Testing COSY’s INSRF

George F. Corliss
Marquette University

October 28, 2003

Abstract

Execution-based tests of COSY interval enclosures for intrinsic
functions for various values of INSRF reveal no violations of contain-
ment, even for INSRF 1;

1 Context

COSY uses a procedure INSRF to control the amount of outward rounding
applied to the result of evaluation of native intrinsic functions. According to
the COSY Infinity Version 1.8 Programming Manual, MSUHEP-20703, May
2001,

Procedure INSRF (1 argument) sets the factor f. fe is the out-
ward rounding constant for interval intrinsic functions, where €
is the software determined machine error, and is the outward
rounding constant for the other interval rounding including the
binary operations. By default f is 10. The last specified f is kept
independent of INSRND.

We report execution-based testing of COSY’s intrinsic functions for var-
ious values of INSRF down to 1. Even at INSRF 1, we see no violations of
containment.

2 Test methods

The tests follow those developed by Yu and Corliss and reported in George F.
Corliss and Jun Yu, Testing COSY'’s Interval and Taylor Model Arithmetic to
appear in Springer Lectures Notes on Computer Science (LNCS), Numerical
Software with Result Verification: Platforms, Algorithms, Applications in
Engineering, Physics, and Economics, R. Alt, A. Frommer, R. B. Kearfott,
and W. Luther, eds.

The tests were run on a Toshiba Satellite 4090XDVD with an Intel
Celeron at 400 Mhz, 128 MB RAM, running Windows 98.

I reproduced Jun’s tests, minus the tests of +, -, *, and /. That left 635
tests. The code is attached as 3arith_01.fox. The test cases are specified in
the attached COSY_inp.txt. I ran similar tests for INSRF 1, 2, ..., 10, 20,
and 100.

2.1 Validating the action of INSRF

How do T know that the INSRF call has the intended effect?
In each case, I called INSRF n; during the initialization (see the codes in
3arith_01.fox and rand_chal.fox). Here are (inexactly rounded) results

For INSRF 10;
1060020 1060 (= SIN) 2
[3.141592653589792 3.141592653589794]
[-0.2542074623718143E-14 0.3231085104332683E-14]

For INSRF 1;
1060020 1060 2
[3.141592653589792 3.141592653589794 1]
[-0.2542074623718138E-14 0.3231085104332677E-14]

We can see that the results for INSRF 1; are slightly tighter. Hence, I
am reasonably certain that had the intended effect.

2.2 Testing methodology

The process was the same as before. I ran COSY and wrote in a binary
form the endpoints passed to COSY’s interval constructor and the interval

returned by COSY’s evaluation. That binary file was read by Maple. Maple
generated 10 equally spaced points in the argument interval and evaluated
the same symbolic expression in high precision arithmetic. This time I used
200 digits.

Let X1 be a challenge interval written in ASCII test in the file COSY _inp.txt.

The endpoints of X1 are read by the standard input routines of COSY
(probably rounded to nearest). Let X2 be the internal binary representation
of X1. X2 is exact with respect to itself, but it is rounded from X1.

Let X3 := INTV(X2); (figuratively) in COSY. INTV rounds X2 outward.

Let F'3 := intrinsic_function(X3); as evaluated by COSY.

Write the exact binary values of X2 (not X3) and I3 to a file.

Maple reads the binary values for X2 and F3.

Maple computes 10 equally-spaced points = in X2, and evaluates f =
intrinsic_function(x), using 200 decimal digit arithmetic.

In Maple, any f not contained in F3 is a violation of containment.

In NO case was Maple’s evaluation outside the COSY enclosure. We
detected no containment failures, even for INSRF 1;

As we agreed during the 2002 tests, the interval COSY intrinsics see
(output from the interval constructor) is slightly wider than the interval
Maple sees (arguments passed to INTV).

3 Running the tests

I assume COSY is properly installed and in the PATH.

Navigate to the directory COSYoct.

The COSY program for Jun’s tests is 3arith_01.fox. The input file con-
taining the test cases is in 1Arith_inp/2arith_inpA.txt. Input files controlling
the value for INSRF are in 1Insrf vals/insrfl0.txt (for INSRF 10;) and simi-
larly named files.

In a DOS window, type runtest A 10. See the script runtest.bat to see
how the various input and output files are copied.

That starts COSY. In the COSY window, type 3arith_01.

After the COSY program finishes, in the DOS window, press [Enter]
to complete the batch run. A binary version of the results is copied to
2Bin_results/4arith_binA_10.txt and to the subdirectory Maple. An ASCII
text version (output is approximately rounded) is copied to
2Text_results/4arith_resA_10.txt.

Navigate to the Maple directory.

Open the Maple worksheet test_cosy.mws.

If necessary, edit the file name readDataFile to match the test case you
are running. If the COSY run was done on a Unix machine, in the Maple
code, you'll have to replace readCOSYdouble . .mpl by readFORTdouble .mpl.
These two files read big endian and little endian binary files.

Execute each Maple code block. You should see a final report on the
number of test cases and the number of errors found.

4 Random tests

I re-ran the randomly generated tests, again removing the tests of +, -, ¥,
and /. The settings I used yielded 367,730 tests. On my machine, that took
COSY about 6-8 minutes, and about 6-7 hours to check with Maple. The
code is attached as rand_chal.fox. T ran the tests for INSRF 1.

