1. Linear ODE Example - K.Makino

1.1. Preparation. Remainders:

$$
\begin{aligned}
& \frac{d \vec{z}}{d t}=\vec{f}(\vec{z}, t), \quad \vec{z}(t)=\vec{z}(0)+\int_{0}^{t} \vec{f}\left(\vec{z}, t^{\prime}\right) d t^{\prime} \\
& \partial_{i}^{-1}\left(P_{n}+I^{R}\right)=\int_{0}^{x_{i}} P_{n-1} d x_{i}+\left\{B\left(P_{n}-P_{n-1}\right)+I^{R}\right\} \cdot B\left(x_{i}\right) \\
& \sqrt{3}=1.732050808 \ldots \\
& \pi / 6=0.523598775 \ldots \\
&(\pi / 6)^{5}=0.039354383 \ldots \\
& \frac{1}{5!}(\pi / 6)^{5}=3.279531944 \ldots \times 10^{-4} \\
& \frac{1}{5!}(\pi / 6)^{6}=1.717158911 \ldots \times 10^{-4} \\
& \frac{1}{4!}(\pi / 6)^{4}=3.13172232 \ldots \times 10^{-3} \\
& \frac{1}{4!}(\pi / 6)^{5}=1.639765972 \ldots \times 10^{-3}
\end{aligned}
$$

The ODEs under consideration are

$$
\begin{aligned}
& \frac{d x}{d t}=-y \\
& \frac{d y}{d t}=x
\end{aligned}
$$

Taylor model identities can be expressed as

$$
\begin{array}{ll}
i_{x}=x_{0}+[0,0], & x_{0} \in[-1,1] \\
i_{y}=y_{0}+[0,0], & y_{0} \in[-1,1]
\end{array}
$$

Let us consider the following initial conditions.

$$
\begin{aligned}
& x(t=0)=2+i_{x}=2+x_{0}+[0,0] \\
& y(t=0)=0+i_{y}=y_{0}+[0,0]
\end{aligned}
$$

The following calculation is intended to show the procedures of the algorithms, and the numbers are not necessarily accurate.
1.2. The First Time Step $(t=\pi / 6)$. The fixed point equations are

$$
\begin{aligned}
& x(t)=x(t=0)+\int_{0}^{t}(-y(t)) d t=\mathcal{O}_{x}(\vec{z}(t)) \\
& y(t)=y(t=0)+\int_{0}^{t}(x(t)) d t=\mathcal{O}_{y}(\vec{z}(t))
\end{aligned}
$$

The procedures are

- Work on the polynomial part first.
- Find Taylor models satisfying the inclusion requirement.
- Try [0, 0].
- Inflate by 2. (If necessary, repeat the inflation.)
- Refine Taylor models.

1.2.1. Polynomial Part. Fixed Point Iteration: Step 1

$$
\begin{aligned}
& x(t)=2+x_{0}+\int_{0}^{t}\left[-y_{0}\right] d t=2+x_{0}-y_{0} t \\
& y(t)=y_{0}+\int_{0}^{t}\left[2+x_{0}\right] d t=y_{0}+\left(2+x_{0}\right) t
\end{aligned}
$$

Fixed Point Iteration: Step 2

$$
\begin{aligned}
& x(t)=2+x_{0}+\int_{0}^{t}\left[-y_{0}-\left(2+x_{0}\right) t\right] d t=2+x_{0}-y_{0} t-\left(2+x_{0}\right) \frac{t^{2}}{2} \\
& y(t)=y_{0}+\int_{0}^{t}\left[2+x_{0}-y_{0} t\right] d t=y_{0}+\left(2+x_{0}\right) t-y_{0} \frac{t^{2}}{2}
\end{aligned}
$$

Fixed Point Iteration: Step ...

