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Abstract

The aim of this paper is to provide an alternative to classical linearization techniques,
commonly used for describing the qualitative behaviour of trajectories of ordinary differen-
tial equations near fixed points. From a quantitative point of view, the classical methods are
extremely unstable, and thus lack applicability in real-world situations. The new approach
we propose in this paper successfully overcomes the inherent obstructions in the classical
methods, and provides a framework which is robust enough to be implemented in computer
applications.

1 Introduction

Consider a system of n ordinary differential equations:

.’i)l = fl(:vl, PN ,.’L‘n)
(1)
.’i}n = fn(.’L‘l, P ,.’L‘n),
where the components of the vector field f; (i = 1,...,n) are analytic in z1,...,z,. Using

vector notation, we express (1) as & = f(x).
The particular situation we will be considering is the behaviour of trajectories passing
near a saddle fixed point of (1). A fized point of & = f(z) is simply a point z* such that

*2000 Mathematics Subject Classification: Primary 34C20; Secondary 37M99, 65G30.
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f(z*) = 0. If we linearize (1) at z*, we get

. df1 * * Of1 * *
Yy = a—ml(ml,...,{lﬁn)yl + - amn(mla---axn)yn

1 (2)
Yn = a.’L‘l (mla"wmn)yl + + a.’L‘n

or y = Df(z*)y for short. Here we have translated the fixed point to the origin via
y = x —x*, so we are considering small y only. The point is that D f(z*) is a constant n x n
matrix whose eigenvalues provide us with information regarding the stability of the fixed
point. If the matrix D f(z*) has purely real eigenvalues, not all of the same sign, and all
of them non-vanishing, then we say that the fixed point z* is a saddle. If this is the case,
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Figure 1: (a) A non-linear planar saddle;  (b) its linearization.

elementary linear algebra tells us that there exists a linear change of coordinates z = Ay
which brings the system (2) into diagonal form:

2',’1 = )\121
(3)
Zn = AnZns
which can be trivially solved. Thus the following two questions can easily be answered for
the linear system (3) (and of course (2)):

Q1: How long time does it take a trajectory entering a small neighbourhood of the saddle
point to leave the same neighbourhood?

Q2: How much are two nearby trajectories separated when passing through a neighbour-
hood of the saddle point?

In the limit, question 2 asks for the expansion/contraction rates of a tangent vector passing
near the saddle point. For the original (non-linear) system (1), where a linearizing change
of coordinates may not exist, the posed questions are not easily answered. This is the topic
of the present paper.

2



© 2002 Warwick Tucker — December 25, 2002 3

2 Linearization procedures

Without any loss of generality, we may assume that the saddle point is located at the origin.
This means that the original system (1) can be expressed as

$.1 = )\1$1 +F1($1,... ,xn)

(4)

Tn = AnZn + Fp(x1, ... 20),

where the functions F; (i = 1,...,n) contain no linear or constant terms, and are assumed
to be analytic in a neighbourhood of the origin. In vector notation, we write & = Az + F(x),
with F(z) = O(|z|?), and where A is the diagonal n x n-matrix defined by

_ >‘1 : Z:ja
Am_{ 0 : i#j.

Starting from the system (4), we will try to answer the questions posed earlier. Of course,
the main difficulty is that we cannot explicitly find a solution to the system. Therefore,
the best we can hope for is to obtain bounds on the sought quantities. Nevertheless, we
are encouraged by the fact that near a saddle point, the trajectories of (4) should behave
roughly like those of its linear counterpart (3). This is motivated by the Hartman-Grobman
theorem (see [Ha64)):

Theorem 2.1 (Hartman-Grobman) Let f be of class C", with r > 1. If z* is a hyper-
bolic fixed point of the system & = f(x), then there is a homeomorphism h, defined on some
neighbourhood of ©*, that takes trajectories of © = f(x) to those of the linearized system
y = Df(x*)y, whilst preserving their orientation w.r.t. time.

We remind the reader that a fixed point z* of & = f(z) is called hyperbolic if D f(z*) has no
purely imaginary eigenvalues. All saddle points are clearly hyperbolic. A homeomorphism
is a continuous, invertible map with continuous inverse.

As it stands, the theorem is rather weak. A merely continuous map is not likely to pre-
serve much of the structure of the original trajectories, so it is not clear that, from our point
of view, the linearized system will accurately describe the non-linear one. Furthermore, the
theorem does not easily provide any information regarding the size of the neighbourhood
on which h is defined. Remarkably, in dimensions greater than two', even if the vector field
is assumed to be real analytic, the theorem is false if we require h to be of class C'.

Adding some restraints on the eigenvalues, however, will allow us to give the linearizing
change of variables h more regularity.

Definition 2.2 We say that the eigenvalues A = (A\1,...,\,) are resonant if there exist
natural numbers my, ..., my, with |m|=>"m; > 2 such that

m)\—Ai:kaAk—AiZO
k=1

for some i =1,...,n. The number |m| is called the order of the resonance.

!In the planar case, Hartman showed that if f is of class C2, then the conjugating function h (and its inverse)
can be made to be of class C!, see [Ha60].
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A special case of Sternberg’s linearization theorem (see [St57, St58]) tells us that if there
are no resonances among the eigenvalues, then the system can be linearized.

Theorem 2.3 (Sternberg) Let f be of class C*. If * is a hyperbolic fized point of the
system & = f(x), and if the eigenvalues of D f(x*) are not resonant, then there is a C*°-
diffeomorphism h, defined on some neighbourhood of x*, that takes trajectories of © = f(x)
to those of the linearized system y = D f(x*)y, whilst preserving their orientation w.r.t.
time.

Here, a C"-diffeomorphism is a C" invertible map with C" inverse. For other variants of
this theorem, see e.g. [Ne64], [Be78], and [Se85].

Although this result is somewhat better suited for our needs, we must first be able to
verify that no resonances occur in our given system. Also, there is still no mention of the
size of the neighbourhood on which A is defined. The proof of the above-mentioned theorem
is based on the implicit function theorem, which requires a Kantorovich type theorem for
explicit bounds on the size of the neighbourhood.