I saw no violations of containment.

5 What did we see in Summer 20027

At one point in the tests of the Summer 2002, Yu and Corliss claimed to see
INSRF-related violations of containment. The test driver 3arith 02.fox
replicates those results.

The difference is in what challenge argument interval is passed to Maple.

In the outline of the test given above, we write to the binary result file the
exact endpoints of X2, the values which are passed into the COSY interval
constructor INTV. In 3arith 02.fox, we instead pass the exact endpoints
of X3, the results from INTV.

If we ask Maple to check against the results from INTV, even at INSRF
100; the test

cos([—1.570796326794897, —1.570796326794897])

violates containment.

In my opinion, that shows that mathematically, the COSY cos intrinsic
function violates containment for a particular argument whose exact value is
close to [-1.570796326794897, -1.570796326794897].

Table 1: Relative Excess Width - Frequency

INSRF = 1 2 3 4 5) 6 7 8 9 10 20 100
0 33 33 33 33 33 33 33 33 33 33 33 33
1 17 0 0 0 0 0 0 0 0 0 0 0
2 45 31 14 14 14 14 14 14 14 14 14 14
4 219 135 74 74 52 35 35 35 35 35 35 35
8 144 250 273 233 153 94 93 93 91 91 52 52
16 17 26 79 113 210 242 232 229 218 157 40 0
32 8 8 10 16 20 62 69 72 8 146 220 0
64 8 8 8 8 9 11 15 15 15 14 &9 0
128 7 7 7 7 7 7 6 6 6 7 14 46
256 5 5 5 5 5 5 6 6 6 6 5 271
512 12 12 12 12 12 12 12 12 12 12 13 64
More 89 &8 8 88 & & 8 & & 8 & &9
Total 604 604 604 604 604 604 604 604 604 604 604 604
Out of 635 635 635 635 635 635 635 635 635 635 635 635

At the same time, I accept the argument of the COSY authors that a
package has a right to define its own interface. It corresponds to saying,
“COSY, form this into an interval and take its cos.” In that interpretation,
I have been unable to construct an example that exposes the mathematical
flaw I believe is there.

In fact, this example precisely shows the advantage of the COSY approach
of rounding its intervals outward slightly in INTV.

6 Excess width

COSY uses a default INSRF 10; while even INSRF 1; showed no violations
of containment in these tests.

That means that with INSRF > 1, COSY’s enclosure interval is wider
that it needs to be. The program 3arith_10.fox and the Maple worksheet
wid_test_cosy.mws explore that. Table 1 summarizes those findings. Within
Maple, given COSY’s enclosing interval and the largest and smallest of the
10 evaluations Maple has done, we estimate the number of ULP’s at each
end the COSY enclosure is wider than the Maple samples.

Figure 1 suggests four excess ULP’s on the left and three on the right. I

Figure 1: Excess width

compute ULP’s in Maple by

ULPs := proc (a, b)
Tocal rewU:
rewlU := abs(b - a);
if (a = 0) then
return (rewU * 271022);
else
return ((rewU / abs(a)) * 2752);
end if:
end proc:

That is not a perfect measure, but it gives some indication.

In Table 1, the row labels mean 0: No excess width; 1: 1 ULP; 2: 2
ULP’s; 4: 3 or 4 ULP’s; 8 5 - 8 ULP’s; etc.

Table 1 shows the frequencies. For each INSRE value (columns), how
many of the test cases exhibited that range of ULP’s of excess width? You
see that for higher values of INSRF, the median frequency moves toward
greater overestimation.

Table 2 is cumulative: 0: No excess width; 1: 0 - 1 ULP; 2: 0- 2 ULP’s;
4: 0 -4 ULP’s; 8 0 -8 ULP’s; ete.

7 Conclusions

The feature INSRF and its default value of 10 are intended to compensate
for possible inaccuracies in native evaluation of intrinsic functions on which
COSY depends. In general, there is no accurance of the quality of the un-
derlying intrinsic function evaluations, so COSY must be conservative.

The tests reported here suggest that at least in the environment tested, it
may be possible for COSY safely to use a smaller default for INSRF, yielding
slightly tighter enclosures.

Table 2: Cummulative Relative Excess Width
INSRF = 1 2 3 4 5 6 7 8 9 10 20 100
0 33 33 33 33 33 33 33 33 33 33 33 33
1 5 33 33 33 33 33 33 33 33 33 33 33
2 95 64 A7 AT AT AT AT AT AT AT 47 47
4 314 199 121 121 99 82 82 82 82 82 82 &2
8 458 449 394 354 252 176 175 175 173 173 134 134
16 475 475 473 467 462 418 407 404 391 330 174 134
32 483 483 483 483 482 480 476 476 476 476 394 134
64 491 491 491 491 491 491 491 491 491 490 483 134
128 498 498 498 498 498 498 497 497 497 497 497 180
256 503 503 503 503 503 503 503 503 503 503 502 451
512 515 515 515 515 515 515 515 515 515 515 515 515
More 604 604 604 604 604 604 604 604 604 604 604 604
Out of 635 635 635 635 635 635 635 635 635 635 635 635