Fixed Point Iteration: Step 5

$$
\begin{aligned}
& x(t)=2+x_{0}-y_{0} t-\left(2+x_{0}\right) \frac{t^{2}}{2}+y_{0} \frac{t^{3}}{3!}+\left(2+x_{0}\right) \frac{t^{4}}{4!}-y_{0} \frac{t^{5}}{5!} \\
& y(t)=y_{0}+\left(2+x_{0}\right) t-y_{0} \frac{t^{2}}{2}-\left(2+x_{0}\right) \frac{t^{3}}{3!}+y_{0} \frac{t^{4}}{4!}+\left(2+x_{0}\right) \frac{t^{5}}{5!}
\end{aligned}
$$

Remark: $\vec{z}(t)$ of a linear system has the linear dependence on the initial condition $\vec{z}_{0} . \vec{z}(t)$ of a nonlinear system has the nonlinear dependence on \vec{z}_{0}. For example, the Volterra equations, $d x / d t=2 x(1-y), d y / d t=-y(1-x)$, have the nonlinear dependence on x_{0} and y_{0}, which is not just the second order dependence, but the high order dependence.

Thus, for the fifth order computation, we obtain the fifth order polynomial depending on time t and the initial condition \vec{z}_{0} as a result of the fixed point iteration.

$$
\begin{align*}
& P_{x}\left(x_{0}, y_{0}, t\right)=2+x_{0}-y_{0} t-\left(2+x_{0}\right) \frac{t^{2}}{2}+y_{0} \frac{t^{3}}{3!}+\left(2+x_{0}\right) \frac{t^{4}}{4!} \\
& P_{y}\left(x_{0}, y_{0}, t\right)=y_{0}+\left(2+x_{0}\right) t-y_{0} \frac{t^{2}}{2}-\left(2+x_{0}\right) \frac{t^{3}}{3!}+y_{0} \frac{t^{4}}{4!}+2 \frac{t^{5}}{5!} \tag{1.1}
\end{align*}
$$

1.2.2. Self Inclusion Finding Process. We apply the Picard operation to

$$
\begin{aligned}
x(t) & =P_{x}\left(x_{0}, y_{0}, t\right)+[0,0] \\
y(t) & =P_{y}\left(x_{0}, y_{0}, t\right)+[0,0]
\end{aligned}
$$

using the polynomial solution part (1.1).

$$
\begin{aligned}
x(t) & =2+x_{0}+\int_{0}^{t}[-y(t)] d t \\
& =P_{x}\left(x_{0}, y_{0}, t\right)+\left\{B\left(-y_{0} \frac{t^{4}}{4!}+2 \frac{t^{5}}{5!}\right)+[0,0]\right\} \cdot B(t) \\
& =P_{x}\left(x_{0}, y_{0}, t\right)+I_{x}^{(0)} \\
y(t) & =P_{y}\left(x_{0}, y_{0}, t\right)+\left\{B\left(x_{0} \frac{t^{4}}{4!}\right)+[0,0]\right\} \cdot B(t) \\
& =P_{y}\left(x_{0}, y_{0}, t\right)+I_{y}^{(0)}
\end{aligned}
$$

and we have

$$
\begin{aligned}
I_{x}^{(0)} & =\left[-1.99 \times 10^{-3}, 1.64 \times 10^{-3}\right] \\
I_{y}^{(0)} & =\left[-1.64 \times 10^{-3}, 1.64 \times 10^{-3}\right]
\end{aligned}
$$

This provides the guideline to find a self including solution. We inflate it by 2 repeatedly until it satisfies the self inclusion condition.

$$
\begin{aligned}
I_{x}^{(1)} & =2 \cdot I_{x}^{(0)}=\left[-3.97 \times 10^{-3}, 3.28 \times 10^{-3}\right] \\
I_{y}^{(1)} & =2 \cdot I_{y}^{(0)}=\left[-3.28 \times 10^{-3}, 3.28 \times 10^{-3}\right]
\end{aligned}
$$