Sternberg’s theorem guarantees the existence of a formal power series representation for
h. The convergence of this series, however, requires further restraints on the eigenvalues
and the vector field.

Definition 2.4 We say that the eigenvalues X\ = (\1,...,\,) satisfy a Diophantine
condition of type (k,T) if there exists positive k and T such that for i = 1,...,n we have
|mA — Xi| > k|lm|™7 for all m € N* with |m| > 2.

The following theorem (see [Si52]) gives sufficient conditions for the convergence of the
formal series corresponding to the change of variables :

Theorem 2.5 (Siegel) Let f be analytic in a neighbourhood of the origin. If ©* = 0 is
a hyperbolic fized point of the system & = f(x), and if the eigenvalues of D f(z*) satisfy a
Diophantine condition, then there is an analytic change of coordinates h, defined on some
neighbourhood of x*, that takes trajectories of & = f(x) to those of the linearized system

y=Df(z")y.

Note that, although the set of eigenvalues satisfying a Diophantine condition with 7 > 1
has full Lebesgue measure, the set of resonant eigenvalues is everywhere dense in the set
of eigenvalues corresponding to a saddle. This means that not even the ezistence of a
formal linearizing change of coordinates is guaranteed if we allow for small perturbations
of the eigenvalues of D f(z*). Of course, the Diophantine condition used in Theorem 2.5 is
even more fragile. For practical purposes, we wish to allow for small uncertainties in the
eigenvalues of D f(z*). This clearly calls for robust methods that are valid for open sets of
eigenvalues.

3 Numerics near fixed points

It may seem strange that one should worry so much about the exact behaviour of trajectories
passing near hyperbolic fixed points. After all, as we have just seen, the theory appears
to predict that, in most cases, the behaviour is well approximated by the corresponding
linear system, restricted to a sufficiently small neighbourhood of the fixed point. As already
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pointed out, any such linear system can trivially be solved yielding explicit formulas for the
solutions. Thus, from a mathematical point of view, the situation is fully understood when
the theorems apply.

What could possibly go wrong when numerically exploring abovementioned trajectories?
First of all, the small neighbourhood on which the linearization holds may very well be much
too small with regards to the available machine accuracy. In practice, this would mean that
the region where we have a mathematical description of the solutions is too small for the
computer to detect. But then, one may ask, is it not irrelevant what actually takes place
within this minuscule region? Surely the behaviour in such a small portion of the solution
space cannot have any noticeable effect on the larger scales?

Unfortunately, nothing could be further from the truth: it is exzactly what takes place
within these regions that determines the long-time behaviour of the solutions.

:
-

Figure 2: (a) A non-linear diagonal saddle;  (b) its linearization.

D\

To illustrate these ideas, consider Figure 2b. It is clear that any trajectory within the
1th quadrant, passing near the yo-axis, will exit the figure along the y;-axis whilst remaining
in the same quadrant. In the nonlinear case (Figure 2a), however, this no longer holds true.
The stable and unstable manifolds act as separatrices, and it is the trajectory’s relative
position to these manifolds that determines its path near the saddle. In the linear case,
the invariant manifolds coincide with the coordinate axes, and thus split the (y1, y2)-plane
into the standard quadrants. In the non-linear case, we do not know the exact locations
of the stable and unstable manifolds, and can therefore not even determine whether the
trajectory will exit to the left or to the right. Of course, one can obtain estimates on the
positions of the invariant manifolds, but this requires some effort.

A somewhat separate concern is that of flow-times. A trajectory passing near a fixed
point spends a large amount of time in doing so. This is because the vector field is very small
near a fixed point, and a trajectory travels with a correspondingly small velocity. When
integrating vector fields numerically, it is customary to advance the solutions according
to adaptively computed time-steps At. The most elementary numerical methods usually
take these time-steps to be a pre-defined constant. This is seldom a wise choice, and as
most text books on numerical analysis correctly point out, it is wise to decrease the time-

5
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step whenever the modulus of the vector field itself is large, i.e., the product At|f(z)|"/?
should be kept bounded along numerically computed solutions. Here, p denotes the order
of the numerical method under consideration. Varying the time-steps in this manner keeps
the local discretization errors uniformly bounded, which facilitates estimating the global
error. What is usually not mentioned in the literature is that the time-step should also be
decreased when the vector field is small in modulus. Neglecting to do so is equivalent to
completely disregarding the fact that trajectories are supposed to spend a long time in the
vicinity of a fixed point. If this is not respected, a great deal of information (such as the
flow-time spent near the fixed point or the accumulated expansion of tangent vectors) may
be lost by prematurely forcing the solutions to leave a neighbourhood of the fixed point.

From a purely numerical point of view, there is no satisfactory way to handle this sit-
uation. If the time-steps are decreased as the vector field decreases, the number of steps
required to leave a vicinity of the fixed point shoots up and causes a devastating accumula-
tion of local errors, mostly due to rounding errors. On the other hand, if the time-steps are
kept bounded from below, information is lost as described above. Therefore it is important
to be able to interrupt the numerical integration scheme as soon as a trajectory comes near
a fixed point. Once interrupted, analytic methods are used to follow the trajectory until it
reaches a safe distance away from the fixed point. At this stage, the computation of the
trajectory can once again be accurately handled by the numerics.

4 Normal forms

In what follows, we propose to locally find a close to identity change of coordinates x =
h(y) = y + ¢(y) which does not bring (4) into a completely linear system, but rather into
a system that, in some sense, is close to being linear:

At P 2P oAy G). (5)
We call the resulting system y = Ay + G(y) a normal form. There are of course many
choices regarding the structure of G, and we will make a very careful selection. The first
property we require from the particular normal form we have in mind is that its unstable
and stable manifolds coincide with the appropriate coordinate axes. We then say the the
normal form is rectified.

