
Testing COSY’s Interval Arithmetic
Jun Yu and George Corliss

Marquette University, Milwaukee
(Martin Berz and Kyoko Makino)

Outline:
Testing strategy
Run the tests with the old COSY
Show how Maple catches the containment failure
Rerun the tests with the new COSY
How Sun faired
Opportunities for improvement
COSY responses

Not many (3) errors in COSY’s interval arithmetic

We welcome suggestions for improving our tests

Funded in part by a subcontract from Michigan State University

Presented at Miami Beach Workshop on Taylor Models, December 16, 2002



Why Test COSY?

Spring 2002, reliable computing list serve
reliable_computing@interval.louisiana.edu had active discussion of
COSY Infinity

Raised concerns about the reliability of interval and Taylor model arithmetics

COSY Infinity [1], by Berz et al. available from http://cosy.pa.msu.edu [2]

Arbitrary order beam dynamics simulation and analysis code using interval
arithmetic and Taylor models for the validated solution of systems of ordinary
differential equations

Berz commissioned execution-based testing of COSY interval arithmetic



What Is Testing?

“The purpose of testing is to find errors” - Myers [8].

Execution based testing cannot show the absence of errors, but can only
demonstrate their presence

Kit [7] or Kaner et al. [5] offer best practice in industrial software quality
assurance

Error if a program fails to do what it is supposed to do - Myers

Error if a program does what it should not do - Myers



What Is “Correct?”

Fundamental tenet: Thou shalt not lie!

It is an error to

• violate containment

• assert a mathematical falsehood

Two violations of containment in COSY’s interval arithmetic:

1. power when the exponent is not an integer, but very close to it

2. (with warning) tan when the interval argument crosses discontinuity



What Is “Correct?”

Assertions of a mathematical falsehood for

1. asin and acos on intervals containing ±1

Questions of
Domains for interval operations
Tightness
Speed
Ease of use
etc.

Not errors. Opportunities for improved performance



Test Strategy: Goal

Goal is limited: Identify violations of containment or assertions of mathematical
falsehood.

Developed a set of test cases consisting of

1. an interval vector [x]

2. an expression f(x)

Expected results are computed a posteriori in Maple

̂[f([x])] is the result of challenging the COSY interval arithmetic to evaluate f
on the interval [x]

Seek examples x ∈ [x] for which f(x) is not in ̂[f([x])]

Do not need to know the true containment set of f([x])



Test Strategy: Maple as “Referee”

Use Maple as the “referee” of containment

1. Read each test case into a COSY driver

2. Construct COSY intervals for the arguments

3. Evaluate the expression using COSY interval arithmetic

4. Write binary values of the arguments and the COSY result

5. Read the binary arguments and COSY results into Maple

6. Perform many point evaluations f(x) for x ∈ [x]

7. Compare Maple’s f(x) with COSY enclosure

for (i = 0; i <= 10; i++) {

y = INF(X) + (SUP(X) - INF(X)) * i/10.0

fx = f(y)

ERROR if fx is outside COSY result

}



Test Strategy: Roundoff?

Most challenging aspect: Prevent inevitable roundoff errors from contaminating
our results

Consider an example: Test COSY’s sin on [0.1, 0.6]
Impossible to test that, since 0.1 and 0.6 are not exactly representable
Cannot express the question, “What is sin [0.1, 0.6]?” to COSY’s sin

Roundoff errors may be introduced

1. Read test cases into COSY driver

2. Construct COSY interval

3. Extract COSY interval bounds

4. Write arguments and COSY results to a file

5. Read arguments and COSY results into Maple

6. Construct Maple variable precision representations

7. Perform Maple operations

8. Report from Maple



Test Strategy: Test Cases

If an interval arithmetic package gets individual operations and intrinsic
functions right, it will get complicated expressions right, too

Tested primarily expressions composed of a single operation or intrinsic function

For elementary operations, not matter how wide the arguments, extrema are
always at endpoints, except for division by zero

For elementary functions, extrema are always at endpoints, except for a modest
set of exceptions (e.g., sin and cos on arguments that span π or π/2), which
we can enumerate and test

Most likely to find violations of containment at endpoints of an argument
intervals

Conjecture: For any rational function, if we get no violation of containment for
all possible combinations of argument endpoints (and do not divide by zero),
we can get no violation of containment from interior points

Probably straightforward application of the Maximum Principle from complex
variable theory



Test Strategy: 2200+ Test Cases

Most came from TOMS 737 [6]. Kearfott et al. tested their Fortran 77 INTLIB
interval arithmetic operations with a combination of specially constructed and
randomly generated arguments

