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5.5. Shrink Wrapping. In this section, we outline one method to perform
shrink wrapping. We point out that there are many variants of this approach,
and while the one shown here is perhaps the simplest one to understand, it is not
necessarily the optimal choice.

After the kth step of the integration, the region occupied by the final variables
is given by the set

A = I0 +
[

x0∈B
M0(x0),

where x0 are the initial variables, B is the original box of initial conditions,M0 is
the polynomial part of the Taylor model, and I0 is the remainder bound interval;
the sum is the conventional sum of sets. In the case of the COSY-VI integration,
the mapM0 can be scaled such that the original box B is unity, i.e. B = [−1, 1]v.
We assume this way in the rest of discussion. The remainder bound interval I0
accounts for the local approximation error of the expansion in time carried out
in the kth step as well as floating point errors and potentially other accumulated
errors from previous steps; it is usually very small. The purpose of shrink wrapping
is to “absorb” the small remainder interval into a set very similar to the first part
via

A ⊂ A∗ = I∗0 +
[

x0∈B
M∗

0(x0),

whereM∗
0 is a slightly modified polynomial, and I

∗
0 is a significantly reduced interval

of the size of machine precision.
As the first step, we extract the linear partM0 ofM0 and determine a floating

point approximation M̄−10 of its inverse. In case the ODEs admit unique solutions,
as is typically the case for the problems at hand, the attempt to numerically invert
the linear map M0 will likely succeed.

After the approximate inverse M̄−10 has been determined, we apply it from the
left to the Taylor modelM0(x0) + I0 that describes the current flow. As a result,
the linear part of the resulting Taylor model is near identity. We write this new
Taylor model as

M+ I = I + S + I,

where I is the identity, and the function S contains the nonlinear parts of the
resulting Taylor model as well as some small linear corrections due to the error in
inversion. We include I into the interval box d · [−1, 1]v, where d is a small number.

Definition 1. Let M = I + S +I, where S is a polynomial and I is a small
interval. We include I into the interval box d · [−1, 1]v. We set

s ≥ |Si(x)| ∀ x ∈ B, 1 ≤ i ≤ v,

t ≥
¯̄̄̄
∂Si
∂xj

¯̄̄̄
∀ x ∈ B, 1 ≤ i, j ≤ v.

We call a map M shrinkable if (1 − vt) > 0 and (1 − s) > 0; both of which are
assured if S (and since it is a polynomial, hence also its derivative) is sufficiently
small in magnitude. Then we define q, the so-called shrink wrap factor, as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)
.
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Figure 7. The region described by the Taylor modelM0 + I0 is
transformed to be normalized as I+S+ I, where I is the identity.

The bounds s and t for the polynomials Si and ∂Si/∂xj can be computed by
interval evaluation. The factor q will prove to be a factor by which the Taylor
polynomial I + S has to be multiplied in order to absorb the remainder bound
interval.

Remark 1. (Typical values for q) To put the various numbers in perspective,
in the case of the verified integration of the Asteroid 1997 XF11, we typically have
d = 10−7, s = 10−4, t = 10−4, and thus q ≈ 1 + 10−7. It is interesting to note
that the values for s and t are determined by the nonlinearity in the problem at
hand, while in the absence of “noise” terms in the ODEs described by intervals, the
value of d is determined mostly by the accuracy of the arithmetic. Rough estimates
of the expected performance in quadruple precision arithmetic indicate that with
an accompanying decrease in step size, if desired d can be decreased below 10−12,
resulting in q ≈ 1 + 10−12.

In order to proceed, we need some estimates relating image distances to origin
distances.

Lemma 1. Let M be a map as above, let k·k denote the max norm, and let
(1− vt) > 0. Then we have

¯̄Mi(x̄)−Mi(x)
¯̄ ≤X

j

|δi,j + t| |x̄j − xj | ,°°M(x̄)−M(x)
°° ≤ (1 + vt) · °°x̄− x

°° , and°°M(x̄)−M(x)
°° ≥ (1− vt) · °°x̄− x

°° .
Proof. For the proof of the first assertion, we observe that all (v− 1) partials

of ∂Mi/∂xj for j 6= i are bounded in magnitude by t, while ∂Mi/∂xi is bounded
in magnitude by 1+ t; thus the first statement follows from the intermediate value
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theorem. For the second assertion, we trivially observe°°M(x̄)−M(x)
°° = max

i

¯̄Mi(x̄)−Mi(x)
¯̄

≤ max
i

X
j

|δi,j + t| |x̄j − xj |

≤ (1 + vt)
°°x̄− x

°° .
For the proof of the third assertion, which is more involved, let k be such that°°x̄− x
°° = |x̄k − xk| , and wlog let x̄k − xk > 0. Then we have°°M(x̄)−M(x)

°° = max
i

¯̄Mi(x̄)−Mi(x)
¯̄

≥ ¯̄Mk(x̄)−Mk(x)
¯̄

=

¯̄̄̄
¯̄(1 + ck)(x̄k − xk) +

X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄(5.1)

for some set of cj with |cj | ≤ t ∀j = 1, ..., v, according to the mean value theorem.
Now observe that for any such set of cj ,¯̄̄̄

¯̄X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄ ≤X

j 6=k
|cj | |x̄j − xj | ≤

X
j 6=k

|cj |
 |x̄k − xk|

≤ (v − 1) t |x̄k − xk|
≤ (1− t) |x̄k − xk| ≤ (1 + ck) (x̄k − xk) .