In what follows, we will label the eigenvalues of A according to

Asg <ooe < Agy SO <Ay <oe < Ay,

In order for the invariant manifolds to coincide with the coordinate axes, it is necessary
that the axes are invariant under the flow. To ensure this, we need a change of variables
which, in a fixed neighbourhood of the origin, transforms the original equations & = Ax +
F(z) into y = Ay + G(y), where G satisfies the following conditions:

Yu =" =Yy, =0 =  Gyuly) =0 (1=1,...,p), (6)
and
yslz---:ysqzo = Gsl(y)zo (’Lzl,,q) (7)

In these new coordinates, the unstable manifold coincides with the (yy, ...%u,)-plane, and
the stable manifold coincides with the (ys, ... ys,)-plane, as desired. This will, however, not

6
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linearize the flow on the invariant manifolds. As an example, at a point y on the unstable
manifold we have ys, = --- =y, = 0, which brings the normal form into

Yu; = Au;Yu; + Guz(y) (Z = 17---7p)
/ysi:o (Z:]-aaq)

which generally is non-linear in the y,,-coordinates. An analogous statement can be made
for points on the stable manifold. In order to guarantee linear behaviour on the invariant
manifolds, we need to impose the additional condition that if a point y is close to the
(Yuy - - - Yu,)-plane (the unstable manifold) or the (ys, ...ys,)-plane (the stable manifold),
then the perturbation G(y) is linearly small, i.e.,

min { max{|ya, [}, max{lys )} = 0) = [Gil)| = Oe)  (i=1,...,n).

Depending on the situation at hand, we may want to flatten the normal form even more.
Flatness of order £ is given by requiring that

min { max{|ys, [}, max{lys |1} = 0(e) = [Gily)| =O()  (i=1,...,m).

In this case, it follows that the components of G can only contain terms of the form y™
Yt ...y where the multi-exponent m € N satisfies both Y ¥, m,, > £and Y7, m,
£. For future reference, we define the sets

P q
W:{mGN":Zmui<£ Y sti<€},
i=1

AV

i=1

P q
w:{mEN":Zmuizé A stizﬁ}.

i=1 i=1

or, equivalently

vy = {m e N min{zp:mui,zq:msi} <£}a
i=1

i=1
» q

Uy = {m e N*: min{Zmui,sti} > E}.
i=1 i=1

In other words, writing G as a formal power series G(y) = >_ gmy™ (using multi-notation
combined with vector notation), we require that

gmn#0 = melj.

In what follows, we will sometimes omit the superscript n in U} and Vj.
It is convenient to introduce the notion of filters for formal vector-valued power series:

given any f(y) = Z|m|>2 amy™, we define

<f(y)>U1 = Z amym§ <f(y)>Vg = Z amym- (8)

meUy mevV,

Note that we always have the decomposition f(y) = (f(y))u, + (f(y))v,, which splits f into
its flat part and its non-flat part. It follows that the non-linear part G of our normal form
has flatness of order £ if (G(y))u, = G(y), or equivalently, (G(y))v, = 0.

7
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We stress the fact that flattening a function to order ¢ requires much more effort than
simply linearizing it to the same order, i.e., removing all terms a,,y™ with |m| < £. As
an example, in the three-dimensional case with e.g. A3 < Ay < 0 < A, the term 33y5%%y3
is linear to order 1000, but only flat to order 3. In general, flattening a function to order
¢ requires the removal of infinitely many terms, as compared to a finite amount when

linearizing to the same order.

5 Main results

Let 8™ denote the space of all real-valued, diagonal n x n-matrices corresponding to the
linearization at a saddle (i.e., strictly indefinite matrices), and let 7} denote the space of
all such matrices whose diagonal elements Ay, ..., A\, have no resonances for m € Vj:

Fp={AeS" " meV;=>mA—X\#0 (i=1,...,n)}.
We will use the following max norms:

lyl = max{lyi[: i = 1,....n}  |[fllr = max{[f(y)]: ly| <7}

Theorem 5.1 Given an integer £ > 2 and a system © = Az + F(z), with A € F}, and
where F(z) = Z|m|>2 amx™ is analytic, there exist positive constants ro,r1, Ko, K1 and an
analytic, close to identity change of variables © =y + ¢(y) with

Igllr < Kor®  (r <o),

such that © = Az + F(x) is transformed into the normal form y = Ay + G(y) satisfying

(G(y))u, = G(y) and
Gl < Kir?t (r < ).

This theorem tells us that the change of coordinates and the resulting normal form exist
(as analytic functions) in a fixed neighbourhood of the origin.

Having established the change of coordinates, what can be said about the flow of the
resulting normal form? In what follows, we will let 8, denote the closed ball (which in our
norm looks like a box) centered at the origin, and having radius r. We will refer to the
face {y € B,: ys, = r} as the lid of the box B, (recall that A, is the weakest contracting
direction of the stable manifold). Within B,, we let 1(y,t) denote the solution to the
normal form ¢ = Ay + G(y).

We begin with the special case where A has only one positive eigenvalue \,. In this case
the saddle point has a unique unstable direction, and thus any trajectory starting from the
lid of ®B, (except points on the stable manifold of the origin) will exit through an unstable
face {y € B, : |yu| = r}. We would like to know how long time a trajectory spends inside
the box, and where it exits.

Theorem 5.2 If A has only one positive eigenvalue A, then under the same conditions as
in Theorem 5.1, and given any positive constant k, there is a positive r sufficiently small
such that for any trajectory starting from the lid of ®B,, we have the following enclosure of
its point of exit:

- ) 525 ) S
I(:/)U(yaTe(y)) = Slgn(yu)r; T(Tu) Au=h S Q)Z)SI (y,Te(y)) S T(Tu) Authk ’

8
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where T.(y) denotes the time spent inside B, :

1 1 r < r(y) < 1 1 r
——log — < 7e(y) < —— log —.
Au+ K |yu| ¢ Ay — K |yu|

If A has several negative eigenvalues As, < --- < Xs; < 0, and if we take £ > (| | +
1)/(|Asy| — K), then we also have the following enclosures:

‘)\si‘ |)‘Sz|
(s, — rir) (Bl 2ot < i (y,7e(y) < (s, + ror) (el T,

where o1 = sign(ys, — xr) and o9 = sign(ys, + Kr).

Remark 1 These additional enclosures can be made somewhat sharper, see Lemma 10.5.