Also used 30 multi-operation expressions taken from tests of a validated
quadrature package by Corliss and Rall [3]

To increase the coverage of our tests of binary operations, each pair of
arguments was used in several combinations. For example for addition and
subtraction, argument intervals [a] and [b] give test cases

• [a] + [b], [a] − [b], [−a] + [b], [−a] − [b]

• [−a] + [−b], [−a] − [−b], [a] + [−b], [a] − [−b]

• [b] + [a], [b] − [a], [−b] + [a], [−b] − [a]

• [−b] + [−a], [−b] − [−a], [b] + [−a], [b] − [−a]



Test Strategy: 2200+ Test Cases

For multiplication, with 0 ≤ [a, a] and 0 ≤
[
b, b

]
, we test 16 combinations:

• [a, a] ×
[
b, b

]
, [−a, a] ×

[
b, b

]
, [−a,−a] ×

[
b, b

]
, [−a, a] ×

[
b, b

]

• [a, a] ×
[
−b, b

]
, [−a, a] ×

[
−b, b

]
, [−a,−a] ×

[
−b, b

]
, [−a, a] ×

[
−b, b

]

• [a, a] ×
[
−b,−b

]
, [−a, a] ×

[
−b,−b

]
, [−a,−a] ×

[
−b,−b

]
,

[−a, a] ×
[
−b,−b

]

• [a, a] ×
[
−b, b

]
, [−a, a] ×

[
−b, b

]
, [−a,−a] ×

[
−b, b

]
, [−a, a] ×

[
−b, b

]



Run Tests on June 8 COSY

POWER near an integer
See 2arith inpPOW.txt
runtest POW
See 2arith resPOW.txt
Maple 2arith binPOW.txt

TAN crossing discontinuity
See 2arith inpTAN.txt
runtest TAN
See 2arith resTAN.txt

ASIN or ACOS at ±1
See 2arith inpASIN1.txt
runtest ASIN1
similarly for [-1, 1] and ACOS

Noteworthy: List is short and fixable



How Did Sun’s F95 Compiler Do?

Same tests ported to Sun’s F95 compiler

Error: tanh (negative), e.g., tanh ([-4.879, -4.267])
Fails by 1-2 UPL’s

See 1sun.f95, Maple/test fort.mws

Sun fixed within a week

Discrepancy between production and development



POWER: COSY Response

Martin Berz:

Observation: When the power operation is called with an interval I and a
floating point exponent p very close to an integer value, the code executes, but
gives a result different from Ip.

This is due to the fact that the COSY intrinsic operation “̂ ” raises the
incoming interval I to the power nint(2*p)/2, and thus agrees with the
commonly known power operation only for full and half integer exponents.

The operation warns the user about this difference to the conventional power
operation for exponents p sufficiently far from integer or half integer, but
because of the possibility for numerical inaccuracies in the floating point value
of p, can not do this for exponents very close to the allowed values.

The details of the definition of “̂ ” in COSY were not provided due to a
documentation error in the manual, which is automatically generated from the
COSY language independent architecture code management system.

POWER removed from the list of user callable binary operations

Re-run test? No



TAN: COSY Response

Martin Berz:

Observation: When tan and related tools are called with an interval containing
a pole of the function, the code diagnoses this situation properly, issues an error
message, and warns that subsequent calculations will not be validated.

However, execution continues with a resulting interval boundary that is large,
but not infinity. This is connected to the fact that the size of the largest
representable number is machine dependent, and there is no machine
independent treatment of ”infinity” in COSY. While not leading to containment
violation in the absence of a diagnostic, this is inelegant and possibly confusing.

Problem is remedied by terminating execution in such cases instead of

continuing after the diagnostic message, and consistently disallowing

intervals with infinite bounds.

Re-run test with October COSY



ASIN/ACOS: COSY Response

Martin Berz:

Observation: when acos and asin are called with intervals just barely exceeding
one, the intrinsic properly diagnoses a domain violation and terminates
execution.

However, the error message reads something like “error, acos does not exist for
interval [1,1],” while the function acos is of course defined for [1,1]. This
situation is due to a limitation of digits in the result of the PRINT command,
which was assumed by us to be standardized to output all digits available.
Since the routine for the FORTRAN system at hand (and possibly others)
apparently does not show all digits, we have modified the output to a proper
system independent interval output that is rounded out according to the
number of digits actually shown.

Interval output as part of the diagnostic is now consistent

with the properly recognized reason for termination of execution

Re-run test with October COSY



Domains: Opportunity for Improvement?

