ALGORITHM TRANSFORMATION
L. B. Rall

An algorithm
t’izf’i(t17"'7t’i—1)7 i=2,...,n,

defines its output t, = f(t1) as a function of its input t;. This can be
transformed into an algorithm for 7;, = F(T1) by providing appropriate
functions F; corresponding to f; (the direct or forward method), or in other
ways.

In the case of numerical routines (i.e., computer programs), the func-
tions f; are arithmetic operations or given standard functions (sometimes
called library or intrinsic functions).

EXAMPLES

e Single precision — double precision
e Real — complex

e Real — interval

e Real vector — gradient

e Real — Taylor

e Real — Fourier

Each of these algorithm transformations can be performed in forward
mode by providing the appropriate arithmetic operations and standard
functions.

REAL — INTERVAL

The forward transformation gives the united extension T,, = F(T3) of
f(t1) for t; € Ty (Moore, 1979). One has

T ={f(t1)|t1 € T1} C Ty,

but the result may not be a useful inclusion of 7.
The use of centered, mean value, or more generally, Taylor forms may
reduce the excess width of T', see (Moore, 1979), also (Rall, 1983).
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REAL VECTOR — GRADIENT

This is called automatic (or algorithmic) differentiation. In addition to
forward mode, the original algorithm can be transformed into an efficient
reverse mode algorithm (Berz, 1996). A simple explanation will appear in
Reliable Computing: L. B. Rall, Computation of functions, gradients, and
Jacobians. The transformed algorithm here will generally have a different
number of steps than the original.

In either mode, derivatives have to be supplied for arithmetic opera-
tions and standard functions.

REAL — TAYLOR

This is another version of automatic differentiation. Moore (1979) gives
arithmetic operations and standard functions to transform the algorithm for
t, = f(t1) into an algorithm for the vector 7T;, of Taylor coefficients of f(¢1),
given the vector 17 of Taylor coefficients of #;.

The same idea applies to Fourier series as well as other expansions.
The case of Fourier series is the subject of current work by Rall.

TRUNCATION (ROUNDING) ERROR

Rounding a real number r to a finite-precision (f.p.) number r,, is
equivalent to truncation of the series expansion

r =b° X i d,b™"
n=1

to .
r = be X Zdnb_".
n=1

Similarly, rounding a Taylor series expansion to a Taylor polynomial of
degree m has error
hm-l—l (m+1)
Rm = m )
(m +1)! / 9
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where £ lies between the expansion point z and x + h. This error can be
bounded by an interval inclusion of f(™m+1)(¢). For h small, the united
extension may be good enough, or the width of the error term may be
reduced when monotonicity obtains (Corliss & Rall, 1999).
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