Applying the Picard operation, we obtain

$$
\begin{aligned}
I_{x}^{(1) *}=\left[-3.71 \times 10^{-3}, 3.36 \times 10^{-3}\right] \\
I_{y}^{(1) *}=\left[-3.72 \times 10^{-3}, 3.36 \times 10^{-3}\right] . \\
I_{x}^{(2)}=2^{2} \cdot I_{x}^{(0)}=\left[-7.94 \times 10^{-3}, 6.56 \times 10^{-3}\right] \\
I_{y}^{(2)}=2^{2} \cdot I_{y}^{(0)}=\left[-6.56 \times 10^{-3}, 6.56 \times 10^{-3}\right] . \\
I_{x}^{(2) *}=\left[-5.42 \times 10^{-3}, 5.08 \times 10^{-3}\right] \\
I_{y}^{(2) *}=\left[-5.80 \times 10^{-3}, 5.08 \times 10^{-3}\right] .
\end{aligned}
$$

Thus, we found a self including solution $\vec{P}+\vec{I}^{(2) *}$.

1.2.3. Refinement Process. Now, we apply the Picard operation repeatedly until the desired sharpness of enclosure is achieved.

$$
\begin{gathered}
\vec{P}+\vec{I}_{1}=\mathcal{O}\left(\vec{P}+\vec{I}^{(2) *}\right)=\binom{\left[-4.64 \times 10^{-3}, 4.68 \times 10^{-3}\right]}{\left[-4.48 \times 10^{-3}, 4.30 \times 10^{-3}\right]} \\
\vec{P}+\vec{I}_{2}=\mathcal{O}\left(\vec{P}+\vec{I}_{1}\right)=\binom{\left[-4.24 \times 10^{-3}, 3.99 \times 10^{-3}\right]}{\left[-4.07 \times 10^{-3}, 4.09 \times 10^{-3}\right]}
\end{gathered}
$$

Continuing until the relative tolerance of 1% is met,

$$
\vec{P}+\vec{I}_{7}=\mathcal{O}\left(\vec{P}+\vec{I}_{6}\right)=\binom{\left[-3.84 \times 10^{-3}, 3.57 \times 10^{-3}\right]}{\left[-3.66 \times 10^{-3}, 3.52 \times 10^{-3}\right]}
$$

1.2.4. Taylor Model Solution at $t=\pi / 6$.

$$
\begin{align*}
x(t & =\pi / 6)=P_{x}\left(x_{0}, y_{0}, t=\pi / 6\right)+\left[-3.84 \times 10^{-3}, 3.57 \times 10^{-3}\right] \\
& =1.732+0.866 x_{0}-0.500 y_{0}+\left[-3.84 \times 10^{-3}, 3.57 \times 10^{-3}\right] \\
y(t & =\pi / 6)=P_{y}\left(x_{0}, y_{0}, t=\pi / 6\right)+\left[-3.66 \times 10^{-3}, 3.52 \times 10^{-3}\right] \\
& =1.000+0.500 x_{0}+0.866 y_{0}+\left[-3.66 \times 10^{-3}, 3.52 \times 10^{-3}\right] \tag{1.2}
\end{align*}
$$

Initial position $\left(x_{0}, y_{0}\right)$ at $t=0$	Mapped position $\left(P_{x}, P_{y}\right)$ at $t=\pi / 6$
$(0,0)$	$(1.732,1.000)$
$(1,1)$	$(2.098,2.366)$
$(-1,1)$	$(0.366,1.366)$
$(-1,-1)$	$(1.366,-0.366)$
$(1,-1)$	$(3.098,0.634)$

1.3. Taylor Model Solution at the Second Time Step ($t=2 \times \pi / 6$).

$$
\begin{aligned}
& x(t=\pi / 3)=1.000+0.500 x_{0}-0.866 y_{0}+\left[-1.29 \times 10^{-2}, 1.26 \times 10^{-2}\right] \\
& y(t=\pi / 3)=1.732+0.866 x_{0}+0.500 y_{0}+\left[-1.28 \times 10^{-2}, 1.24 \times 10^{-2}\right]
\end{aligned}
$$