COSY considers it a fatal error to evaluate outside the domain of an expression,
e.g., asin(1) or sqrt(0) (outside the domain because COSY enlarges the
intervals)

Error if a program fails to do what it is supposed to do - Myers
Error if a program does what it should not do - Myers

Corliss opinion, not shared by Berz:
• asin(1) or sqrt(0) make good mathematical sense. Interval arithmetic should
evaluate them
• A program should not experience “unexpected termination of execution
because of a diagnostic,” especially on anticipated input

Sun’s F95 handled many cases COSY did not
Sun considers sqrt ([-1, 1]) to be [0, 1]

Berz opinion: If we can’t evaluate sqrt (0.1 - 0.1), why bother about sqrt(0)



Tightness: Opportunity for Improvement?

Estimated ULP’s:

See Maple code for detailed definition

rewU := COSYres[sup] - maxres;

if ((whichexpression = 1060) and (COSYres[sup] >= 1) ) then

rewULPU := 0; # Maple did not hit sin() = 1

elif ((whichexpression = 1070) and (COSYres[sup] >= 1) ) then

rewULPU := 0; # Maple did not hit cos() = 1

elif (rewU < 0) or (whichexpression >= 2000) then

rewULPU := -10^10; # Do not count

elif (maxres = 0) then

rewULPU := round (rewU * 2^1022);

else

rewULPU := round ((rewU / abs(maxres)) * 2^52);

end if;



Tightness: Opportunity for Improvement?

rewL := minres - COSYres[inf];

if ((whichexpression = 1060) and (COSYres[inf] <= -1) ) then

rewULPL := 0;

elif ((whichexpression = 1070) and (COSYres[inf] <= -1) ) then

rewULPL := 0;

elif (rewL < 0) or (whichexpression >= 2000) then

rewULPL := -10^10; # Do not count

elif (minres = 0) then

rewULPL := round (rewL * 2^1022);

else

rewULPL := round ((rewL / abs(minres)) * 2^52);

end if;

relexcesswid := rewULPL + rewULPU;

Show Maple code for relative ULP’s



Tightness: Opportunity for Improvement?

Estimated ULP’s Estimated Relative ULP’s

COSY-Jun COSY-Oct Sun F95 COSY-Jun COSY-Oct Sun F95
0 33 33 1277 50 50 1304
1 1 1 697 47 46 294
2 81 79 251 148 145 73
4 746 746 26 384 383 20
8 906 906 1 265 265 19

16 194 190 0 136 113 7
32 151 129 0 113 107 5
64 17 15 0 34 33 11

128 6 6 0 15 15 10
256 14 14 0 26 26 1
512 12 12 0 25 23 7

1024 100 89 4 462 445 172
Total 2261 2220 2256 1705 1671 1923

Strongest conclusion I feel comfortable drawing is that if anyone is concerned
about tightness, they should look more carefully. Sun shows that increased
tightness is achievable.



Tightness: Opportunity for Improvement?

Why?

Example: [1, 2] + [3, 4]

COSY: [FC FF FF FF FF FF 0F 40 08, 04 00 00 00 00 00 18 40 08] (hex)
= [3.999 999 999 999 998 223 ..., 6.000 000 000 000 003 552 ...]
is 8 ULP’s excess (estimated 5), 4 ULP’s relative to width = 2 (estimated 2.5)

Constructors INTV(1.0, 2.0) and INTV (3.0, 4.0) round out
Operator ADD rounds out

See 3arith inpADD.txt, 3arith resADD.txt
debug 3arith binADD.txt ; Use DOS file name

Sun’s excess width is 0 ULP’s

Suggestions to improve definitions of estimated ULP’s and relative ULP’s are
welcome



Tightness: Opportunity for Improvement?

Why?

Example: [1, 1] - [1, 1]

COSY: [-0.444 ..., +0.444] E-15
Excess is about 6? or ∞?



Speed: Opportunity for Improvement?