In the most general setting, we allow for A having several positive eigenvalues 0 < \,, <
-++ < Ay,. This situation adds the complication of determining through which unstable face
of 9B, a trajectory will exit. It is therefore more appropriate to provide enclosures of the
trajectories within the box, and an enclosure of the required exit-time 7.(y).

Theorem 5.3 Under the same conditions as in Theorem 5.1, and given any positive con-
stants k and r sufficiently small, then for any trajectory starting from the lid of B,, we
have the following enclosures of the unstable components of its path throughout the box:

u, (4,1) = @i < S(1— e Mt (i=1,..p),
7
for any oy satisfying 0 < Ay, < i < Ay, — U(As, + K).
If we take £ > |As,|/(|Asy| — K), then for any o; satisfying 0 < o < X, — £(Ag; + K), we
also have similar enclosures of the stable components:

RT . i
s (1) = s, < (1 — et (i=1,.0 ),

)

As in Theorem 5.2, there exist explicit bounds on the time spent inside $B,.:

7o (y) < 7e(y) < 7.7 (y),
where Tei(y) 400 as maxi—1,.. pf{|yu,; |} N\ 0.
Remark 2 See Corollary 10.9 for the explicit flow-time bounds 7, (y) and 7.5 (y).

These theorems have several strengths. First, the constants rg, 71, Ko, K1, «, k can be
explicitly found, and are easy to obtain in terms of /, A, and F' (naturally x also depends on
7). Second, the change of variables z = y + ¢(y) is analytic for |y| < rg, which means that
explicit bounds on its inverse and derivatives can be obtained by Cauchy estimates. The
same holds for G when |y| < 7. Furthermore, Theorems 5.2 and 5.3 tell us that solutions
to the normal form act very much like those of the completely linearized system. This is not
true for a system linearized up a certain high, but finite, order. Finally, the set F}', viewed
as a subset of 8", is open and has full Lebesgue measure. We call such a set robust: almost
all members of S™ belong to ', and any sufficiently small perturbation of an element in
F remains in F;'. This allows us to perform the change of coordinates even when we only
know the eigenvalues up to some finite degree of accuracy, see e.g. [Tu02]. In contrast to
this, we point out that the theorems by Sternberg and Siegel fail on an everywhere dense
subset of §”, and can thus not be used in a noisy environment.
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6 The change of variables

Returning to the normal form, we need to know how the vector field £ = Az + F(x) is
affected by the close to identity change of variables x = y 4+ ¢(y). We have the following
identity:

= Ay + o) + Fly+ ¢(y) = Ay + Ap(y) + Fy + 6(y))- (9)

On the other hand, we also have

b= Sy +6() = (1 + Do)y = (1 + Do(y))(Ay + G(»))
= Ay + Do(y)Ay + G(y) + Db(y)G(y)- (10)

Comparing the two right-hand sides of (9) and (10) gives
Dé(y)Ay — Ad(y) = F(y + d(y)) — D(y)G(y) — G(y)- (11)

For shorthand, we will use the following notation

Lag(y) = Dp(y)Ay — Ag(y).

The operator L, is linear, and it acts on the space of formal vector fields. It leaves the
spaces of homogeneous vector-valued polynomials of any degree invariant. Looking at (11)
on component level, we have

3451
8y]

Laidi(y) = Fi(y + ¢(y Z

where

Eatl) = 30 2 = M) (= L)

j=1
Note that

Mp

Lai(aimy™) = (midi + - +mpdy — XNi)@imy,mp Y1 - Yn " = (M = Ni)aimy™.

The crux is now to choose ¢ so that we produce only flat component functions in the
normal form: (G;(y))u, = Gi(y). This means that G;(y) must not contain elements on the
form y™ = y"' ...y where the exponent m belongs to V,. By (12), non-flat elements
can only come from F;(y + ¢(y)), and any such term can be absorbed by an appropriate
choice of ¢; provided that the corresponding divisor mA — A; does not vanish. Thus the
component functions ¢; need only consist of the non-flat terms appearing in the right-hand
side of (12), which implies that we should choose ¢; such that (¢;)y, = ¢;.

By filtering (12), we thus get

Laidi(y) = (Fi(y +(y))y, (=1....n), (13)

L

and
3(751
ay]

Gily) = (Fi(y + ¢(y) Z

10
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We will begin by considering the existence and convergence of ¢. The recursive scheme
(13) can be formally solved by a power series

oo

¢’L(y) = Z ai,mym (IL = ]-a an)a

where the coefficients are determined by inserting this expression into (13). The existence
of a solution ¢ is given by comparing both sides of (13): if a;,,y™ is a term of ¢;(y) with
|m| =mi + - -+ + my, the comparison gives

(mA — Aj)aim =17,

where + is a polynomial in the coefficients of the terms in ¢; (1 = 1,...,n) of degree less than
|m|. Thus the ezistence of ¢ is proved if we show that the divisors mA — \; do not vanish.
As ¢ does not contain constant or linear terms, and since (¢)y, = ¢, the only divisors we
need to consider are on the form mA — X\;, where m € V; and |m| > 2 (see Figure 3b for
a two-dimensional example). In fact, the situation is generally more favourable than this:
given an explicit system © = Az + F(z), we only have to consider elements of V, that
actually occur in the absorption process of the change of variables. These depend on the
exact form of F', and may be very few compared to the total number of elements of V,.

Figure 3: The sets (a) {m € N°: |m| > 2};  (b) {m € V2: |m| > 2}.

7 Small divisors and existence

In what follows, we let [z] denote the ceiling of a real number z, i.e., [z] = min{k € Z: z <
k}. We also introduce the numbers X, A, and A which denote the eigenvalue having the
smallest modulus, the eigenvalue having the opposite sign of A with largest modulus, and
the eigenvalue of the same sign as A with largest modulus, respectively:

X:{Asl C Ay | < Ay X:{A% :A<0 i:{xsq :A<0

Au;, ¢ OW. Asq 0.W. Au, : O.W.

11
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Let us begin by stating a lemma that, together with its corollary, proves the existence
of a formal series for ¢ for virtually every saddle fixed point.