1.4. Taylor Model Solution at the Third Time Step $(t=3 \times \pi / 6)$.

$$
\begin{aligned}
& x(t=\pi / 2)=-1.000 y_{0}+\left[-3.17 \times 10^{-2}, 3.16 \times 10^{-2}\right] \\
& y(t=\pi / 2)=2.000+1.000 x_{0}+\left[-3.20 \times 10^{-2}, 3.12 \times 10^{-2}\right]
\end{aligned}
$$

1.5. Shrink Wrapping. This is to illustrate the method of shrink wrapping, and we use the solution Taylor models at the first time step $t=\pi / 6$. For the simplicity of the argument, we will use sin, cos and so on. From eq. (1.2),

$$
\begin{gathered}
x(t=\pi / 6)=\sqrt{3}+\cos \pi / 6 \cdot x_{0}-\sin \pi / 6 \cdot y_{0}+I_{x}^{R} \\
y(t=\pi / 6)=1+\sin \pi / 6 \cdot x_{0}+\cos \pi / 6 \cdot y_{0}+I_{y}^{R} \\
\\
\mathcal{M}(\vec{z})=M(\vec{z})=\widehat{A} \cdot \vec{z}+\vec{a}
\end{gathered}
$$

where

$$
\widehat{A}=\left(\begin{array}{cc}
\cos \pi / 6 & -\sin \pi / 6 \\
\sin \pi / 6 & \cos \pi / 6
\end{array}\right), \quad \vec{a}=\binom{\sqrt{3}}{1}, \quad \widehat{A}^{-1}=\left(\begin{array}{cc}
\cos \pi / 6 & \sin \pi / 6 \\
-\sin \pi / 6 & \cos \pi / 6
\end{array}\right)
$$

so

$$
M^{-1}(\vec{z})=\widehat{A}^{-1} \cdot(\vec{z}-\vec{a})
$$

Thus

$$
\begin{aligned}
& M^{-1} \circ\left(\mathcal{M}\left(\vec{z}_{0}\right)+\vec{I}^{R}\right)=M^{-1} \circ\left(M\left(\vec{z}_{0}\right)+\vec{I}^{R}\right)=\widehat{A}^{-1} \cdot\left(\widehat{A} \cdot \vec{z}_{0}+\vec{a}+\vec{I}^{R}-\vec{a}\right) \\
&=\vec{z}_{0}+\widehat{A}^{-1} \cdot \vec{I}^{R}=\vec{z}_{0}+\left(\begin{array}{cc}
\cos \pi / 6 & \sin \pi / 6 \\
-\sin \pi / 6 & \cos \pi / 6
\end{array}\right)\binom{I_{x}^{R}}{I_{y}^{R}} \\
&=\vec{z}_{0}+\left(\begin{array}{cc}
0.866 & 0.500 \\
-0.500 & 0.866
\end{array}\right)\binom{\left[-3.84 \times 10^{-3}, 3.57 \times 10^{-3}\right]}{\left[-3.66 \times 10^{-3}, 3.52 \times 10^{-3}\right]} \\
&=\vec{z}_{0}+\binom{\left[-5.16 \times 10^{-3}, 4.86 \times 10^{-3}\right]}{\left[-4.96 \times 10^{-3}, 4.97 \times 10^{-3}\right]} \\
&\binom{\left[-5.16 \times 10^{-3}, 4.86 \times 10^{-3}\right]}{\left[-4.96 \times 10^{-3}, 4.97 \times 10^{-3}\right]} \subseteq 5.16 \times 10^{-3} \cdot\binom{[-1,1]}{[-1,1]} \equiv d\binom{[-1,1]}{[-1,1]} .
\end{aligned}
$$

So, $d=5.16 \times 10^{-3}$. The map with shrink wrapping is

$$
\begin{aligned}
\mathcal{M}^{\mathrm{SW}}\left(\vec{z}_{0}\right) & =\widehat{A}(1+d) \vec{z}_{0}+\vec{a} \\
& =\left(1+5.16 \times 10^{-3}\right)\left(\begin{array}{cc}
0.866 & -0.500 \\
0.500 & 0.866
\end{array}\right)\binom{x_{0}}{y_{0}}+\binom{1.732}{1.000} .
\end{aligned}
$$