Standard Time Unit, or STU, based on 1000 evaluations of the Shekel 5
Function. See pp. 1-15 of Dixon, L. C. W. and Szegö, G. P., Towards Global
Optimization 2 [4]

COSY: Intel Celeron @ 400 Mhz, 128 Mb RAM, Windows 98

Sun F95: Sun Enterprise 250, UltraSPARC 3, 1 CPU @ 450 Mhz, 512 Mb RAM

CPU time for 10 M evaluations of Shekel 5:

f(x) = −

m=5∑

i=1

1

(x − Ai)(x − Ai)T + ci

CPU time for 10 M evaluations of

f(x) = log
10

(asin (sin2(x) + cos2(x) − exp(atan (−x22))))

COSY Sun F95 COSY Sun F95
Double precision 920 sec 25.4 sec 73 sec 28.9 sec
Interval 1570 sec 33.2 sec 254 sec 135.8 sec
Ratio: 1.7 1.3 3.5 4.7



Tightness and Speed: COSY Response

Martin Berz:

COSY is designed on the two premises of portability across platforms on the
one hand, and use within the Taylor model framework on the other. The
desired portability is achieved by building interval intrinsics based on F77
intrinsics, with the necessary safety factors of around 4 ulps because of the
inherent precision (or rather lack thereof) of the intrinsics. The use in the TM
framework entails that in practically relevant calculations, these slight
overestimations usually do not matter since the TM approach is used for large
domain intervals where because of dependency, conventional validated methods
usually have much larger overestimations in all but the simplest cases.
Furthermore, since the vast majority of effort in the Taylor model arithmetic lies
in the floating point coefficient arithmetic which is highly optimized in COSY,
the efficiency of the interval implementation is of secondary significance.



Isolated Suggestions

Not in testing scope, but things we noticed:

Update version number (and date)

When you open a COSY window, don’t require user to enlarge it

Better exception handling than SQRT(-1)
“unexpected termination of execution because of a diagnostic”
vs. “crash”

Better warnings when using non-rigorously

Source restricted to 80 columns

More free-form source

More helpful error messages, e.g., missing data file

More helpful error messages, e.g., miss-declare a variable

More helpful error messages, e.g., missing ’)’ gave 100’s of “COMMAND NOT
FOUND”



Isolated Suggestions

If you are interested in improved tightness

First suggestion: Provide a character-based interval constructor so that one can
construct intervals of width zero enclosing exactly representable values

Second suggestion: Provide an option using hardware directed rounding, if
available.



If We Continue ...

Possible extensions to these tests include
Refine excess width measurements
Port tests to INTLAB in Matlab
Port Gonnet’s

www.inf.ethz.ch/personal/gonnet/FPAccuracy/Analysis.html

Your suggestions?



Summary

Martin Berz:

“We are encouraged by the fact that COSY algorithms performed as designed
regarding containment. Indeed, the asin and tan problems will not result in an
unrecognized containment violation since they merely represent misleading
diagnostics. We hope the documentation error responsible for the latter would
not have caused incorrect results for users who in the absence of
documentation may have expected a different behavior of the “̂ ” operation.
However, it would only lead to a problem if in all calls to the power operation,
the exponents are just slightly away from integers or half integers, but not
exactly integers or half integers, which one may say is unlikely; further, it would
probably have led to suspicion from the user because the exponent to be passed
is floating point, and hence necessarily will have a certain inaccuracy.

“All users of the COSY validated interval library are asked to download the
latest version of the code, which contains remedies to the above problems as
well as some other improvements as documented in the updated manual.
Finally, while the tests of COSY were rather extensive and demanding, the fact
that the inclusions produced by the code behaved as designed for all tests
undertaken does of course not guarantee the absence of algorithmic or coding
errors. Since both COSY source code as well as the set of test problems are
available, we encourage all users to study the source code carefully or run
appropriate variations of the test problems in the case of questions or concerns.”



*

References

[1] Martin Berz. COSY INFINITY Version 8 reference manual. Technical
Report MSUCL–1088, National Superconducting Cyclotron Laboratory,
Michigan State University, East Lansing, MI 48824, 1997.

[2] Martin Berz. COSY INFINITY web page, 2000.

[3] George F. Corliss. Performance of self-validating quadrature. In Pat Keast
and Graeme Fairweather, editors, Proceedings of the NATO Advanced

Workshop on Numerical Integration: Recent Developments, Software, and

Applications, pages 239–259. Reidel, Boston, 1987.

[4] Laurence C. W. Dixon and G. P. Szegö. Towards Global Optimization 2.
North-Holland, 1978.

[5] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer

Software, Second edition. Wiley, New York, 1999.

[6] R. B. Kearfott, M. Dawande, Du K.-S., and C.-Y. Hu. INTLIB: A portable
FORTRAN 77 interval standard function library. ACM Transactions on

Mathematical Software, 1994.

[7] Edward Kit. Software Testing in the Real World: Improving the Process.
Addison Wesley, 1995.

[8] Glenford Myers. The Art of Software Testing. Wiley, New York, 1979.