Lemma 7.1 If the eigenvalues A = (A1,...,A\n) are non-resonant for m € V;, then the
divisors mA — X\; are bounded away from zero. Furthermore, for all orders |m| > T'y , =

=14 [(£—=1)|A/N + XX, we have the following sharp lower bound:
ImA =X > |(Im| — (= D)A+(=DA=X  (i=1,...,n).

Proof: Take |m| large. Since we are only considering m € V;, this means that either
>4 mg, or > m,, is large, but not both (since one of them must be less than £).
Although the corresponding eigenvalues have opposite signs, the modulus of the divisor
|mA — A\;| must then also be large. There are two cases to consider:

Case 1: P ;m,, < £. This means that Y7 , ms, is large, i.e., the divisor mA — )
is large and negative. We clearly minimize the modulus of the divisor when m,, = ¢ — 1,
mg, = |m| — (£ —1), and \; = A, which gives

ImA = XN| > [(£ = DAy, + (Im| — (€= 1)) X5, = As,|  (E=1,...,n).

Case 2: Y1, m, < £. This means that Y ©_, m,, is large, i.e., the divisor mA — X;
is large and positive. We clearly minimize the modulus of the divisor when m,, = £ — 1,
My, = |m| — (£ —1), and \; = A, which gives

ImA = XN| > |6 —DAs, + (Im| — (€= 1)) Xuy — A,| (i=1,...,n).
Combining both cases, we see that the lowest bound is given by
ImA =X > |(Im| = (= D)A+(L-=DA=X  (i=1,...,n),

which provides the sharp lower bound.

How large must |m| be for this bound to hold? Clearly, the bound is valid starting from
the last sign change of (|m| — (£ — 1))5\ + (¢ = 1)X — X, which happens near the largest (in
|m|) approximate zero:

(Im] — (£ =1D))A+ (- 1)A =X ~0.
Solving for |m| gives
i ~ %((z- DA — (= DA+ R) = £— 1+ (£— DIA/A| + 3/
Rounding up to the nearest integer produces the desired bound:
Im| = £—1+4[(£—1)|A/A[ + X/A].

Beyond this order, the divisors will increase in modulus with |m|, and have the same sign
as the eigenvalue of smallest modulus A. 0

Remark 3 In the planar case (n =2), we always have A= 5\, which gives the bound
mA = x| > |(jm| = OX+ (€= DA (i=1,2),

which is valid for all |m| > Tap =L+ [(£— 1)|A/N[].

12
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Remark 4 Note that the asymptotic growth of the divisors is given by
[mA — il ~ ml[A].

It might appear that requiring the eigenvalues to be non-resonant in V, is a serious
restriction. The following corollary, however, shows that this is in fact almost a completely
void demand.

Corollary 7.2 For any integer £ > 2, the set of eigenvalues
(Asis o3 Asgs Augy - r Ayy) € RL X R
that are resonant for m € V} form a closed set of n-dimensional Lebesgue measure zero.

The keyword here is closed. This means that the non-resonant eigenvalues form an open set.
Furthermore, this set has full measure. Recalling our wish to be allowed some uncertainty in
the eigenvalues, this situation is ideal for our needs. The special ordering of the eigenvalues
in the statement can be achieved by a simple permutation of the coordinates, and thus
causes no loss of generality.

Proof: By Lemma 7.1, there are only a finite number of orders |m| we need to consider.
Since each order can give rise to at most a finite number of different resonances, it clearly
suffices to show that each such resonance forms a closed set of measure zero in R x RE..
But this is obvious: any resonance mA — \; = 0 corresponds to a codimension-1 plane in
RPT4 passing through the origin (see Figure 4 for the special case n = 2). A finite union of
(n — 1)-dimensional planes certainly forms a closed set of n-dimensional measure zero, as
claimed. 0

Aok Ao

Figure 4: The resonant set in the planar case (n = 2) with Ay < 0 < Ay for (a) £ = 5;

Remark 5 As the order of flatness £ increases, so does the number of resonant planes. In
the limit £ — oo, the resonant set becomes everywhere dense in RL x R‘:’_. This limiting
case corresponds to completely linearizing the system, i.e., choosing G = 0.

13
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8 Majorants and convergence

Assuming, in what follows, that the formal power series for ¢ defined by (13) exists, we
want to show that it also actually converges. To be able to talk about convergence, we need
to specify a norm. It is convenient to work in a complex neighbourhood of the origin, and
we will use the appropriate max norms:

lyl = max{lyi[: i = 1,....n}  |[fllr = max{[f(y)]: ly] <7}

In order to prove convergence, we follow [SM71] and [Hi76], and use the methods of majo-
rants. If

FO) = ampemall™ -G 9(Q) =Y Brnnoma G- G

are two formal power series, g is said to be a majorant of f, which we denote f < g, if

|am1,...,mn | < ﬁml,...,mn

holds for all the coefficients. Note that the coefficients of g must be real and non-negative,
which implies that f must have at least as large radius of convergence as g.

Suppose that we can find a function F: C" — C such that F; < F (i = 1,...,n) and,
together with (13), consider the majorant system

Lrdgi(Q) = (FC+ D))y, (i=1,....n), (15)
where L (¢™) = Q(m)¢™ and Q: N* — R is defined by
Q(m) = min{|mX — \;|: i =1,...,n}.

This can be solved formally by a power series

oo

ﬁgz(g) = Z di,mgm (Z =1,... 7n)7 (16)

Im|=2

and it is follows that qu is a majorant of ¢;. To see this, compare the two functional equations
(13) and (15). In the latter, the divisors appearing on the left-hand side are positive and
smaller than or equal to the modulus of those present in (13). Also, the coefficients of
F', appearing on the right-hand side of (15), are positive and larger than or equal to the
modulus of those of F. This implies that the coefficients satisfy |am, . m,| < Gm,,...m, for
all m, as claimed.

Furthermore, since both L, and the right-hand side of (15) are independent of i, we
have 951 =...= q~5n If we set (; = --- = (,, = 2, and find a new function F': C — C such

that F(z,...,z) < F(z), we may, together with (15), consider the majorant system
Ead(2) = F(= + 3(2)), (17)
where Ly (2¥) = Q(k)z* and Q: N — R is defined by

Q(k) = min{Q(m): Im|=k A meV}.

