshop, Miami Beach, December 16-20, 2002 - 30 N. Revol