Hence the left term in the right hand absolute value in (5.1) dominates the right
term for any set of cj , and we thus have¯̄̄̄

¯̄(1 + ck)(x̄k − xk) +
X
j 6=k

cj(x̄j − xj)

¯̄̄̄
¯̄

≥ (1− t)(x̄k − xk)−
X
j 6=k

t |x̄j − xj |

≥ (1− t)(x̄k − xk)− (v − 1) t (x̄k − xk)

= (1− vt)(x̄k − xk) = (1− vt)
°°x̄− x

°° ,
which completes the proof. ¤

Theorem 1. (Shrink Wrapping) Let M = I + S(x), where I is the identity.
Let I = d · [−1, 1]v, and

R = I +
[
x∈B

M(x)

be the set sum of the interval I = [−d, d]v and the range of M over the original
domain box B. So R is the range enclosure of the flow of the ODE over the interval
B provided by the Taylor model. Let q be the shrink wrap factor of M; then we
have

R ⊂
[
x∈B

(qM)(x),
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Figure 8. At the point yi, the set R = I+
S
x∈BM(x) can extend

to ri(y).

and hence multiplying M with the number q allows to set the remainder bound to
zero.

Proof. Let 1 ≤ i ≤ v be given. We note that because ∂Mi/∂xi > 1− t > 0,
Mi increases monotonically with xi. Consider now the (v − 1) dimensional surface
set (x1, ..., xv) with xi = 1 fixed. Pick a set of xj ∈ [−1, 1], j 6= i.We want to study
how far the set R = I +

S
x∈BM(x) can extend beyond the surface in direction i

at the surface point y =M(x1, ..., xi−1, 1, xi+1, ..., xv).
Let yi be the i-th component of y. The i-th components of the set y + I ap-

parently extend beyond yi by d. However, it is obvious that R can extend further
than that beyond yi. In fact, for any other ȳ with |ȳj − yj | ≤ d for j 6= i, there are
points in ȳ + I with all but the i-th component equal to those of y. On the other
hand, any ȳ with |ȳj − yj | > d for some j 6= i can not have a point in ȳ + I with
all but the i-th component matching those of y. So at the point yi, the set R can
extend to

ri(y) = d+ sup
{ȳ| |ȳj−yj |≤d (j 6=i)}

ȳi.

We shall now find a bound for ri(y). First we observe that because of the
monotonicity of Mi, we can restrict the search to the case with xi = 1. We now
project to an (v − 1) dimensional subspace by fixing xi = 1 and by removing the
i-th component Mi. We denote the resulting map by M(i), and similarly denote
all (v − 1) dimensional variables with the superscript “(i)”.

We observe that with the function M, also the function M(i) is shrinkable
according to the definition, with factors s and t inherited fromM. Apparently the
condition on ȳ in the definition of ri(y) entails that in the (v − 1) dimensional
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subspace,
°°ȳ(i) − y(i)

°° ≤ d. Let x̄(i) and x(i) be the (v− 1) dimensional pre-images
of ȳ(i) and y(i), respectively; because

°°ȳ(i) − y(i)
°° ≤ d, we have according to the

above lemma that °°°x̄(i) − x(i)
°°° ≤ d

1− (v − 1)t ,
which entails that also in the original space we have |x̄j − xj | ≤ d/(1− (v−1)t) for
j 6= i. Hence we can bound ri(y) via

ri(y) ≤ d+ sup
{x̄| |x̄j−xj |≤d/(1−(v−1)t)

(j 6=i), xi=x̄i=1}

Mi(x̄).

We now invoke the first statement of the lemma for the case of x̄, x satisfying
|x̄j − xj | ≤ d/(1− (v−1)t) (j 6= i), xi = x̄i = 1. The last condition implies that the
term involving (δi,j + t) does not contribute, and we thus have |Mi(x̄)−Mi(x)| ≤
(v − 1)t · d/(1− (v − 1)t), and altogether

ri(y) ≤ yi + d+
d · (v − 1)t
1− (v − 1)t

= yi + d · 1

1− (v − 1)t .
We observe that the second term in the last expression is independent of i. Hence
we have shown that the “band” around

S
x∈BM(x) generated by the addition of

I never extends more than d/(1− (v − 1)t) in any direction.
To complete the proof, we observe that because of the bound s on S, the box

(1− s)[−1, 1]v lies entirely in the range ofM. Thus multiplying the mapM with
any factor q > 1 entails that the edges of the box (1− s)[−1, 1]v move out by the
amount (1− s)(q− 1) in all directions. Since the box is entirely inside the range of
M, this also means that the border of the range of M moves out by at least the
same amount in any direction i. Thus choosing q as

q = 1 + d · 1

(1− (v − 1)t) · (1− s)

assures that [
x∈B

(qM) ⊃ R

as advertised. ¤
Remark 2. (Shrink Wrapping and Complex Arithmetic)
Taylor models have also been successfully used to perform operations in the

complex plane. To this end, one merely identifies complex functions as functions
from R2 into R2 and observes that analyticity entails infinite partial differentiability
of the resulting function; thus complex functions are described as pairs of Taylor
models in two variables. Apparently the geometric properties of the resulting ranges
of the Taylor models are analogous to the situation of the flows above; and in a
similar way it is thus possible to absorb the remainder term into the polynomial
part of the Taylor model.