14
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Again, this can be solved formally by a power series
. o
$(z) =Y arz, (18)
k=2

and, from the same reasoning as above, it is clear that ¢(z,...,z) < ¢(z). Note that
this implies that ||¢||, < ¢(r) in the region of convergence. Thus it suffices to prove the
convergence of ¢. We will now present explicit candidates for the abovementioned majorants
F and F.

Since we are assuming that F' is analytic in a neighbourhood of the origin, we can there
identify it with its power series

Zm‘ZQ Cl,mcm

F(¢) = :
Zm\:Q Cn,mCm
Thus if we set
N o0
F(C) = Z cmG",
Im|=2
where ¢, = max{|¢c;;m|: 4 =1,...,n}, we clearly have F; < F(i=1,...,n), and F has the

same radius of convergence as F. Summing the coeflicients of all terms having the same
degree produces ¢ = Z|m|:k Cm, and if we define

oo
F(z) = Z erz®,
k=2

it follows that F(z,...,z) < F(z). Once again, F is analytic and has the same radius of
convergence as F. Hence, if the solution to (17) converges, then we have ||¢[, < ¢(r) in
the region of convergence.

Now, by Lemma 7.1, there exists a positive constant A (depending only on A and ¢) that
satisfies Ak < Q(k) for all k = 2,3,.... Thus we can replace the operator L (2¥) = Q(k)2*,
by the smaller operator L (zF) = Akz*, which transforms (17) into the following functional
equation: o K K

Lad(z) = F(z + ¢(2)), (19)

where Ly2F = AkzF, and F = F. Substituting F(z) = Y232, é2" and ¢(z) = 200, ax2*
gives the formal relation

> Akigz" = f: & (z + i &kzk> . (20)

k=2 1=2

Note that the left-hand side of (20) is simply Az¢'(z) (still only in a formal sense). Also note
that all appearing coefficients are non-negative due to the majorization process. Therefore

the question regarding the convergence of ¢ is reduced to that of the convergence of solution
to the real ODE

~ ~ ~ ~

¢(z) = (Az) ' F(z + (=),  $(0) =0. (21)

15
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Consider the partial sums ¢q(z) = ZZ:Q apz®. By (21), we have
0 < dyp1(2) < (A2) 'P(2 + da2)) (0 <),
which yields the following estimate
0 < Gag(z) < 2y (2) < A F(z + da(x)), (22)

Since F(m) = ¢é92” + ..., there are positive constants r¢ and By such that 0 < F(x) < Byz?
for all 0 < < 2ry. Also, since ¢q(x) = agx? + --- + a4z, we can choose 7o small enough
to ensure that 0 < ¢4(z) < ro for all 0 < z < rg. These estimates give

0 < das1(z) < A By(ro +10)% = A 1 By(2r0)?, (23)

for all 0 < z < rg. By selecting g < A/(4By), we have shown the induction step q&d(x) <
ro = ¢gi1(x) < g for all 0 < x < ry. It follows that ¢(z) < ro for all 0 < z < rg, which
settles the question of convergence of the change of variables ¢ 4+ ¢(().

9 Convergence of the normal form

All that remains is to prove the convergence of the nonlinear component G of the normal
form. Recall that G is recursively defined by

Gi(0) = (Fi(¢ + (0) zgf; (i=1,...n). (24)

As there are no small divisors to consider, the existence of a formal solution to (24) is
immediate. The question of convergence, however, is complicated by the fact that the
recursive formula is made up of two separate contributing terms. Following the spirit of the
previous section, we will use majorization techniques to establish the convergence of G.

We begin by reducing the dimension of the range of the problem by considering the
majorant system

Gi(¢) =(F(C+ ¢ +ZZ?; (i=1,...,n), (25)

where ¢ solves (15), and F; < F. This can be solved by a formal power series

> GimC™ (26)

|m|=2¢

Note that, by our construction of the normal form, we know that the leading coefficients of
G with |m| < 20 are zero. Furthermore, since ¢ = --- = ¢, the right-hand side of (25) is
independent of i, and we have G| = --- = G,,. Reducmg the dimension of the domain of
the problem is achieved by considering the one-dimensional functional equation

G(2) = F(z + $(2)) +n- § (2)G(2), (27)

16
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where ¢ solves (19). Again, this can be solved by a formal power series
G(z) = ", (28)
k=2¢
where the coefficients gj can be explicitly solved for by rearranging the terms of (27) into
G(z) = (1 =nd(2)) " F(z + §(2)). (29)

This expression is valid provided that 1—nd'(z) is invertible. But, since ¢/(z) = 2a9z+. . .,
we can always arrange this by restricting ourselves to sufficiently small z. In other words,
the radius of convergence of G (z) is at least as large as the smallest radius of convergence
of F(z+ ¢(2)) and (1 — nd’(z)) !, and is thus positive.

10 The solutions of the normal form
In this section, we will begin by proving a result on the structure of G using information
obtained in Section 9. We will use this result to show that the solutions of the normal form

act very much like the solutions to the linearized system.

Proposition 10.1 Under the same conditions as in Theorem 5.1, and given ro < r1, there
exists a positive Ko such that, in the open ball B(0,7r2) = {y: |y| < ra}, we have

|Gi(y)| < Ko max {|yy|} max {lys,|}  (i=1,...,n).
i=1,...,p 1=1,...,q
Proof: Let G;(() = ZmEU[ 9i,mC™, and consider the majorants

GO = gml™  Gm = max {lgim|},

meUy
G(z) =Y o = m
k>20 |m|=k

We clearly have G; < G < G. Let B(¢) = maxj—1 p{|Cy |} maxi—1,_o{|¢s;|}, ou(m) =
dict.p My 0s(m) =32, Mg, and suppose that |(| < ra <ri. Then we have

GO = 3 g™ < 3 NgaamllCa™ o 1ca™ < 37 Galcal™ -Gl ™

meU, meUy meU,
Z?:l My, Zg=1 Mms;
< 3 g (s (1]} (st
i=1,...,.p i=1,...,q
meUy
= max {[Cu,|} max {|¢;,|} D Gm max {|¢y, |7} max {|¢,[7 0
1=1,...,p 1=1,...,q mel, i=1,...,.p 1=1,...,q

< B D Gmlc™ 2 =80 gkl = B¢ arl¢l

mel, k>2¢ k>2¢

17
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Now we will use that fact that G is analytic. Thus the coefficients gy, satisfy g, < DLF for
some positive constants D and L. Continuing the estimates, we have

GO < B> awlel® < O DLk

k>20 k>2¢
Iy, k ¢ o1—a0 1 (LC)*
= BOISI7D D (LICH* = B¢ D=
= 1 - L]
< B0 PE Z Kyp(0) = Ky max {16u ) max {161}
= 1— Lry 2 T oyt T T U T
which completes the proof. O

In what follows, we will let B, denote the closed n-box centered at the origin, and
having radius r. We will refer to the face {(; € B: (s, = r} as the lid of the box B,.
Recall that sq is the index of the negative eigenvalue of the smallest modulus. We will also
introduce the constant x = Kr2~!, which should be thought of as being small compared
to the minimal distance between the eigenvalues: £ < min{||A;| — |Aj]|: ¢ # j}. We also
demand that s be small compared to the minimal distance between the eigenvalues and the
origin: £ < min{|\s, |, |\, |}. This can clearly be arranged by taking r sufficiently small or,
if r < 1, by taking ¢ large. We begin by stating a lemma which establishes an important
dominance property:

Lemma 10.2 For all trajectories 1(C,t) of y = Ay + G(y) starting from the lid of 9B, , we
have

'(/)81(4-775) > |Z/)31(C,t)| (i:2a"-aQ)

throughout the entire box.

Proof: Using Proposition 10.1, the differential equations for 1s,(¢,t) can be enclosed by
the differential inequalities

955 (G, 1) — Asiths, (G, 1)] = |G, (1(C, 1))
<K, gf;fp{lwui(q,tnf}i g;’ayfq{wsi(c,tn‘} (30)

< Kor® ™1 max {|gs,(C )]} = 5 max {[4hs, (¢, D)}
i=1,...,q i=1,...,q

Initially, we have r = 1)5,(¢,0) > |1s,((, 0)|, and by the differential inequalities (30) it follows
that, if ¢, (¢, 0) = |4, (¢, 0)[, then |1)g,| decreases faster than 1,,. Now suppose that after
some positive time ¢*, we have the first occurrence of the situation v, ((,1*) = |vs, ((, t%)]
for some 7 = 2,...,q. Then, from (30), we have

51 (G 1) = Xaythy (G, 1)] < s, (€, 1),
5, (€5 %) = Xy, (G 8] < b, (G, 89)]-

By the same reasoning as above, |1)s,| decreases faster than v, . Hence 15, (¢, t) > |5, (¢, t)]
for all ¢ = 2,...,q throughout the entire box. O

It now follows that the (,,-component of the flow is monotonically decreasing within
B,

18
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Corollary 10.3 For all trajectories ¥ ((,t) of y = Ay + G(y) starting from the lid of B,,
we have

(>‘51 - H)I(/)-Sl (Cat) S ,(j)sl (Cat) S (>‘51 + K)Q[)Sl (Cat)

and
rea = <y (( 1) < relPa TR

throughout the entire box.
Proof: We simply note that max;—1,.._q{|%s,; (, )|} = s, (¢, %) in (30). O

In what follows, we will repeatedly utilize the following lemma, which is easily proved
by e.g. the method of variation of parameters.

Lemma 10.4 The linear ODE % = Az + eett has the following solution:

e)\t _ e,ut

2(t) = z(0)eM + ¢ a
Regarding the remaining stable components of 1((,t), we have the following:

Lemma 10.5 Given £ > |\ |/(|\s;|— k&), there are positive a; such that, for all trajectories
P((,t) of y = Ay + G(y) starting from the lid of B,, we have for all i =2,...,q

KT o
W)si (Cat) - Csie)\sit| < a—(l —e alt)e)‘sit
i

throughout the entire bozx.

Proof: Using Lemma 10.2 and Corollary 10.3 together with (30), we can enclose the
differential equation for 1), by

|5, (Co 1) — Nsitbs, (C,1)] = |Gs; (9(C, 1))
<K, igfﬁp{lwm(C,t)le}igffq{lz/)Si(C,t)le}

< Kor® max ([, (C1)[} < Kor [y, (¢

l
< Kort (re()‘81+“)t) = prefPsi TRt

Using Lemma 10.4, we can explicitly solve for a bound on the perturbation from the linear
flow:
eMsit — olAsy +r)t

>\5i - £(>‘S1 + H)

|I(:/)S,‘ (C?t) - Csie)\siq S KT

By our choice of /, it is clear that there exist positive «; satisfying 0 < a; < Ag, —€(As5, + &)
(1=2,...,q). This implies that
KT

< (1= —a;t )‘Sit
<1 e,

RT
|I(z/)5i(<7 t) — Csie)‘”t| < o etsit — el tr)t
i

which completes the proof. O

Remark 6 Naturally, the lemma is also true for i = 1.
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Remark 7 If we choose £ > (|As,| +1)/(|As;| — k), then we can take oy > 1, which is used
in the estimates of Theorem 5.2.

Turning to the unstable coordinates, the situation is slightly more delicate. As an exam-
ple, it is not true that a trajectory will always exit the box through the face corresponding
to the strongest expanding coordinate (y,. To illustrate this fact, let us consider the com-
pletely linear case C = A( with two unstable directions, {,, and (,,, and assume that a
trajectory enters the lid of the box with

|y | > T( (31)

M)/\ul/ Aug
r

In this situation, even though \,, < A,,, the trajectory will exit through the face {( €

B,: |Cu,| = r}. When both quantities of (31) are equal, the trajectory will exit through

the intersection of both faces, i.e., through an edge of the box.

Returning to the non-linear situation at hand ¢ = A( 4+ G (¢), the dividing lines become
inflated as illustrated in Figure 5. Trajectories starting from these uncertain regions may
exit the box through any one of several faces of ®8,, and with our limited knowledge of G,
it is impossible to tell which. Any trajectory starting outside these regions, however, will
have a well-defined face of exit.

<u2 A

\g\{ce%rrcslzr}

>

G

Figure 5: The uncertain regions of the lid of B, with 0 < A, < A,.

Another complication is that, when |1y, (¢, )] < |4y, (¢, )], we might very well have a
situation where G, is completely dominated by e.g. a term of the form adfj, where i #£ j
and k > £. This means that the following situation could arise:

Z/‘)ui(C,t) = Auﬂ/)ui(gat) + Gui (Z/)(C,t))
~ Augthu; (G 1) + athu, (G 1)F & agp, (G, 8)F = G, (9((, 1)),

which shows that the w;-coordinate of the normal form has no resemblance to its linear
part. This makes a detailed analysis of the corresponding flow somewhat subtle.

20
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A convenient concept in the forthcoming analysis is that of the dominating unstable
component. This is simply the currently largest unstable component, which we label with
the symbol 2:

|thu; (¢, 1) = max{|thy, (¢, 8)|: i =1,...,p}.
Note that the dominating unstable component may change along an orbit flowing through
the box: 7 =i((, 1).
We begin our treatment of the unstable components by noting that the dominating
unstable component acts very much like its linear counterpart.

Lemma 10.6 While 1,,,((,t) € B, is the dominating unstable component of the trajectory
P((,t) of y = Ay + G(y), we have

Az = 0R)Pus (G 1) < 9uy (G 1) < (s + 08 (C, 1)

and
Yuq (G t0) P70 < py (€, 8) < 4y (€, t) e tIE0),
Here 0 = sign(vy, (¢, 1)), and to is the first time 1), becomes dominating.

Proof: Using Proposition 10.1, the differential equation for 4, ({,?) can be enclosed by
the differential inequality

|I(/)uz(<—7t) - Auiwui(<7t)| = |Guz(¢(<7t))|
<K, Z.glla}_}fp{lwul-(é,t)le}Z.gllé?_iq{lzbs,-(é“,t)ll}

< Kor?t! Z.irlthp{IQ/)m(C,t)l} = &lthu, ((, 1),
which translates into

(Aui - O-H)Q[)’ui (Ca t) S I(/)ui (Ca t) S ()‘ui + O-H)Q[)’ui (Ca t)a

where o = sign(y,((,t)). The second statement of the lemma follows by integration. [
By the same reasoning as in the proof of Lemma 10.2, it follows that no weaker unstable
component can ever overtake the dominating component:

i <i(Cto) = |Pui (GO < use) (GO (B0 < ).

Lemma 10.6 immediately gives a crude upper bound on the time required to exit the
box B,.

Corollary 10.7 Leti be the dominating unstable component at time to,i.e., let |1y, (¢, to)| =
max{|y, ((,t0)|: ¢ = 1,...,p}. Then the flow-time required to exit the box B, is bounded
from above by

1
Te§t0+)\ _Klog
Uj

r

This bound is attained exactly when the dominating component remains dominating through-
out the box.

Remark 8 In the case where we have only one unstable direction, the corollary is valid
with tg = 0. Combined with Lemma 10.6, Corollary 10.3, and Lemma 10.5, we then get the
enclosures of Theorem 5.2.
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Returning to the situation where we have several unstable directions, we will make use
of Corollary 10.3, which provided an upper bound on the dominating stable component.

Lemma 10.8 There exist positive «; such that, for all trajectories 1({,t) of y = Ay+ G(y)
starting from the lid of %B,, we have for allv=1,...,p

KT P
|z/)U1,(C’t) - Cuie’\“itl < Oz_(l —e€ C”t)e>‘“z't
i

throughout the entire box.

Proof: Using Proposition 10.1 and Corollary 10.3, we can enclose the differential equation
for 4, by

[thuy (€)= Mshus (G 1) = |G, (9(C, 1))
< Ky max {[ha (¢ 6)|} max {Jobs, (¢, 1))
< Kor® max {]45,,(C1)[} < Kor [y, (G 1)1
< K2,r,2€e€()\sl+n)t < mee(’\ﬂ“)t.

Using Lemma 10.4, we can explicitly solve for a bound on the perturbation from the linear

flow:
eMuit — ol(Asy +h)E

(Ct) = G| <
|"/)uz(<ﬂ ) guze | = AT >\u,— - £(>\s1 + H)

We have already chosen x small enough to guarantee that A;, + x < 0. Therefore, we can
find positive a; such that 0 < A\, < oy < Ay; — (A5, + &) (i =1,...,p). This implies that
KT

< (1 — et etuit
= az )

KT
|z/)’Uz1,(C’t) - Cuie/\"it| < a— eA"it — eé()\sl—l—n)t

)

which completes the proof. O
Using these results, we can enclose the time a trajectory starting from the lid of ‘B,
spends inside the box.

Corollary 10.9 For all trajectories 1¥((,t) of y = Ay + G(y) starting from the lid of B,,
the flow-time required to exit the box B, is enclosed by the following inequalities:

7, (€) < 7e(¢) < 7.7(0)s

where 7,7 (¢) and 7.7 () are defined as follows:
1. Let i =14((,0) (in a tie, take the largest index), and define

+ T
T = lo ;
! (©) Au; T B & |Cu,|
2. For all 1 > 1 compute
1 T 1 T
7 ()= —log————+ and 7.7(()=—1Io
= T = R

Here the constants o,; are defined by ay, = Ay, — (s, + K);

22
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3. Now define 7, (¢) = max{; ((): j > i} and () = min{TjJ“(C): j>i}.

Note that the flow-time 7 is infinite exactly when (y, = --- = (4, = 0, i.e., when we
enter the box along the stable manifold.

It is now straight-forward to obtain bounds on the trajectory when leaving the box
B,. Using Corollary 10.9, we simply substitute the bounds on the exit-time 7.({) into
the enclosure bounds on the components of the flow. For the stable components, we use
Corollary 10.3 and Lemma 10.5. For the unstable components, we use Lemma 10.6 and
Lemma 10.8. This results in an interval enclosure I; for each component, which we can
possibly tighten by forming the intersection with the interval [—r, 7], i.e., ¥;({,7e({)) €

LN[—rrT].
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